/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__linux__) #include #if defined(__arm__) #include #include #endif // __arm__ #endif #include "android-base/parseint.h" #include "android-base/scopeguard.h" #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "android-base/unique_fd.h" #include "aot_class_linker.h" #include "arch/instruction_set_features.h" #include "art_method-inl.h" #include "base/callee_save_type.h" #include "base/dumpable.h" #include "base/fast_exit.h" #include "base/file_utils.h" #include "base/globals.h" #include "base/leb128.h" #include "base/macros.h" #include "base/memory_tool.h" #include "base/mutex.h" #include "base/os.h" #include "base/scoped_flock.h" #include "base/stl_util.h" #include "base/time_utils.h" #include "base/timing_logger.h" #include "base/unix_file/fd_file.h" #include "base/utils.h" #include "base/zip_archive.h" #include "class_linker.h" #include "class_loader_context.h" #include "cmdline_parser.h" #include "compiler.h" #include "compiler_callbacks.h" #include "debug/elf_debug_writer.h" #include "debug/method_debug_info.h" #include "dex/descriptors_names.h" #include "dex/dex_file-inl.h" #include "dex/dex_file_loader.h" #include "dex/quick_compiler_callbacks.h" #include "dex/verification_results.h" #include "dex2oat_options.h" #include "dexlayout.h" #include "driver/compiler_driver.h" #include "driver/compiler_options.h" #include "driver/compiler_options_map-inl.h" #include "elf_file.h" #include "gc/space/image_space.h" #include "gc/space/space-inl.h" #include "gc/verification.h" #include "interpreter/unstarted_runtime.h" #include "jni/java_vm_ext.h" #include "linker/elf_writer.h" #include "linker/elf_writer_quick.h" #include "linker/image_writer.h" #include "linker/multi_oat_relative_patcher.h" #include "linker/oat_writer.h" #include "mirror/class-alloc-inl.h" #include "mirror/class_loader.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "oat.h" #include "oat_file.h" #include "oat_file_assistant.h" #include "palette/palette.h" #include "profile/profile_compilation_info.h" #include "runtime.h" #include "runtime_intrinsics.h" #include "runtime_options.h" #include "scoped_thread_state_change-inl.h" #include "stream/buffered_output_stream.h" #include "stream/file_output_stream.h" #include "vdex_file.h" #include "verifier/verifier_deps.h" #include "well_known_classes.h" namespace art { namespace dex2oat { enum class ReturnCode : int { kNoFailure = 0, // No failure, execution completed successfully. kOther = 1, // Some other not closer specified error occurred. kCreateRuntime = 2, // Dex2oat failed creating a runtime. }; } // namespace dex2oat using android::base::StringAppendV; using android::base::StringPrintf; using gc::space::ImageSpace; static constexpr size_t kDefaultMinDexFilesForSwap = 2; static constexpr size_t kDefaultMinDexFileCumulativeSizeForSwap = 20 * MB; // Compiler filter override for very large apps. static constexpr CompilerFilter::Filter kLargeAppFilter = CompilerFilter::kVerify; static int original_argc; static char** original_argv; static std::string CommandLine() { std::vector command; command.reserve(original_argc); for (int i = 0; i < original_argc; ++i) { command.push_back(original_argv[i]); } return android::base::Join(command, ' '); } // A stripped version. Remove some less essential parameters. If we see a "--zip-fd=" parameter, be // even more aggressive. There won't be much reasonable data here for us in that case anyways (the // locations are all staged). static std::string StrippedCommandLine() { std::vector command; // Do a pre-pass to look for zip-fd and the compiler filter. bool saw_zip_fd = false; bool saw_compiler_filter = false; for (int i = 0; i < original_argc; ++i) { if (android::base::StartsWith(original_argv[i], "--zip-fd=")) { saw_zip_fd = true; } if (android::base::StartsWith(original_argv[i], "--compiler-filter=")) { saw_compiler_filter = true; } } // Now filter out things. for (int i = 0; i < original_argc; ++i) { // All runtime-arg parameters are dropped. if (strcmp(original_argv[i], "--runtime-arg") == 0) { i++; // Drop the next part, too. continue; } // Any instruction-setXXX is dropped. if (android::base::StartsWith(original_argv[i], "--instruction-set")) { continue; } // The boot image is dropped. if (android::base::StartsWith(original_argv[i], "--boot-image=")) { continue; } // The image format is dropped. if (android::base::StartsWith(original_argv[i], "--image-format=")) { continue; } // This should leave any dex-file and oat-file options, describing what we compiled. // However, we prefer to drop this when we saw --zip-fd. if (saw_zip_fd) { // Drop anything --zip-X, --dex-X, --oat-X, --swap-X, or --app-image-X if (android::base::StartsWith(original_argv[i], "--zip-") || android::base::StartsWith(original_argv[i], "--dex-") || android::base::StartsWith(original_argv[i], "--oat-") || android::base::StartsWith(original_argv[i], "--swap-") || android::base::StartsWith(original_argv[i], "--app-image-")) { continue; } } command.push_back(original_argv[i]); } if (!saw_compiler_filter) { command.push_back("--compiler-filter=" + CompilerFilter::NameOfFilter(CompilerFilter::kDefaultCompilerFilter)); } // Construct the final output. if (command.size() <= 1U) { // It seems only "/apex/com.android.art/bin/dex2oat" is left, or not // even that. Use a pretty line. return "Starting dex2oat."; } return android::base::Join(command, ' '); } static void UsageErrorV(const char* fmt, va_list ap) { std::string error; StringAppendV(&error, fmt, ap); LOG(ERROR) << error; } static void UsageError(const char* fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); } NO_RETURN static void Usage(const char* fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); UsageError("Command: %s", CommandLine().c_str()); UsageError("Usage: dex2oat [options]..."); UsageError(""); std::stringstream oss; VariableIndentationOutputStream vios(&oss); auto parser = CreateDex2oatArgumentParser(); parser.DumpHelp(vios); UsageError(oss.str().c_str()); std::cerr << "See log for usage error information\n"; exit(EXIT_FAILURE); } // Set CPU affinity from a string containing a comma-separated list of numeric CPU identifiers. static void SetCpuAffinity(const std::vector& cpu_list) { #ifdef __linux__ int cpu_count = sysconf(_SC_NPROCESSORS_CONF); cpu_set_t target_cpu_set; CPU_ZERO(&target_cpu_set); for (int32_t cpu : cpu_list) { if (cpu >= 0 && cpu < cpu_count) { CPU_SET(cpu, &target_cpu_set); } else { // Argument error is considered fatal, suggests misconfigured system properties. Usage("Invalid cpu \"d\" specified in --cpu-set argument (nprocessors = %d)", cpu, cpu_count); } } if (sched_setaffinity(getpid(), sizeof(target_cpu_set), &target_cpu_set) == -1) { // Failure to set affinity may be outside control of requestor, log warning rather than // treating as fatal. PLOG(WARNING) << "Failed to set CPU affinity."; } #else LOG(WARNING) << "--cpu-set not supported on this platform."; #endif // __linux__ } // The primary goal of the watchdog is to prevent stuck build servers // during development when fatal aborts lead to a cascade of failures // that result in a deadlock. class WatchDog { // WatchDog defines its own CHECK_PTHREAD_CALL to avoid using LOG which uses locks #undef CHECK_PTHREAD_CALL #define CHECK_WATCH_DOG_PTHREAD_CALL(call, args, what) \ do { \ int rc = call args; \ if (rc != 0) { \ errno = rc; \ std::string message(# call); \ message += " failed for "; \ message += reason; \ Fatal(message); \ } \ } while (false) public: explicit WatchDog(int64_t timeout_in_milliseconds) : timeout_in_milliseconds_(timeout_in_milliseconds), shutting_down_(false) { const char* reason = "dex2oat watch dog thread startup"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_init, (&mutex_, nullptr), reason); #ifndef __APPLE__ pthread_condattr_t condattr; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_init, (&condattr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_setclock, (&condattr, CLOCK_MONOTONIC), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_init, (&cond_, &condattr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_destroy, (&condattr), reason); #endif CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_init, (&attr_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_create, (&pthread_, &attr_, &CallBack, this), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_destroy, (&attr_), reason); } ~WatchDog() { const char* reason = "dex2oat watch dog thread shutdown"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason); shutting_down_ = true; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_signal, (&cond_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_join, (pthread_, nullptr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_destroy, (&cond_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_destroy, (&mutex_), reason); } static void SetRuntime(Runtime* runtime) { const char* reason = "dex2oat watch dog set runtime"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&runtime_mutex_), reason); runtime_ = runtime; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&runtime_mutex_), reason); } // TODO: tune the multiplier for GC verification, the following is just to make the timeout // large. static constexpr int64_t kWatchdogVerifyMultiplier = kVerifyObjectSupport > kVerifyObjectModeFast ? 100 : 1; // When setting timeouts, keep in mind that the build server may not be as fast as your // desktop. Debug builds are slower so they have larger timeouts. static constexpr int64_t kWatchdogSlowdownFactor = kIsDebugBuild ? 