146 lines
8.4 KiB
C++
146 lines
8.4 KiB
C++
|
/*
|
||
|
* Copyright (c) 2018-2019 Arm Limited.
|
||
|
*
|
||
|
* SPDX-License-Identifier: MIT
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to
|
||
|
* deal in the Software without restriction, including without limitation the
|
||
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||
|
* sell copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in all
|
||
|
* copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
* SOFTWARE.
|
||
|
*/
|
||
|
#include "arm_compute/core/Types.h"
|
||
|
#include "arm_compute/runtime/NEON/functions/NEYOLOLayer.h"
|
||
|
#include "arm_compute/runtime/Tensor.h"
|
||
|
#include "arm_compute/runtime/TensorAllocator.h"
|
||
|
#include "tests/NEON/Accessor.h"
|
||
|
#include "tests/PaddingCalculator.h"
|
||
|
#include "tests/datasets/ActivationFunctionsDataset.h"
|
||
|
#include "tests/datasets/ShapeDatasets.h"
|
||
|
#include "tests/framework/Asserts.h"
|
||
|
#include "tests/framework/Macros.h"
|
||
|
#include "tests/framework/datasets/Datasets.h"
|
||
|
#include "tests/validation/Validation.h"
|
||
|
#include "tests/validation/fixtures/YOLOLayerFixture.h"
|
||
|
|
||
|
namespace arm_compute
|
||
|
{
|
||
|
namespace test
|
||
|
{
|
||
|
namespace validation
|
||
|
{
|
||
|
namespace
|
||
|
{
|
||
|
/** Tolerance */
|
||
|
constexpr AbsoluteTolerance<float> tolerance_f32(1e-6f);
|
||
|
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||
|
constexpr RelativeTolerance<float> tolerance_f16(0.01f);
|
||
|
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
|
||
|
|
||
|
/** Floating point data sets. */
|
||
|
const auto YOLODataset = combine(combine(combine(combine(framework::dataset::make("InPlace", { false, true }), framework::dataset::make("ActivationFunction",
|
||
|
ActivationLayerInfo::ActivationFunction::LOGISTIC)),
|
||
|
framework::dataset::make("AlphaBeta", { 0.5f, 1.f })),
|
||
|
framework::dataset::make("Classes", 40)),
|
||
|
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC }));
|
||
|
} // namespace
|
||
|
|
||
|
TEST_SUITE(NEON)
|
||
|
TEST_SUITE(YOLOLayer)
|
||
|
|
||
|
// *INDENT-OFF*
|
||
|
// clang-format off
|
||
|
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(
|
||
|
framework::dataset::make("InputInfo", { TensorInfo(TensorShape(16U, 16U, 6U), 1, DataType::U8), // Wrong input data type
|
||
|
TensorInfo(TensorShape(16U, 16U, 6U), 1, DataType::F32), // Invalid activation info
|
||
|
TensorInfo(TensorShape(16U, 16U, 6U), 1, DataType::F32), // Wrong output data type
|
||
|
TensorInfo(TensorShape(16U, 16U, 6U), 1, DataType::F32), // wrong number of classes
|
||
|
TensorInfo(TensorShape(16U, 16U, 6U), 1, DataType::F32), // Mismatching shapes
|
||
|
TensorInfo(TensorShape(17U, 16U, 6U), 1, DataType::F32), // shrink window
|
||
|
TensorInfo(TensorShape(17U, 16U, 7U), 1, DataType::F32), // channels not multiple of (num_classes + 5)
|
||
|
TensorInfo(TensorShape(16U, 16U, 6U), 1, DataType::F32), // Valid
|
||
|
}),
|
||
|
framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(16U, 16U, 6U), 1, DataType::F32),
|
||
|
TensorInfo(TensorShape(16U, 16U, 6U), 1, DataType::F32),
|
||
|
TensorInfo(TensorShape(16U, 16U, 6U), 1, DataType::U16),
|
||
|
TensorInfo(TensorShape(16U, 16U, 6U), 1, DataType::F32),
|
||
|
TensorInfo(TensorShape(16U, 11U, 6U), 1, DataType::F32),
|
||
|
TensorInfo(TensorShape(16U, 16U, 6U), 1, DataType::F32),
|
||
|
TensorInfo(TensorShape(16U, 16U, 7U), 1, DataType::F32),
|
||
|
TensorInfo(TensorShape(16U, 16U, 6U), 1, DataType::F32),
|
||
|
})),
|
||
|
framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC),
|
||
|
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU),
|
||
|
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC),
|
||
|
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC),
|
||
|
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC),
|
||
|
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC),
|
||
|
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC),
|
||
|
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC),
|
||
|
})),
|
||
|
framework::dataset::make("Numclasses", { 1, 1, 1, 0, 1, 1, 1, 1
|
||
|
})),
|
||
|
framework::dataset::make("Expected", { false, false, false, false, false, false, false, true})),
|
||
|
input_info, output_info, act_info, num_classes, expected)
|
||
|
{
|
||
|
ARM_COMPUTE_EXPECT(bool(NEYOLOLayer::validate(&input_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), act_info, num_classes)) == expected, framework::LogLevel::ERRORS);
|
||
|
}
|
||
|
// clang-format on
|
||
|
// *INDENT-ON*
|
||
|
|
||
|
template <typename T>
|
||
|
using NEYOLOLayerFixture = YOLOValidationFixture<Tensor, Accessor, NEYOLOLayer, T>;
|
||
|
|
||
|
TEST_SUITE(Float)
|
||
|
TEST_SUITE(FP32)
|
||
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEYOLOLayerFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallYOLOShapes(), YOLODataset), framework::dataset::make("DataType",
|
||
|
DataType::F32)))
|
||
|
{
|
||
|
// Validate output
|
||
|
validate(Accessor(_target), _reference, tolerance_f32);
|
||
|
}
|
||
|
|
||
|
FIXTURE_DATA_TEST_CASE(RunLarge, NEYOLOLayerFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(datasets::LargeYOLOShapes(), YOLODataset), framework::dataset::make("DataType",
|
||
|
DataType::F32)))
|
||
|
{
|
||
|
// Validate output
|
||
|
validate(Accessor(_target), _reference, tolerance_f32);
|
||
|
}
|
||
|
TEST_SUITE_END() // FP32
|
||
|
|
||
|
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||
|
TEST_SUITE(FP16)
|
||
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEYOLOLayerFixture<half>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallYOLOShapes(), YOLODataset), framework::dataset::make("DataType",
|
||
|
DataType::F16)))
|
||
|
{
|
||
|
// Validate output
|
||
|
validate(Accessor(_target), _reference, tolerance_f16);
|
||
|
}
|
||
|
FIXTURE_DATA_TEST_CASE(RunLarge, NEYOLOLayerFixture<half>, framework::DatasetMode::NIGHTLY, combine(combine(datasets::LargeYOLOShapes(), YOLODataset), framework::dataset::make("DataType",
|
||
|
DataType::F16)))
|
||
|
{
|
||
|
// Validate output
|
||
|
validate(Accessor(_target), _reference, tolerance_f16);
|
||
|
}
|
||
|
TEST_SUITE_END() // FP16
|
||
|
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
|
||
|
TEST_SUITE_END() // Float
|
||
|
|
||
|
TEST_SUITE_END() // YOLOLayer
|
||
|
TEST_SUITE_END() // NEON
|
||
|
} // namespace validation
|
||
|
} // namespace test
|
||
|
} // namespace arm_compute
|