5U : 1U; // 9.5 minutes scaled by kSlowdownFactor. This is slightly smaller than the Package Manager // watchdog (PackageManagerService.WATCHDOG_TIMEOUT, 10 minutes), so that dex2oat will abort // itself before that watchdog would take down the system server. static constexpr int64_t kWatchDogTimeoutSeconds = kWatchdogSlowdownFactor * (9 * 60 + 30); static constexpr int64_t kDefaultWatchdogTimeoutInMS = kWatchdogVerifyMultiplier * kWatchDogTimeoutSeconds * 1000; private: static void* CallBack(void* arg) { WatchDog* self = reinterpret_cast(arg); ::art::SetThreadName("dex2oat watch dog"); self->Wait(); return nullptr; } NO_RETURN static void Fatal(const std::string& message) { // TODO: When we can guarantee it won't prevent shutdown in error cases, move to LOG. However, // it's rather easy to hang in unwinding. // LogLine also avoids ART logging lock issues, as it's really only a wrapper around // logcat logging or stderr output. LogHelper::LogLineLowStack(__FILE__, __LINE__, LogSeverity::FATAL, message.c_str()); // If we're on the host, try to dump all threads to get a sense of what's going on. This is // restricted to the host as the dump may itself go bad. // TODO: Use a double watchdog timeout, so we can enable this on-device. Runtime* runtime = GetRuntime(); if (!kIsTargetBuild && runtime != nullptr) { runtime->AttachCurrentThread("Watchdog thread attached for dumping", true, nullptr, false); runtime->DumpForSigQuit(std::cerr); } exit(1); } void Wait() { timespec timeout_ts; #if defined(__APPLE__) InitTimeSpec(true, CLOCK_REALTIME, timeout_in_milliseconds_, 0, &timeout_ts); #else InitTimeSpec(true, CLOCK_MONOTONIC, timeout_in_milliseconds_, 0, &timeout_ts); #endif const char* reason = "dex2oat watch dog thread waiting"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason); while (!shutting_down_) { int rc = pthread_cond_timedwait(&cond_, &mutex_, &timeout_ts); if (rc == EINTR) { continue; } else if (rc == ETIMEDOUT) { Fatal(StringPrintf("dex2oat did not finish after %" PRId64 " milliseconds", timeout_in_milliseconds_)); } else if (rc != 0) { std::string message(StringPrintf("pthread_cond_timedwait failed: %s", strerror(rc))); Fatal(message); } } CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason); } static Runtime* GetRuntime() { const char* reason = "dex2oat watch dog get runtime"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&runtime_mutex_), reason); Runtime* runtime = runtime_; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&runtime_mutex_), reason); return runtime; } static pthread_mutex_t runtime_mutex_; static Runtime* runtime_; // TODO: Switch to Mutex when we can guarantee it won't prevent shutdown in error cases. pthread_mutex_t mutex_; pthread_cond_t cond_; pthread_attr_t attr_; pthread_t pthread_; const int64_t timeout_in_milliseconds_; bool shutting_down_; }; pthread_mutex_t WatchDog::runtime_mutex_ = PTHREAD_MUTEX_INITIALIZER; Runtime* WatchDog::runtime_ = nullptr; // Helper class for overriding `java.lang.ThreadLocal.nextHashCode`. // // The class ThreadLocal has a static field nextHashCode used for assigning hash codes to // new ThreadLocal objects. Since the class and the object referenced by the field are // in the boot image, they cannot be modified under normal rules for AOT compilation. // However, since this is a private detail that's used only for assigning hash codes and // everything should work fine with different hash codes, we override the field for the // compilation, providing another object that the AOT class initialization can modify. class ThreadLocalHashOverride { public: ThreadLocalHashOverride(bool apply, int32_t initial_value) { Thread* self = Thread::Current(); ScopedObjectAccess soa(self); hs_.emplace(self); // While holding the mutator lock. Runtime* runtime = Runtime::Current(); klass_ = hs_->NewHandle(apply ? runtime->GetClassLinker()->LookupClass(self, "Ljava/lang/ThreadLocal;", /*class_loader=*/ nullptr) : nullptr); field_ = ((klass_ != nullptr) && klass_->IsVisiblyInitialized()) ? klass_->FindDeclaredStaticField("nextHashCode", "Ljava/util/concurrent/atomic/AtomicInteger;") : nullptr; old_field_value_ = hs_->NewHandle(field_ != nullptr ? field_->GetObject(klass_.Get()) : nullptr); if (old_field_value_ != nullptr) { gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator(); StackHandleScope<1u> hs2(self); Handle new_field_value = hs2.NewHandle( old_field_value_->GetClass()->Alloc(self, allocator_type)); PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize(); ArtMethod* constructor = old_field_value_->GetClass()->FindConstructor("(I)V", pointer_size); CHECK(constructor != nullptr); uint32_t args[] = { reinterpret_cast32(new_field_value.Get()), static_cast(initial_value) }; JValue result; constructor->Invoke(self, args, sizeof(args), &result, /*shorty=*/ "VI"); CHECK(!self->IsExceptionPending()); field_->SetObject(klass_.Get(), new_field_value.Get()); } if (apply && old_field_value_ == nullptr) { if ((klass_ != nullptr) && klass_->IsVisiblyInitialized()) { // This would mean that the implementation of ThreadLocal has changed // and the code above is no longer applicable. LOG(ERROR) << "Failed to override ThreadLocal.nextHashCode"; } else { VLOG(compiler) << "ThreadLocal is not initialized in the primary boot image."; } } } ~ThreadLocalHashOverride() { ScopedObjectAccess soa(hs_->Self()); if (old_field_value_ != nullptr) { // Allow the overriding object to be collected. field_->SetObject(klass_.Get(), old_field_value_.Get()); } hs_.reset(); // While holding the mutator lock. } private: std::optional> hs_; Handle klass_; ArtField* field_; Handle old_field_value_; }; class OatKeyValueStore : public SafeMap { public: using SafeMap::Put; iterator Put(const std::string& k, bool v) { return SafeMap::Put(k, v ? OatHeader::kTrueValue : OatHeader::kFalseValue); } }; class Dex2Oat final { public: explicit Dex2Oat(TimingLogger* timings) : compiler_kind_(Compiler::kOptimizing), // Take the default set of instruction features from the build. key_value_store_(nullptr), verification_results_(nullptr), runtime_(nullptr), thread_count_(sysconf(_SC_NPROCESSORS_CONF)), start_ns_(NanoTime()), start_cputime_ns_(ProcessCpuNanoTime()), strip_(false), oat_fd_(-1), input_vdex_fd_(-1), output_vdex_fd_(-1), input_vdex_file_(nullptr), dm_fd_(-1), zip_fd_(-1), image_fd_(-1), have_multi_image_arg_(false), image_base_(0U), image_storage_mode_(ImageHeader::kStorageModeUncompressed), passes_to_run_filename_(nullptr), dirty_image_objects_filename_(nullptr), dirty_image_objects_fd_(-1), is_host_(false), elf_writers_(), oat_writers_(), rodata_(), image_writer_(nullptr), driver_(nullptr), opened_dex_files_maps_(), opened_dex_files_(), avoid_storing_invocation_(false), swap_fd_(File::kInvalidFd), app_image_fd_(File::kInvalidFd), timings_(timings), force_determinism_(false), check_linkage_conditions_(false), crash_on_linkage_violation_(false), compile_individually_(false), profile_load_attempted_(false), should_report_dex2oat_compilation_(false) {} ~Dex2Oat() { // Log completion time before deleting the runtime_, because this accesses // the runtime. LogCompletionTime(); if (!kIsDebugBuild && !(kRunningOnMemoryTool && kMemoryToolDetectsLeaks)) { // We want to just exit on non-debug builds, not bringing the runtime down // in an orderly fashion. So release the following fields. if (!compiler_options_->GetDumpStats()) { // The --dump-stats get logged when the optimizing compiler gets destroyed, so we can't // release the driver_. driver_.release(); // NOLINT } image_writer_.release(); // NOLINT for (std::unique_ptr& dex_file : opened_dex_files_) { dex_file.release(); // NOLINT } new std::vector(std::move(opened_dex_files_maps_)); // Leak MemMaps. for (std::unique_ptr& vdex_file : vdex_files_) { vdex_file.release(); // NOLINT } for (std::unique_ptr& oat_file : oat_files_) { oat_file.release(); // NOLINT } runtime_.release(); // NOLINT verification_results_.release(); // NOLINT key_value_store_.release(); // NOLINT } // Remind the user if they passed testing only flags. if (!kIsTargetBuild && force_allow_oj_inlines_) { LOG(ERROR) << "Inlines allowed from core-oj! FOR TESTING USE ONLY! DO NOT DISTRIBUTE" << " BINARIES BUILT WITH THIS OPTION!"; } } struct ParserOptions { std::vector oat_symbols; std::string boot_image_filename; int64_t watch_dog_timeout_in_ms = -1; bool watch_dog_enabled = true; bool requested_specific_compiler = false; std::string error_msg; }; void ParseBase(const std::string& option) { char* end; image_base_ = strtoul(option.c_str(), &end, 16); if (end == option.c_str() || *end != '\0') { Usage("Failed to parse hexadecimal value for option %s", option.data()); } } bool VerifyProfileData() { return profile_compilation_info_->VerifyProfileData(compiler_options_->dex_files_for_oat_file_); } void ParseInstructionSetVariant(const std::string& option, ParserOptions* parser_options) { compiler_options_->instruction_set_features_ = InstructionSetFeatures::FromVariant( compiler_options_->instruction_set_, option, &parser_options->error_msg); if (compiler_options_->instruction_set_features_ == nullptr) { Usage("%s", parser_options->error_msg.c_str()); } } void ParseInstructionSetFeatures(const std::string& option, ParserOptions* parser_options) { if (compiler_options_->instruction_set_features_ == nullptr) { compiler_options_->instruction_set_features_ = InstructionSetFeatures::FromVariant( compiler_options_->instruction_set_, "default", &parser_options->error_msg); if (compiler_options_->instruction_set_features_ == nullptr) { Usage("Problem initializing default instruction set features variant: %s", parser_options->error_msg.c_str()); } } compiler_options_->instruction_set_features_ = compiler_options_->instruction_set_features_->AddFeaturesFromString( option, &parser_options->error_msg); if (compiler_options_->instruction_set_features_ == nullptr) { Usage("Error parsing '%s': %s", option.c_str(), parser_options->error_msg.c_str()); } } void ProcessOptions(ParserOptions* parser_options) { compiler_options_->compiler_type_ = CompilerOptions::CompilerType::kAotCompiler; compiler_options_->compile_pic_ = true; // All AOT compilation is PIC. if (android_root_.empty()) { const char* android_root_env_var = getenv("ANDROID_ROOT"); if (android_root_env_var == nullptr) { Usage("--android-root unspecified and ANDROID_ROOT not set"); } android_root_ += android_root_env_var; } if (!parser_options->boot_image_filename.empty()) { boot_image_filename_ = parser_options->boot_image_filename; } DCHECK(compiler_options_->image_type_ == CompilerOptions::ImageType::kNone); if (!image_filenames_.empty() || image_fd_ != -1) { // If no boot image is provided, then dex2oat is compiling the primary boot image, // otherwise it is compiling the boot image extension. compiler_options_->image_type_ = boot_image_filename_.empty() ? CompilerOptions::ImageType::kBootImage : CompilerOptions::ImageType::kBootImageExtension; } if (app_image_fd_ != -1 || !app_image_file_name_.empty()) { if (compiler_options_->IsBootImage() || compiler_options_->IsBootImageExtension()) { Usage("Can't have both (--image or --image-fd) and (--app-image-fd or --app-image-file)"); } compiler_options_->image_type_ = CompilerOptions::ImageType::kAppImage; } if (!image_filenames_.empty() && image_fd_ != -1) { Usage("Can't have both --image and --image-fd"); } if (oat_filenames_.empty() && oat_fd_ == -1) { Usage("Output must be supplied with either --oat-file or --oat-fd"); } if (input_vdex_fd_ != -1 && !input_vdex_.empty()) { Usage("Can't have both --input-vdex-fd and --input-vdex"); } if (output_vdex_fd_ != -1 && !output_vdex_.empty()) { Usage("Can't have both --output-vdex-fd and --output-vdex"); } if (!oat_filenames_.empty() && oat_fd_ != -1) { Usage("--oat-file should not be used with --oat-fd"); } if ((output_vdex_fd_ == -1) != (oat_fd_ == -1)) { Usage("VDEX and OAT output must be specified either with one --oat-file " "or with --oat-fd and --output-vdex-fd file descriptors"); } if ((image_fd_ != -1) && (oat_fd_ == -1)) { Usage("--image-fd must be used with --oat_fd and --output_vdex_fd"); } if (!parser_options->oat_symbols.empty() && oat_fd_ != -1) { Usage("--oat-symbols should not be used with --oat-fd"); } if (!parser_options->oat_symbols.empty() && is_host_) { Usage("--oat-symbols should not be used with --host"); } if (output_vdex_fd_ != -1 && !image_filenames_.empty()) { Usage("--output-vdex-fd should not be used with --image"); } if (oat_fd_ != -1 && !image_filenames_.empty()) { Usage("--oat-fd should not be used with --image"); } if (!parser_options->oat_symbols.empty() && parser_options->oat_symbols.size() != oat_filenames_.size()) { Usage("--oat-file arguments do not match --oat-symbols arguments"); } if (!image_filenames_.empty() && image_filenames_.size() != oat_filenames_.size()) { Usage("--oat-file arguments do not match --image arguments"); } if (!IsBootImage() && boot_image_filename_.empty()) { DCHECK(!IsBootImageExtension()); boot_image_filename_ = GetDefaultBootImageLocation(android_root_, /*deny_art_apex_data_files=*/false); } if (dex_filenames_.empty() && zip_fd_ == -1) { Usage("Input must be supplied with either --dex-file or --zip-fd"); } if (!dex_filenames_.empty() && zip_fd_ != -1) { Usage("--dex-file should not be used with --zip-fd"); } if (!dex_filenames_.empty() && !zip_location_.empty()) { Usage("--dex-file should not be used with --zip-location"); } if (dex_locations_.empty()) { dex_locations_ = dex_filenames_; } else if (dex_locations_.size() != dex_filenames_.size()) { Usage("--dex-location arguments do not match --dex-file arguments"); } if (!dex_filenames_.empty() && !oat_filenames_.empty()) { if (oat_filenames_.size() != 1 && oat_filenames_.size() != dex_filenames_.size()) { Usage("--oat-file arguments must be singular or match --dex-file arguments"); } } if (!dex_fds_.empty() && dex_fds_.size() != dex_filenames_.size()) { Usage("--dex-fd arguments do not match --dex-file arguments"); } if (zip_fd_ != -1 && zip_location_.empty()) { Usage("--zip-location should be supplied with --zip-fd"); } if (boot_image_filename_.empty()) { if (image_base_ == 0) { Usage("Non-zero --base not specified for boot image"); } } else { if (image_base_ != 0) { Usage("Non-zero --base specified for app image or boot image extension"); } } if (have_multi_image_arg_) { if (!IsImage()) { Usage("--multi-image or --single-image specified for non-image compilation"); } } else { // Use the default, i.e. multi-image for boot image and boot image extension. // This shall pass the checks below. compiler_options_->multi_image_ = IsBootImage() || IsBootImageExtension(); } // On target we support generating a single image for the primary boot image. if (!kIsTargetBuild) { if (IsBootImage() && !compiler_options_->multi_image_) { Usage("--single-image specified for primary boot image on host"); } } if (IsAppImage() && compiler_options_->multi_image_) { Usage("--multi-image specified for app image"); } if (image_fd_ != -1 && compiler_options_->multi_image_) { Usage("--single-image not specified for --image-fd"); } const bool have_profile_file = !profile_files_.empty(); const bool have_profile_fd = !profile_file_fds_.empty(); if (have_profile_file && have_profile_fd) { Usage("Profile files should not be specified with both --profile-file-fd and --profile-file"); } if (!parser_options->oat_symbols.empty()) { oat_unstripped_ = std::move(parser_options->oat_symbols); } if (compiler_options_->instruction_set_features_ == nullptr) { // '--instruction-set-features/--instruction-set-variant' were not used. // Use features for the 'default' variant. compiler_options_->instruction_set_features_ = InstructionSetFeatures::FromVariant( compiler_options_->instruction_set_, "default", &parser_options->error_msg); if (compiler_options_->instruction_set_features_ == nullptr) { Usage("Problem initializing default instruction set features variant: %s", parser_options->error_msg.c_str()); } } if (compiler_options_->instruction_set_ == kRuntimeISA) { std::unique_ptr runtime_features( InstructionSetFeatures::FromCppDefines()); if (!compiler_options_->GetInstructionSetFeatures()->Equals(runtime_features.get())) { LOG(WARNING) << "Mismatch between dex2oat instruction set features to use (" << *compiler_options_->GetInstructionSetFeatures() << ") and those from CPP defines (" << *runtime_features << ") for the command line:\n" << CommandLine(); } } if (dirty_image_objects_filename_ != nullptr && dirty_image_objects_fd_ != -1) { Usage("--dirty-image-objects and --dirty-image-objects-fd should not be both specified"); } if (!preloaded_classes_files_.empty() && !preloaded_classes_fds_.empty()) { Usage("--preloaded-classes and --preloaded-classes-fds should not be both specified"); } if (!cpu_set_.empty()) { SetCpuAffinity(cpu_set_); } if (compiler_options_->inline_max_code_units_ == CompilerOptions::kUnsetInlineMaxCodeUnits) { compiler_options_->inline_max_code_units_ = CompilerOptions::kDefaultInlineMaxCodeUnits; } // Checks are all explicit until we know the architecture. // Set the compilation target's implicit checks options. switch (compiler_options_->GetInstructionSet()) { case InstructionSet::kArm64: // TODO: Implicit suspend checks are currently disabled to facilitate search // for unrelated memory use regressions. Bug: 213757852. compiler_options_->implicit_suspend_checks_ = false; FALLTHROUGH_INTENDED; case InstructionSet::kArm: case InstructionSet::kThumb2: case InstructionSet::kX86: case InstructionSet::kX86_64: compiler_options_->implicit_null_checks_ = true; compiler_options_->implicit_so_checks_ = true; break; default: // Defaults are correct. break; } // Done with usage checks, enable watchdog if requested if (parser_options->watch_dog_enabled) { int64_t timeout = parser_options->watch_dog_timeout_in_ms > 0 ? parser_options->watch_dog_timeout_in_ms : WatchDog::kDefaultWatchdogTimeoutInMS; watchdog_.reset(new WatchDog(timeout)); } // Fill some values into the key-value store for the oat header. key_value_store_.reset(new OatKeyValueStore()); // Automatically force determinism for the boot image and boot image extensions in a host build. if (!kIsTargetBuild && (IsBootImage() || IsBootImageExtension())) { force_determinism_ = true; } compiler_options_->force_determinism_ = force_determinism_; compiler_options_->check_linkage_conditions_ = check_linkage_conditions_; compiler_options_->crash_on_linkage_violation_ = crash_on_linkage_violation_; if (passes_to_run_filename_ != nullptr) { passes_to_run_ = ReadCommentedInputFromFile>( passes_to_run_filename_, nullptr); // No post-processing. if (passes_to_run_.get() == nullptr) { Usage("Failed to read list of passes to run."); } } // Prune profile specifications of the boot image location. std::vector boot_images = android::base::Split(boot_image_filename_, {ImageSpace::kComponentSeparator}); bool boot_image_filename_pruned = false; for (std::string& boot_image : boot_images) { size_t profile_separator_pos = boot_image.find(ImageSpace::kProfileSeparator); if (profile_separator_pos != std::string::npos) { boot_image.resize(profile_separator_pos); boot_image_filename_pruned = true; } } if (boot_image_filename_pruned) { std::string new_boot_image_filename = android::base::Join(boot_images, ImageSpace::kComponentSeparator); VLOG(compiler) << "Pruning profile specifications of the boot image location. Before: " << boot_image_filename_ << ", After: " << new_boot_image_filename; boot_image_filename_ = std::move(new_boot_image_filename); } compiler_options_->passes_to_run_ = passes_to_run_.get(); } void ExpandOatAndImageFilenames() { ArrayRef locations(dex_locations_); if (!compiler_options_->multi_image_) { locations = locations.SubArray(/*pos=*/ 0u, /*length=*/ 1u); } if (image_fd_ == -1) { if (image_filenames_[0].rfind('/') == std::string::npos) { Usage("Unusable boot image filename %s", image_filenames_[0].c_str()); } image_filenames_ = ImageSpace::ExpandMultiImageLocations( locations, image_filenames_[0], IsBootImageExtension()); if (oat_filenames_[0].rfind('/') == std::string::npos) { Usage("Unusable boot image oat filename %s", oat_filenames_[0].c_str()); } oat_filenames_ = ImageSpace::ExpandMultiImageLocations( locations, oat_filenames_[0], IsBootImageExtension()); } else { DCHECK(!compiler_options_->multi_image_); std::vector oat_locations = ImageSpace::ExpandMultiImageLocations( locations, oat_location_, IsBootImageExtension()); DCHECK_EQ(1u, oat_locations.size()); oat_location_ = oat_locations[0]; } if (!oat_unstripped_.empty()) { if (oat_unstripped_[0].rfind('/') == std::string::npos) { Usage("Unusable boot image symbol filename %s", oat_unstripped_[0].c_str()); } oat_unstripped_ = ImageSpace::ExpandMultiImageLocations( locations, oat_unstripped_[0], IsBootImageExtension()); } } void InsertCompileOptions(int argc, char** argv) { if (!avoid_storing_invocation_) { std::ostringstream oss; for (int i = 0; i < argc; ++i) { if (i > 0) { oss << ' '; } oss << argv[i]; } key_value_store_->Put(OatHeader::kDex2OatCmdLineKey, oss.str()); } key_value_store_->Put(OatHeader::kDebuggableKey, compiler_options_->debuggable_); key_value_store_->Put(OatHeader::kNativeDebuggableKey, compiler_options_->GetNativeDebuggable()); key_value_store_->Put(OatHeader::kCompilerFilter, CompilerFilter::NameOfFilter(compiler_options_->GetCompilerFilter())); key_value_store_->Put(OatHeader::kConcurrentCopying, kUseReadBarrier); if (invocation_file_.get() != -1) { std::ostringstream oss; for (int i = 0; i < argc; ++i) { if (i > 0) { oss << std::endl; } oss << argv[i]; } std::string invocation(oss.str()); if (TEMP_FAILURE_RETRY(write(invocation_file_.get(), invocation.c_str(), invocation.size())) == -1) { Usage("Unable to write invocation file"); } } } // This simple forward is here so the string specializations below don't look out of place. template void AssignIfExists(Dex2oatArgumentMap& map, const Dex2oatArgumentMap::Key& key, U* out) { map.AssignIfExists(key, out); } // Specializations to handle const char* vs std::string. void AssignIfExists(Dex2oatArgumentMap& map, const Dex2oatArgumentMap::Key& key, const char** out) { if (map.Exists(key)) { char_backing_storage_.push_front(std::move(*map.Get(key))); *out = char_backing_storage_.front().c_str(); } } void AssignIfExists(Dex2oatArgumentMap& map, const Dex2oatArgumentMap::Key>& key, std::vector* out) { if (map.Exists(key)) { for (auto& val : *map.Get(key)) { char_backing_storage_.push_front(std::move(val)); out->push_back(char_backing_storage_.front().c_str()); } } } template void AssignTrueIfExists(Dex2oatArgumentMap& map, const Dex2oatArgumentMap::Key& key, bool* out) { if (map.Exists(key)) { *out = true; } } void AssignIfExists(Dex2oatArgumentMap& map, const Dex2oatArgumentMap::Key& key, std::vector* out) { DCHECK(out->empty()); if (map.Exists(key)) { out->push_back(*map.Get(key)); } } // Parse the arguments from the command line. In case of an unrecognized option or impossible // values/combinations, a usage error will be displayed and exit() is called. Thus, if the method // returns, arguments have been successfully parsed. void ParseArgs(int argc, char** argv) { original_argc = argc; original_argv = argv; Locks::Init(); InitLogging(argv, Runtime::Abort); compiler_options_.reset(new CompilerOptions()); using M = Dex2oatArgumentMap; std::string error_msg; std::unique_ptr args_uptr = M::Parse(argc, const_cast(argv), &error_msg); if (args_uptr == nullptr) { Usage("Failed to parse command line: %s", error_msg.c_str()); UNREACHABLE(); } M& args = *args_uptr; std::unique_ptr parser_options(new ParserOptions()); AssignIfExists(args, M::CompactDexLevel, &compact_dex_level_); AssignIfExists(args, M::DexFiles, &dex_filenames_); AssignIfExists(args, M::DexLocations, &dex_locations_); AssignIfExists(args, M::DexFds, &dex_fds_); AssignIfExists(args, M::OatFile, &oat_filenames_); AssignIfExists(args, M::OatSymbols, &parser_options->oat_symbols); AssignTrueIfExists(args, M::Strip, &strip_); AssignIfExists(args, M::ImageFilename, &image_filenames_); AssignIfExists(args, M::ImageFd, &image_fd_); AssignIfExists(args, M::ZipFd, &zip_fd_); AssignIfExists(args, M::ZipLocation, &zip_location_); AssignIfExists(args, M::InputVdexFd, &input_vdex_fd_); AssignIfExists(args, M::OutputVdexFd, &output_vdex_fd_); AssignIfExists(args, M::InputVdex, &input_vdex_); AssignIfExists(args, M::OutputVdex, &output_vdex_); AssignIfExists(args, M::DmFd, &dm_fd_); AssignIfExists(args, M::DmFile, &dm_file_location_); AssignIfExists(args, M::OatFd, &oat_fd_); AssignIfExists(args, M::OatLocation, &oat_location_); AssignIfExists(args, M::Watchdog, &parser_options->watch_dog_enabled); AssignIfExists(args, M::WatchdogTimeout, &parser_options->watch_dog_timeout_in_ms); AssignIfExists(args, M::Threads, &thread_count_); AssignIfExists(args, M::CpuSet, &cpu_set_); AssignIfExists(args, M::Passes, &passes_to_run_filename_); AssignIfExists(args, M::BootImage, &parser_options->boot_image_filename); AssignIfExists(args, M::AndroidRoot, &android_root_); AssignIfExists(args, M::Profile, &profile_files_); AssignIfExists(args, M::ProfileFd, &profile_file_fds_); AssignIfExists(args, M::PreloadedClasses, &preloaded_classes_files_); AssignIfExists(args, M::PreloadedClassesFds, &preloaded_classes_fds_); AssignIfExists(args, M::RuntimeOptions, &runtime_args_); AssignIfExists(args, M::SwapFile, &swap_file_name_); AssignIfExists(args, M::SwapFileFd, &swap_fd_); AssignIfExists(args, M::SwapDexSizeThreshold, &min_dex_file_cumulative_size_for_swap_); AssignIfExists(args, M::SwapDexCountThreshold, &min_dex_files_for_swap_); AssignIfExists(args, M::VeryLargeAppThreshold, &very_large_threshold_); AssignIfExists(args, M::AppImageFile, &app_image_file_name_); AssignIfExists(args, M::AppImageFileFd, &app_image_fd_); AssignIfExists(args, M::NoInlineFrom, &no_inline_from_string_); AssignIfExists(args, M::ClasspathDir, &classpath_dir_); AssignIfExists(args, M::DirtyImageObjects, &dirty_image_objects_filename_); AssignIfExists(args, M::DirtyImageObjectsFd, &dirty_image_objects_fd_); AssignIfExists(args, M::ImageFormat, &image_storage_mode_); AssignIfExists(args, M::CompilationReason, &compilation_reason_); AssignTrueIfExists(args, M::CheckLinkageConditions, &check_linkage_conditions_); AssignTrueIfExists(args, M::CrashOnLinkageViolation, &crash_on_linkage_violation_); AssignTrueIfExists(args, M::ForceAllowOjInlines, &force_allow_oj_inlines_); AssignIfExists(args, M::PublicSdk, &public_sdk_); AssignIfExists(args, M::ApexVersions, &apex_versions_argument_); AssignIfExists(args, M::Backend, &compiler_kind_); parser_options->requested_specific_compiler = args.Exists(M::Backend); AssignIfExists(args, M::TargetInstructionSet, &compiler_options_->instruction_set_); // arm actually means thumb2. if (compiler_options_->instruction_set_ == InstructionSet::kArm) { compiler_options_->instruction_set_ = InstructionSet::kThumb2; } AssignTrueIfExists(args, M::Host, &is_host_); AssignTrueIfExists(args, M::AvoidStoringInvocation, &avoid_storing_invocation_); if (args.Exists(M::InvocationFile)) { invocation_file_.reset(open(args.Get(M::InvocationFile)->c_str(), O_CREAT|O_WRONLY|O_TRUNC|O_CLOEXEC, S_IRUSR|S_IWUSR)); if (invocation_file_.get() == -1) { int err = errno; Usage("Unable to open invocation file '%s' for writing due to %s.", args.Get(M::InvocationFile)->c_str(), strerror(err)); } } AssignIfExists(args, M::CopyDexFiles, ©_dex_files_); AssignTrueIfExists(args, M::MultiImage, &have_multi_image_arg_); AssignIfExists(args, M::MultiImage, &compiler_options_->multi_image_); if (args.Exists(M::ForceDeterminism)) { force_determinism_ = true; } AssignTrueIfExists(args, M::CompileIndividually, &compile_individually_); if (args.Exists(M::Base)) { ParseBase(*args.Get(M::Base)); } if (args.Exists(M::TargetInstructionSetVariant)) { ParseInstructionSetVariant(*args.Get(M::TargetInstructionSetVariant), parser_options.get()); } if (args.Exists(M::TargetInstructionSetFeatures)) { ParseInstructionSetFeatures(*args.Get(M::TargetInstructionSetFeatures), parser_options.get()); } if (args.Exists(M::ClassLoaderContext)) { std::string class_loader_context_arg = *args.Get(M::ClassLoaderContext); class_loader_context_ = ClassLoaderContext::Create(class_loader_context_arg); if (class_loader_context_ == nullptr) { Usage("Option --class-loader-context has an incorrect format: %s", class_loader_context_arg.c_str()); } if (args.Exists(M::ClassLoaderContextFds)) { std::string str_fds_arg = *args.Get(M::ClassLoaderContextFds); std::vector str_fds = android::base::Split(str_fds_arg, ":"); for (const std::string& str_fd : str_fds) { class_loader_context_fds_.push_back(std::stoi(str_fd, nullptr, 0)); if (class_loader_context_fds_.back() < 0) { Usage("Option --class-loader-context-fds has incorrect format: %s", str_fds_arg.c_str()); } } } if (args.Exists(M::StoredClassLoaderContext)) { const std::string stored_context_arg = *args.Get(M::StoredClassLoaderContext); stored_class_loader_context_ = ClassLoaderContext::Create(stored_context_arg); if (stored_class_loader_context_ == nullptr) { Usage("Option --stored-class-loader-context has an incorrect format: %s", stored_context_arg.c_str()); } else if (class_loader_context_->VerifyClassLoaderContextMatch( stored_context_arg, /*verify_names*/ false, /*verify_checksums*/ false) != ClassLoaderContext::VerificationResult::kVerifies) { Usage( "Option --stored-class-loader-context '%s' mismatches --class-loader-context '%s'", stored_context_arg.c_str(), class_loader_context_arg.c_str()); } } } else if (args.Exists(M::StoredClassLoaderContext)) { Usage("Option --stored-class-loader-context should only be used if " "--class-loader-context is also specified"); } if (args.Exists(M::UpdatableBcpPackagesFile)) { LOG(WARNING) << "Option --updatable-bcp-packages-file is deprecated and no longer takes effect"; } if (args.Exists(M::UpdatableBcpPackagesFd)) { LOG(WARNING) << "Option --updatable-bcp-packages-fd is deprecated and no longer takes effect"; } if (args.Exists(M::ForceJitZygote)) { if (!parser_options->boot_image_filename.empty()) { Usage("Option --boot-image and --force-jit-zygote cannot be specified together"); } parser_options->boot_image_filename = "boot.art:/nonx/boot-framework.art"; } // If we have a profile, change the default compiler filter to speed-profile // before reading compiler options. static_assert(CompilerFilter::kDefaultCompilerFilter == CompilerFilter::kSpeed); DCHECK_EQ(compiler_options_->GetCompilerFilter(), CompilerFilter::kSpeed); if (HasProfileInput()) { compiler_options_->SetCompilerFilter(CompilerFilter::kSpeedProfile); } if (!ReadCompilerOptions(args, compiler_options_.get(), &error_msg)) { Usage(error_msg.c_str()); } if (!compiler_options_->GetDumpCfgFileName().empty() && thread_count_ != 1) { LOG(INFO) << "Since we are dumping the CFG to " << compiler_options_->GetDumpCfgFileName() << ", we override thread number to 1 to have determinism. It was " << thread_count_ << "."; thread_count_ = 1; } // For debuggable apps, we do not want to generate compact dex as class // redefinition will want a proper dex file. if (compiler_options_->GetDebuggable()) { compact_dex_level_ = CompactDexLevel::kCompactDexLevelNone; } PaletteShouldReportDex2oatCompilation(&should_report_dex2oat_compilation_); AssignTrueIfExists(args, M::ForcePaletteCompilationHooks, &should_report_dex2oat_compilation_); ProcessOptions(parser_options.get()); } // Check whether the oat output files are writable, and open them for later. Also open a swap // file, if a name is given. bool OpenFile() { // Prune non-existent dex files now so that we don't create empty oat files for multi-image. PruneNonExistentDexFiles(); // Expand oat and image filenames for boot image and boot image extension. // This is mostly for multi-image but single-image also needs some processing. if (IsBootImage() || IsBootImageExtension()) { ExpandOatAndImageFilenames(); } // OAT and VDEX file handling if (oat_fd_ == -1) { DCHECK(!oat_filenames_.empty()); for (const std::string& oat_filename : oat_filenames_) { std::unique_ptr oat_file(OS::CreateEmptyFile(oat_filename.c_str())); if (oat_file == nullptr) { PLOG(ERROR) << "Failed to create oat file: " << oat_filename; return false; } if (fchmod(oat_file->Fd(), 0644) != 0) { PLOG(ERROR) << "Failed to make oat file world readable: " << oat_filename; oat_file->Erase(); return false; } oat_files_.push_back(std::move(oat_file)); DCHECK_EQ(input_vdex_fd_, -1); if (!input_vdex_.empty()) { std::string error_msg; input_vdex_file_ = VdexFile::Open(input_vdex_, /* writable */ false, /* low_4gb */ false, &error_msg); } DCHECK_EQ(output_vdex_fd_, -1); std::string vdex_filename = output_vdex_.empty() ? ReplaceFileExtension(oat_filename, "vdex") : output_vdex_; if (vdex_filename == input_vdex_ && output_vdex_.empty()) { use_existing_vdex_ = true; std::unique_ptr vdex_file(OS::OpenFileForReading(vdex_filename.c_str())); vdex_files_.push_back(std::move(vdex_file)); } else { std::unique_ptr vdex_file(OS::CreateEmptyFile(vdex_filename.c_str())); if (vdex_file == nullptr) { PLOG(ERROR) << "Failed to open vdex file: " << vdex_filename; return false; } if (fchmod(vdex_file->Fd(), 0644) != 0) { PLOG(ERROR) << "Failed to make vdex file world readable: " << vdex_filename; vdex_file->Erase(); return false; } vdex_files_.push_back(std::move(vdex_file)); } } } else { std::unique_ptr oat_file( new File(DupCloexec(oat_fd_), oat_location_, /* check_usage */ true)); if (!oat_file->IsOpened()) { PLOG(ERROR) << "Failed to create oat file: " << oat_location_; return false; } if (oat_file->SetLength(0) != 0) { PLOG(WARNING) << "Truncating oat file " << oat_location_ << " failed."; oat_file->Erase(); return false; } oat_files_.push_back(std::move(oat_file)); if (input_vdex_fd_ != -1) { struct stat s; int rc = TEMP_FAILURE_RETRY(fstat(input_vdex_fd_, &s)); if (rc == -1) { PLOG(WARNING) << "Failed getting length of vdex file"; } else { std::string error_msg; input_vdex_file_ = VdexFile::Open(input_vdex_fd_, s.st_size, "vdex", /* writable */ false, /* low_4gb */ false, &error_msg); // If there's any problem with the passed vdex, just warn and proceed // without it. if (input_vdex_file_ == nullptr) { PLOG(WARNING) << "Failed opening vdex file: " << error_msg; } } } DCHECK_NE(output_vdex_fd_, -1); std::string vdex_location = ReplaceFileExtension(oat_location_, "vdex"); if (input_vdex_file_ != nullptr && output_vdex_fd_ == input_vdex_fd_) { use_existing_vdex_ = true; } std::unique_ptr vdex_file(new File(DupCloexec(output_vdex_fd_), vdex_location, /* check_usage= */ true, /* read_only_mode= */ use_existing_vdex_)); if (!vdex_file->IsOpened()) { PLOG(ERROR) << "Failed to create vdex file: " << vdex_location; return false; } if (!use_existing_vdex_) { if (vdex_file->SetLength(0) != 0) { PLOG(ERROR) << "Truncating vdex file " << vdex_location << " failed."; vdex_file->Erase(); return false; } } vdex_files_.push_back(std::move(vdex_file)); oat_filenames_.push_back(oat_location_); } if (dm_fd_ != -1 || !dm_file_location_.empty()) { std::string error_msg; if (dm_fd_ != -1) { dm_file_.reset(ZipArchive::OpenFromFd(dm_fd_, "DexMetadata", &error_msg)); } else { dm_file_.reset(ZipArchive::Open(dm_file_location_.c_str(), &error_msg)); } if (dm_file_ == nullptr) { LOG(WARNING) << "Could not open DexMetadata archive " << error_msg; } } // If we have a dm file and a vdex file, we (arbitrarily) pick the vdex file. // In theory the files should be the same. if (dm_file_ != nullptr) { if (input_vdex_file_ == nullptr) { input_vdex_file_ = VdexFile::OpenFromDm(dm_file_location_, *dm_file_); if (input_vdex_file_ != nullptr) { VLOG(verifier) << "Doing fast verification with vdex from DexMetadata archive"; } } else { LOG(INFO) << "Ignoring vdex file in dex metadata due to vdex file already being passed"; } } // Swap file handling // // If the swap fd is not -1, we assume this is the file descriptor of an open but unlinked file // that we can use for swap. // // If the swap fd is -1 and we have a swap-file string, open the given file as a swap file. We // will immediately unlink to satisfy the swap fd assumption. if (swap_fd_ == -1 && !swap_file_name_.empty()) { std::unique_ptr swap_file(OS::CreateEmptyFile(swap_file_name_.c_str())); if (swap_file.get() == nullptr) { PLOG(ERROR) << "Failed to create swap file: " << swap_file_name_; return false; } swap_fd_ = swap_file->Release(); unlink(swap_file_name_.c_str()); } return true; } void EraseOutputFiles() { for (auto& files : { &vdex_files_, &oat_files_ }) { for (size_t i = 0; i < files->size(); ++i) { auto& file = (*files)[i]; if (file != nullptr) { if (!file->ReadOnlyMode()) { file->Erase(); } file.reset(); } } } } void LoadClassProfileDescriptors() { if (!IsImage()) { return; } if (DoProfileGuidedOptimizations()) { // TODO: The following comment looks outdated or misplaced. // Filter out class path classes since we don't want to include these in the image. HashSet image_classes = profile_compilation_info_->GetClassDescriptors( compiler_options_->dex_files_for_oat_file_); VLOG(compiler) << "Loaded " << image_classes.size() << " image class descriptors from profile"; if (VLOG_IS_ON(compiler)) { for (const std::string& s : image_classes) { LOG(INFO) << "Image class " << s; } } compiler_options_->image_classes_.swap(image_classes); } } // Set up the environment for compilation. Includes starting the runtime and loading/opening the // boot class path. dex2oat::ReturnCode Setup() { TimingLogger::ScopedTiming t("dex2oat Setup", timings_); if (!PrepareDirtyObjects()) { return dex2oat::ReturnCode::kOther; } if (!PreparePreloadedClasses()) { return dex2oat::ReturnCode::kOther; } callbacks_.reset(new QuickCompilerCallbacks( // For class verification purposes, boot image extension is the same as boot image. (IsBootImage() || IsBootImageExtension()) ? CompilerCallbacks::CallbackMode::kCompileBootImage : CompilerCallbacks::CallbackMode::kCompileApp)); RuntimeArgumentMap runtime_options; if (!PrepareRuntimeOptions(&runtime_options, callbacks_.get())) { return dex2oat::ReturnCode::kOther; } CreateOatWriters(); if (!AddDexFileSources()) { return dex2oat::ReturnCode::kOther; } { TimingLogger::ScopedTiming t_dex("Writing and opening dex files", timings_); for (size_t i = 0, size = oat_writers_.size(); i != size; ++i) { // Unzip or copy dex files straight to the oat file. std::vector opened_dex_files_map; std::vector> opened_dex_files; // No need to verify the dex file when we have a vdex file, which means it was already // verified. const bool verify = (input_vdex_file_ == nullptr) && !compiler_options_->AssumeDexFilesAreVerified(); if (!oat_writers_[i]->WriteAndOpenDexFiles( vdex_files_[i].get(), verify, use_existing_vdex_, copy_dex_files_, &opened_dex_files_map, &opened_dex_files)) { return dex2oat::ReturnCode::kOther; } dex_files_per_oat_file_.push_back(MakeNonOwningPointerVector(opened_dex_files)); if (opened_dex_files_map.empty()) { DCHECK(opened_dex_files.empty()); } else { for (MemMap& map : opened_dex_files_map) { opened_dex_files_maps_.push_back(std::move(map)); } for (std::unique_ptr& dex_file : opened_dex_files) { dex_file_oat_index_map_.insert(std::make_pair(dex_file.get(), i)); opened_dex_files_.push_back(std::move(dex_file)); } } } } compiler_options_->dex_files_for_oat_file_ = MakeNonOwningPointerVector(opened_dex_files_); const std::vector& dex_files = compiler_options_->dex_files_for_oat_file_; if (!ValidateInputVdexChecksums()) { return dex2oat::ReturnCode::kOther; } // Check if we need to downgrade the compiler-filter for size reasons. // Note: This does not affect the compiler filter already stored in the key-value // store which is used for determining whether the oat file is up to date, // together with the boot class path locations and checksums stored below. CompilerFilter::Filter original_compiler_filter = compiler_options_->GetCompilerFilter(); if (!IsBootImage() && !IsBootImageExtension() && IsVeryLarge(dex_files)) { // Disable app image to make sure dex2oat unloading is enabled. compiler_options_->image_type_ = CompilerOptions::ImageType::kNone; // If we need to downgrade the compiler-filter for size reasons, do that early before we read // it below for creating verification callbacks. if (!CompilerFilter::IsAsGoodAs(kLargeAppFilter, compiler_options_->GetCompilerFilter())) { LOG(INFO) << "Very large app, downgrading to verify."; compiler_options_->SetCompilerFilter(kLargeAppFilter); } } if (CompilerFilter::IsAnyCompilationEnabled(compiler_options_->GetCompilerFilter()) || IsImage()) { // Only modes with compilation or image generation require verification results. verification_results_.reset(new VerificationResults()); callbacks_->SetVerificationResults(verification_results_.get()); } if (IsBootImage() || IsBootImageExtension()) { // For boot image or boot image extension, pass opened dex files to the Runtime::Create(). // Note: Runtime acquires ownership of these dex files. runtime_options.Set(RuntimeArgumentMap::BootClassPathDexList, &opened_dex_files_); } if (!CreateRuntime(std::move(runtime_options))) { return dex2oat::ReturnCode::kCreateRuntime; } if (runtime_->GetHeap()->GetBootImageSpaces().empty() && (IsBootImageExtension() || IsAppImage())) { LOG(WARNING) << "Cannot create " << (IsBootImageExtension() ? "boot image extension" : "app image") << " without a primary boot image."; compiler_options_->image_type_ = CompilerOptions::ImageType::kNone; } ArrayRef bcp_dex_files(runtime_->GetClassLinker()->GetBootClassPath()); if (IsBootImage() || IsBootImageExtension()) { // Check boot class path dex files and, if compiling an extension, the images it depends on. if ((IsBootImage() && bcp_dex_files.size() != dex_files.size()) || (IsBootImageExtension() && bcp_dex_files.size() <= dex_files.size())) { LOG(ERROR) << "Unexpected number of boot class path dex files for boot image or extension, " << bcp_dex_files.size() << (IsBootImage() ? " != " : " <= ") << dex_files.size(); return dex2oat::ReturnCode::kOther; } if (!std::equal(dex_files.begin(), dex_files.end(), bcp_dex_files.end() - dex_files.size())) { LOG(ERROR) << "Boot class path dex files do not end with the compiled dex files."; return dex2oat::ReturnCode::kOther; } size_t bcp_df_pos = 0u; size_t bcp_df_end = bcp_dex_files.size(); for (const std::string& bcp_location : runtime_->GetBootClassPathLocations()) { if (bcp_df_pos == bcp_df_end || bcp_dex_files[bcp_df_pos]->GetLocation() != bcp_location) { LOG(ERROR) << "Missing dex file for boot class component " << bcp_location; return dex2oat::ReturnCode::kOther; } CHECK(!DexFileLoader::IsMultiDexLocation(bcp_dex_files[bcp_df_pos]->GetLocation().c_str())); ++bcp_df_pos; while (bcp_df_pos != bcp_df_end && DexFileLoader::IsMultiDexLocation(bcp_dex_files[bcp_df_pos]->GetLocation().c_str())) { ++bcp_df_pos; } } if (bcp_df_pos != bcp_df_end) { LOG(ERROR) << "Unexpected dex file in boot class path " << bcp_dex_files[bcp_df_pos]->GetLocation(); return dex2oat::ReturnCode::kOther; } auto lacks_image = [](const DexFile* df) { if (kIsDebugBuild && df->GetOatDexFile() != nullptr) { const OatFile* oat_file = df->GetOatDexFile()->GetOatFile(); CHECK(oat_file != nullptr); const auto& image_spaces = Runtime::Current()->GetHeap()->GetBootImageSpaces(); CHECK(std::any_of(image_spaces.begin(), image_spaces.end(), [=](const ImageSpace* space) { return oat_file == space->GetOatFile(); })); } return df->GetOatDexFile() == nullptr; }; if (std::any_of(bcp_dex_files.begin(), bcp_dex_files.end() - dex_files.size(), lacks_image)) { LOG(ERROR) << "Missing required boot image(s) for boot image extension."; return dex2oat::ReturnCode::kOther; } } if (!compilation_reason_.empty()) { key_value_store_->Put(OatHeader::kCompilationReasonKey, compilation_reason_); } Runtime* runtime = Runtime::Current(); if (IsBootImage()) { // If we're compiling the boot image, store the boot classpath into the Key-Value store. // We use this when loading the boot image. key_value_store_->Put(OatHeader::kBootClassPathKey, android::base::Join(dex_locations_, ':')); } else if (IsBootImageExtension()) { // Validate the boot class path and record the dependency on the loaded boot images. TimingLogger::ScopedTiming t3("Loading image checksum", timings_); std::string full_bcp = android::base::Join(runtime->GetBootClassPathLocations(), ':'); std::string extension_part = ":" + android::base::Join(dex_locations_, ':'); if (!android::base::EndsWith(full_bcp, extension_part)) { LOG(ERROR) << "Full boot class path does not end with extension parts, full: " << full_bcp << ", extension: " << extension_part.substr(1u); return dex2oat::ReturnCode::kOther; } std::string bcp_dependency = full_bcp.substr(0u, full_bcp.size() - extension_part.size()); key_value_store_->Put(OatHeader::kBootClassPathKey, bcp_dependency); ArrayRef bcp_dex_files_dependency = bcp_dex_files.SubArray(/*pos=*/ 0u, bcp_dex_files.size() - dex_files.size()); ArrayRef image_spaces(runtime->GetHeap()->GetBootImageSpaces()); key_value_store_->Put( OatHeader::kBootClassPathChecksumsKey, gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces, bcp_dex_files_dependency)); } else { if (CompilerFilter::DependsOnImageChecksum(original_compiler_filter)) { TimingLogger::ScopedTiming t3("Loading image checksum", timings_); key_value_store_->Put(OatHeader::kBootClassPathKey, android::base::Join(runtime->GetBootClassPathLocations(), ':')); ArrayRef image_spaces(runtime->GetHeap()->GetBootImageSpaces()); key_value_store_->Put( OatHeader::kBootClassPathChecksumsKey, gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces, bcp_dex_files)); } // Open dex files for class path. if (class_loader_context_ == nullptr) { // If no context was specified use the default one (which is an empty PathClassLoader). class_loader_context_ = ClassLoaderContext::Default(); } DCHECK_EQ(oat_writers_.size(), 1u); // Note: Ideally we would reject context where the source dex files are also // specified in the classpath (as it doesn't make sense). However this is currently // needed for non-prebuild tests and benchmarks which expects on the fly compilation. // Also, for secondary dex files we do not have control on the actual classpath. // Instead of aborting, remove all the source location from the context classpaths. if (class_loader_context_->RemoveLocationsFromClassPaths( oat_writers_[0]->GetSourceLocations())) { LOG(WARNING) << "The source files to be compiled are also in the classpath."; } // We need to open the dex files before encoding the context in the oat file. // (because the encoding adds the dex checksum...) // TODO(calin): consider redesigning this so we don't have to open the dex files before // creating the actual class loader. if (!class_loader_context_->OpenDexFiles(classpath_dir_, class_loader_context_fds_)) { // Do not abort if we couldn't open files from the classpath. They might be // apks without dex files and right now are opening flow will fail them. LOG(WARNING) << "Failed to open classpath dex files"; } // Store the class loader context in the oat header. // TODO: deprecate this since store_class_loader_context should be enough to cover the users // of classpath_dir as well. std::string class_path_key = class_loader_context_->EncodeContextForOatFile(classpath_dir_, stored_class_loader_context_.get()); key_value_store_->Put(OatHeader::kClassPathKey, class_path_key); } if (IsBootImage() || IsBootImageExtension() || CompilerFilter::DependsOnImageChecksum(original_compiler_filter)) { std::string versions = apex_versions_argument_.empty() ? runtime->GetApexVersions() : apex_versions_argument_; key_value_store_->Put(OatHeader::kApexVersionsKey, versions); } // Now that we have adjusted whether we generate an image, encode it in the // key/value store. key_value_store_->Put(OatHeader::kRequiresImage, compiler_options_->IsGeneratingImage()); // Now that we have finalized key_value_store_, start writing the .rodata section. // Among other things, this creates type lookup tables that speed up the compilation. { TimingLogger::ScopedTiming t_dex("Starting .rodata", timings_); rodata_.reserve(oat_writers_.size()); for (size_t i = 0, size = oat_writers_.size(); i != size; ++i) { rodata_.push_back(elf_writers_[i]->StartRoData()); if (!oat_writers_[i]->StartRoData(dex_files_per_oat_file_[i], rodata_.back(), (i == 0u) ? key_value_store_.get() : nullptr)) { return dex2oat::ReturnCode::kOther; } } } // We had to postpone the swap decision till now, as this is the point when we actually // know about the dex files we're going to use. // Make sure that we didn't create the driver, yet. CHECK(driver_ == nullptr); // If we use a swap file, ensure we are above the threshold to make it necessary. if (swap_fd_ != -1) { if (!UseSwap(IsBootImage() || IsBootImageExtension(), dex_files)) { close(swap_fd_); swap_fd_ = -1; VLOG(compiler) << "Decided to run without swap."; } else { LOG(INFO) << "Large app, accepted running with swap."; } } // Note that dex2oat won't close the swap_fd_. The compiler driver's swap space will do that. if (!IsBootImage() && !IsBootImageExtension()) { constexpr bool kSaveDexInput = false; if (kSaveDexInput) { SaveDexInput(); } } // Setup VerifierDeps for compilation and report if we fail to parse the data. // When we do profile guided optimizations, the compiler currently needs to run // full verification. if (!DoProfileGuidedOptimizations() && input_vdex_file_ != nullptr) { std::unique_ptr verifier_deps( new verifier::VerifierDeps(dex_files, /*output_only=*/ false)); if (!verifier_deps->ParseStoredData(dex_files, input_vdex_file_->GetVerifierDepsData())) { return dex2oat::ReturnCode::kOther; } // We can do fast verification. callbacks_->SetVerifierDeps(verifier_deps.release()); } else { // Create the main VerifierDeps, here instead of in the compiler since we want to aggregate // the results for all the dex files, not just the results for the current dex file. callbacks_->SetVerifierDeps(new verifier::VerifierDeps(dex_files)); } return dex2oat::ReturnCode::kNoFailure; } // Validates that the input vdex checksums match the source dex checksums. // Note that this is only effective and relevant if the input_vdex_file does not // contain a dex section (e.g. when they come from .dm files). // If the input vdex does contain dex files, the dex files will be opened from there // and so this check is redundant. bool ValidateInputVdexChecksums() { if (input_vdex_file_ == nullptr) { // Nothing to validate return true; } if (input_vdex_file_->GetNumberOfDexFiles() != compiler_options_->dex_files_for_oat_file_.size()) { LOG(ERROR) << "Vdex file contains a different number of dex files than the source. " << " vdex_num=" << input_vdex_file_->GetNumberOfDexFiles() << " dex_source_num=" << compiler_options_->dex_files_for_oat_file_.size(); return false; } for (size_t i = 0; i < compiler_options_->dex_files_for_oat_file_.size(); i++) { uint32_t dex_source_checksum = compiler_options_->dex_files_for_oat_file_[i]->GetLocationChecksum(); uint32_t vdex_checksum = input_vdex_file_->GetLocationChecksum(i); if (dex_source_checksum != vdex_checksum) { LOG(ERROR) << "Vdex file checksum different than source dex checksum for position " << i << std::hex << " vdex_checksum=0x" << vdex_checksum << " dex_source_checksum=0x" << dex_source_checksum << std::dec; return false; } } return true; } // If we need to keep the oat file open for the image writer. bool ShouldKeepOatFileOpen() const { return IsImage() && oat_fd_ != File::kInvalidFd; } // Doesn't return the class loader since it's not meant to be used for image compilation. void CompileDexFilesIndividually() { CHECK(!IsImage()) << "Not supported with image"; for (const DexFile* dex_file : compiler_options_->dex_files_for_oat_file_) { std::vector dex_files(1u, dex_file); VLOG(compiler) << "Compiling " << dex_file->GetLocation(); jobject class_loader = CompileDexFiles(dex_files); CHECK(class_loader != nullptr); ScopedObjectAccess soa(Thread::Current()); // Unload class loader to free RAM. jweak weak_class_loader = soa.Env()->GetVm()->AddWeakGlobalRef( soa.Self(), soa.Decode(class_loader)); soa.Env()->GetVm()->DeleteGlobalRef(soa.Self(), class_loader); runtime_->GetHeap()->CollectGarbage(/* clear_soft_references */ true); ObjPtr decoded_weak = soa.Decode(weak_class_loader); if (decoded_weak != nullptr) { LOG(FATAL) << "Failed to unload class loader, path from root set: " << runtime_->GetHeap()->GetVerification()->FirstPathFromRootSet(decoded_weak); } VLOG(compiler) << "Unloaded classloader"; } } bool ShouldCompileDexFilesIndividually() const { // Compile individually if we are allowed to, and // 1. not building an image, and // 2. not verifying a vdex file, and // 3. using multidex, and // 4. not doing any AOT compilation. // This means extract, no-vdex verify, and quicken, will use the individual compilation // mode (to reduce RAM used by the compiler). return compile_individually_ && (!IsImage() && !use_existing_vdex_ && compiler_options_->dex_files_for_oat_file_.size() > 1 && !CompilerFilter::IsAotCompilationEnabled(compiler_options_->GetCompilerFilter())); } uint32_t GetCombinedChecksums() const { uint32_t combined_checksums = 0u; for (const DexFile* dex_file : compiler_options_->GetDexFilesForOatFile()) { combined_checksums ^= dex_file->GetLocationChecksum(); } return combined_checksums; } // Set up and create the compiler driver and then invoke it to compile all the dex files. jobject Compile() { ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); TimingLogger::ScopedTiming t("dex2oat Compile", timings_); // Find the dex files we should not inline from. std::vector no_inline_filters; Split(no_inline_from_string_, ',', &no_inline_filters); // For now, on the host always have core-oj removed. const std::string core_oj = "core-oj"; if (!kIsTargetBuild && !ContainsElement(no_inline_filters, core_oj)) { if (force_allow_oj_inlines_) { LOG(ERROR) << "Inlines allowed from core-oj! FOR TESTING USE ONLY! DO NOT DISTRIBUTE" << " BINARIES BUILT WITH THIS OPTION!"; } else { no_inline_filters.push_back(core_oj); } } if (!no_inline_filters.empty()) { std::vector class_path_files; if (!IsBootImage() && !IsBootImageExtension()) { // The class loader context is used only for apps. class_path_files = class_loader_context_->FlattenOpenedDexFiles(); } const std::vector& dex_files = compiler_options_->dex_files_for_oat_file_; std::vector no_inline_from_dex_files; const std::vector* dex_file_vectors[] = { &class_linker->GetBootClassPath(), &class_path_files, &dex_files }; for (const std::vector* dex_file_vector : dex_file_vectors) { for (const DexFile* dex_file : *dex_file_vector) { for (const std::string& filter : no_inline_filters) { // Use dex_file->GetLocation() rather than dex_file->GetBaseLocation(). This // allows tests to specify !classes2.dex if needed but if the // base location passes the StartsWith() test, so do all extra locations. std::string dex_location = dex_file->GetLocation(); if (filter.find('/') == std::string::npos) { // The filter does not contain the path. Remove the path from dex_location as well. size_t last_slash = dex_file->GetLocation().rfind('/'); if (last_slash != std::string::npos) { dex_location = dex_location.substr(last_slash + 1); } } if (android::base::StartsWith(dex_location, filter.c_str())) { VLOG(compiler) << "Disabling inlining from " << dex_file->GetLocation(); no_inline_from_dex_files.push_back(dex_file); break; } } } } if (!no_inline_from_dex_files.empty()) { compiler_options_->no_inline_from_.swap(no_inline_from_dex_files); } } compiler_options_->profile_compilation_info_ = profile_compilation_info_.get(); driver_.reset(new CompilerDriver(compiler_options_.get(), compiler_kind_, thread_count_, swap_fd_)); driver_->PrepareDexFilesForOatFile(timings_); if (!IsBootImage() && !IsBootImageExtension()) { driver_->SetClasspathDexFiles(class_loader_context_->FlattenOpenedDexFiles()); } const bool compile_individually = ShouldCompileDexFilesIndividually(); if (compile_individually) { // Set the compiler driver in the callbacks so that we can avoid re-verification. This not // only helps performance but also prevents reverifying quickened bytecodes. Attempting // verify quickened bytecode causes verification failures. // Only set the compiler filter if we are doing separate compilation since there is a bit // of overhead when checking if a class was previously verified. callbacks_->SetDoesClassUnloading(true, driver_.get()); } // Setup vdex for compilation. const std::vector& dex_files = compiler_options_->dex_files_for_oat_file_; // To allow initialization of classes that construct ThreadLocal objects in class initializer, // re-initialize the ThreadLocal.nextHashCode to a new object that's not in the boot image. ThreadLocalHashOverride thread_local_hash_override( /*apply=*/ !IsBootImage(), /*initial_value=*/ 123456789u ^ GetCombinedChecksums()); // Invoke the compilation. if (compile_individually) { CompileDexFilesIndividually(); // Return a null classloader since we already freed released it. return nullptr; } return CompileDexFiles(dex_files); } // Create the class loader, use it to compile, and return. jobject CompileDexFiles(const std::vector& dex_files) { ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); jobject class_loader = nullptr; if (!IsBootImage() && !IsBootImageExtension()) { class_loader = class_loader_context_->CreateClassLoader(compiler_options_->GetDexFilesForOatFile()); } if (!IsBootImage()) { callbacks_->SetDexFiles(&dex_files); // We need to set this after we create the class loader so that the runtime can access // the hidden fields of the well known class loaders. if (!public_sdk_.empty()) { std::string error_msg; std::unique_ptr sdk_checker(SdkChecker::Create(public_sdk_, &error_msg)); if (sdk_checker != nullptr) { AotClassLinker* aot_class_linker = down_cast(class_linker); aot_class_linker->SetSdkChecker(std::move(sdk_checker)); } else { LOG(FATAL) << "Failed to create SdkChecker with dex files " << public_sdk_ << " Error: " << error_msg; UNREACHABLE(); } } } // Register dex caches and key them to the class loader so that they only unload when the // class loader unloads. for (const auto& dex_file : dex_files) { ScopedObjectAccess soa(Thread::Current()); // Registering the dex cache adds a strong root in the class loader that prevents the dex // cache from being unloaded early. ObjPtr dex_cache = class_linker->RegisterDexFile( *dex_file, soa.Decode(class_loader)); if (dex_cache == nullptr) { soa.Self()->AssertPendingException(); LOG(FATAL) << "Failed to register dex file " << dex_file->GetLocation() << " " << soa.Self()->GetException()->Dump(); } } driver_->InitializeThreadPools(); driver_->PreCompile(class_loader, dex_files, timings_, &compiler_options_->image_classes_); callbacks_->SetVerificationResults(nullptr); // Should not be needed anymore. compiler_options_->verification_results_ = verification_results_.get(); driver_->CompileAll(class_loader, dex_files, timings_); driver_->FreeThreadPools(); return class_loader; } // Notes on the interleaving of creating the images and oat files to // ensure the references between the two are correct. // // Currently we have a memory layout that looks something like this: // // +--------------+ // | images | // +--------------+ // | oat files | // +--------------+ // | alloc spaces | // +--------------+ // // There are several constraints on the loading of the images and oat files. // // 1. The images are expected to be loaded at an absolute address and // contain Objects with absolute pointers within the images. // // 2. There are absolute pointers from Methods in the images to their // code in the oat files. // // 3. There are absolute pointers from the code in the oat files to Methods // in the images. // // 4. There are absolute pointers from code in the oat files to other code // in the oat files. // // To get this all correct, we go through several steps. // // 1. We prepare offsets for all data in the oat files and calculate // the oat data size and code size. During this stage, we also set // oat code offsets in methods for use by the image writer. // // 2. We prepare offsets for the objects in the images and calculate // the image sizes. // // 3. We create the oat files. Originally this was just our own proprietary // file but now it is contained within an ELF dynamic object (aka an .so // file). Since we know the image sizes and oat data sizes and code sizes we // can prepare the ELF headers and we then know the ELF memory segment // layout and we can now resolve all references. The compiler provides // LinkerPatch information in each CompiledMethod and we resolve these, // using the layout information and image object locations provided by // image writer, as we're writing the method code. // // 4. We create the image files. They need to know where the oat files // will be loaded after itself. Originally oat files were simply // memory mapped so we could predict where their contents were based // on the file size. Now that they are ELF files, we need to inspect // the ELF files to understand the in memory segment layout including // where the oat header is located within. // TODO: We could just remember this information from step 3. // // 5. We fixup the ELF program headers so that dlopen will try to // load the .so at the desired location at runtime by offsetting the // Elf32_Phdr.p_vaddr values by the desired base address. // TODO: Do this in step 3. We already know the layout there. // // Steps 1.-3. are done by the CreateOatFile() above, steps 4.-5. // are done by the CreateImageFile() below. // Write out the generated code part. Calls the OatWriter and ElfBuilder. Also prepares the // ImageWriter, if necessary. // Note: Flushing (and closing) the file is the caller's responsibility, except for the failure // case (when the file will be explicitly erased). bool WriteOutputFiles(jobject class_loader) { TimingLogger::ScopedTiming t("dex2oat Oat", timings_); // Sync the data to the file, in case we did dex2dex transformations. for (MemMap& map : opened_dex_files_maps_) { if (!map.Sync()) { PLOG(ERROR) << "Failed to Sync() dex2dex output. Map: " << map.GetName(); return false; } } if (IsImage()) { if (!IsBootImage()) { DCHECK_EQ(image_base_, 0u); gc::Heap* const heap = Runtime::Current()->GetHeap(); image_base_ = heap->GetBootImagesStartAddress() + heap->GetBootImagesSize(); } VLOG(compiler) << "Image base=" << reinterpret_cast(image_base_); image_writer_.reset(new linker::ImageWriter(*compiler_options_, image_base_, image_storage_mode_, oat_filenames_, dex_file_oat_index_map_, class_loader, dirty_image_objects_.get())); // We need to prepare method offsets in the image address space for resolving linker patches. TimingLogger::ScopedTiming t2("dex2oat Prepare image address space", timings_); if (!image_writer_->PrepareImageAddressSpace(timings_)) { LOG(ERROR) << "Failed to prepare image address space."; return false; } } // Initialize the writers with the compiler driver, image writer, and their // dex files. The writers were created without those being there yet. for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { std::unique_ptr& oat_writer = oat_writers_[i]; std::vector& dex_files = dex_files_per_oat_file_[i]; oat_writer->Initialize(driver_.get(), image_writer_.get(), dex_files); } if (!use_existing_vdex_) { TimingLogger::ScopedTiming t2("dex2oat Write VDEX", timings_); DCHECK(IsBootImage() || IsBootImageExtension() || oat_files_.size() == 1u); verifier::VerifierDeps* verifier_deps = callbacks_->GetVerifierDeps(); for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { File* vdex_file = vdex_files_[i].get(); if (!oat_writers_[i]->FinishVdexFile(vdex_file, verifier_deps)) { LOG(ERROR) << "Failed to finish VDEX file " << vdex_file->GetPath(); return false; } } } { TimingLogger::ScopedTiming t2("dex2oat Write ELF", timings_); linker::MultiOatRelativePatcher patcher(compiler_options_->GetInstructionSet(), compiler_options_->GetInstructionSetFeatures(), driver_->GetCompiledMethodStorage()); for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { std::unique_ptr& elf_writer = elf_writers_[i]; std::unique_ptr& oat_writer = oat_writers_[i]; oat_writer->PrepareLayout(&patcher); elf_writer->PrepareDynamicSection(oat_writer->GetOatHeader().GetExecutableOffset(), oat_writer->GetCodeSize(), oat_writer->GetDataBimgRelRoSize(), oat_writer->GetBssSize(), oat_writer->GetBssMethodsOffset(), oat_writer->GetBssRootsOffset(), oat_writer->GetVdexSize()); if (IsImage()) { // Update oat layout. DCHECK(image_writer_ != nullptr); DCHECK_LT(i, oat_filenames_.size()); image_writer_->UpdateOatFileLayout(i, elf_writer->GetLoadedSize(), oat_writer->GetOatDataOffset(), oat_writer->GetOatSize()); } } for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { std::unique_ptr& oat_file = oat_files_[i]; std::unique_ptr& elf_writer = elf_writers_[i]; std::unique_ptr& oat_writer = oat_writers_[i]; // We need to mirror the layout of the ELF file in the compressed debug-info. // Therefore PrepareDebugInfo() relies on the SetLoadedSectionSizes() call further above. debug::DebugInfo debug_info = oat_writer->GetDebugInfo(); // Keep the variable alive. elf_writer->PrepareDebugInfo(debug_info); // Processes the data on background thread. OutputStream* rodata = rodata_[i]; DCHECK(rodata != nullptr); if (!oat_writer->WriteRodata(rodata)) { LOG(ERROR) << "Failed to write .rodata section to the ELF file " << oat_file->GetPath(); return false; } elf_writer->EndRoData(rodata); rodata = nullptr; OutputStream* text = elf_writer->StartText(); if (!oat_writer->WriteCode(text)) { LOG(ERROR) << "Failed to write .text section to the ELF file " << oat_file->GetPath(); return false; } elf_writer->EndText(text); if (oat_writer->GetDataBimgRelRoSize() != 0u) { OutputStream* data_bimg_rel_ro = elf_writer->StartDataBimgRelRo(); if (!oat_writer->WriteDataBimgRelRo(data_bimg_rel_ro)) { LOG(ERROR) << "Failed to write .data.bimg.rel.ro section to the ELF file " << oat_file->GetPath(); return false; } elf_writer->EndDataBimgRelRo(data_bimg_rel_ro); } if (!oat_writer->WriteHeader(elf_writer->GetStream())) { LOG(ERROR) << "Failed to write oat header to the ELF file " << oat_file->GetPath(); return false; } if (IsImage()) { // Update oat header information. DCHECK(image_writer_ != nullptr); DCHECK_LT(i, oat_filenames_.size()); image_writer_->UpdateOatFileHeader(i, oat_writer->GetOatHeader()); } elf_writer->WriteDynamicSection(); elf_writer->WriteDebugInfo(oat_writer->GetDebugInfo()); if (!elf_writer->End()) { LOG(ERROR) << "Failed to write ELF file " << oat_file->GetPath(); return false; } if (!FlushOutputFile(&vdex_files_[i]) || !FlushOutputFile(&oat_files_[i])) { return false; } VLOG(compiler) << "Oat file written successfully: " << oat_filenames_[i]; oat_writer.reset(); // We may still need the ELF writer later for stripping. } } return true; } // If we are compiling an image, invoke the image creation routine. Else just skip. bool HandleImage() { if (IsImage()) { TimingLogger::ScopedTiming t("dex2oat ImageWriter", timings_); if (!CreateImageFile()) { return false; } VLOG(compiler) << "Images written successfully"; } return true; } // Copy the full oat files to symbols directory and then strip the originals. bool CopyOatFilesToSymbolsDirectoryAndStrip() { for (size_t i = 0; i < oat_unstripped_.size(); ++i) { // If we don't want to strip in place, copy from stripped location to unstripped location. // We need to strip after image creation because FixupElf needs to use .strtab. if (oat_unstripped_[i] != oat_filenames_[i]) { DCHECK(oat_files_[i].get() != nullptr && oat_files_[i]->IsOpened()); TimingLogger::ScopedTiming t("dex2oat OatFile copy", timings_); std::unique_ptr& in = oat_files_[i]; int64_t in_length = in->GetLength(); if (in_length < 0) { PLOG(ERROR) << "Failed to get the length of oat file: " << in->GetPath(); return false; } std::unique_ptr out(OS::CreateEmptyFile(oat_unstripped_[i].c_str())); if (out == nullptr) { PLOG(ERROR) << "Failed to open oat file for writing: " << oat_unstripped_[i]; return false; } if (!out->Copy(in.get(), 0, in_length)) { PLOG(ERROR) << "Failed to copy oat file to file: " << out->GetPath(); return false; } if (out->FlushCloseOrErase() != 0) { PLOG(ERROR) << "Failed to flush and close copied oat file: " << oat_unstripped_[i]; return false; } VLOG(compiler) << "Oat file copied successfully (unstripped): " << oat_unstripped_[i]; if (strip_) { TimingLogger::ScopedTiming t2("dex2oat OatFile strip", timings_); if (!elf_writers_[i]->StripDebugInfo()) { PLOG(ERROR) << "Failed strip oat file: " << in->GetPath(); return false; } } } } return true; } bool FlushOutputFile(std::unique_ptr* file) { if ((file->get() != nullptr) && !file->get()->ReadOnlyMode()) { if (file->get()->Flush() != 0) { PLOG(ERROR) << "Failed to flush output file: " << file->get()->GetPath(); return false; } } return true; } bool FlushCloseOutputFile(File* file) { if ((file != nullptr) && !file->ReadOnlyMode()) { if (file->FlushCloseOrErase() != 0) { PLOG(ERROR) << "Failed to flush and close output file: " << file->GetPath(); return false; } } return true; } bool FlushOutputFiles() { TimingLogger::ScopedTiming t2("dex2oat Flush Output Files", timings_); for (auto& files : { &vdex_files_, &oat_files_ }) { for (size_t i = 0; i < files->size(); ++i) { if (!FlushOutputFile(&(*files)[i])) { return false; } } } return true; } bool FlushCloseOutputFiles() { bool result = true; for (auto& files : { &vdex_files_, &oat_files_ }) { for (size_t i = 0; i < files->size(); ++i) { result &= FlushCloseOutputFile((*files)[i].get()); } } return result; } void DumpTiming() { if (compiler_options_->GetDumpTimings() || (kIsDebugBuild && timings_->GetTotalNs() > MsToNs(1000))) { LOG(INFO) << Dumpable(*timings_); } } bool IsImage() const { return IsAppImage() || IsBootImage() || IsBootImageExtension(); } bool IsAppImage() const { return compiler_options_->IsAppImage(); } bool IsBootImage() const { return compiler_options_->IsBootImage(); } bool IsBootImageExtension() const { return compiler_options_->IsBootImageExtension(); } bool IsHost() const { return is_host_; } bool HasProfileInput() const { return !profile_file_fds_.empty() || !profile_files_.empty(); } // Must be called after the profile is loaded. bool DoProfileGuidedOptimizations() const { DCHECK(!HasProfileInput() || profile_load_attempted_) << "The profile has to be loaded before we can decided " << "if we do profile guided optimizations"; return profile_compilation_info_ != nullptr && !profile_compilation_info_->IsEmpty(); } bool DoGenerateCompactDex() const { return compact_dex_level_ != CompactDexLevel::kCompactDexLevelNone; } bool DoDexLayoutOptimizations() const { // Only run dexlayout when being asked to generate compact dex. We do this // to avoid having multiple arguments being passed to dex2oat and the main // user of dex2oat (installd) will have the same reasons for // disabling/enabling compact dex and dex layout. return DoGenerateCompactDex(); } bool DoOatLayoutOptimizations() const { return DoProfileGuidedOptimizations(); } bool LoadProfile() { DCHECK(HasProfileInput()); profile_load_attempted_ = true; // TODO(calin): We should be using the runtime arena pool (instead of the // default profile arena). However the setup logic is messy and needs // cleaning up before that (e.g. the oat writers are created before the // runtime). bool for_boot_image = IsBootImage() || IsBootImageExtension(); profile_compilation_info_.reset(new ProfileCompilationInfo(for_boot_image)); // Cleanup profile compilation info if we encounter any error when reading profiles. auto cleanup = android::base::ScopeGuard([&]() { profile_compilation_info_.reset(nullptr); }); // Dex2oat only uses the reference profile and that is not updated concurrently by the app or // other processes. So we don't need to lock (as we have to do in profman or when writing the // profile info). std::vector> profile_files; if (!profile_file_fds_.empty()) { for (int fd : profile_file_fds_) { profile_files.push_back(std::make_unique(DupCloexec(fd), "profile", /*check_usage=*/ false, /*read_only_mode=*/ true)); } } else { for (const std::string& file : profile_files_) { profile_files.emplace_back(OS::OpenFileForReading(file.c_str())); if (profile_files.back().get() == nullptr) { PLOG(ERROR) << "Cannot open profiles"; return false; } } } std::map old_profile_keys, new_profile_keys; auto filter_fn = [&](const std::string& profile_key, uint32_t checksum) { auto it = old_profile_keys.find(profile_key); if (it != old_profile_keys.end() && it->second != checksum) { // Filter out this entry. We have already loaded data for the same profile key with a // different checksum from an earlier profile file. return false; } // Insert the new profile key and checksum. // Note: If the profile contains the same key with different checksums, this insertion fails // but we still return `true` and let the `ProfileCompilationInfo::Load()` report an error. new_profile_keys.insert(std::make_pair(profile_key, checksum)); return true; }; for (const std::unique_ptr& profile_file : profile_files) { if (!profile_compilation_info_->Load(profile_file->Fd(), /*merge_classes=*/ true, filter_fn)) { return false; } old_profile_keys.merge(new_profile_keys); new_profile_keys.clear(); } cleanup.Disable(); return true; } // If we're asked to speed-profile the app but we have no profile, or the profile // is empty, change the filter to verify, and the image_type to none. // A speed-profile compilation without profile data is equivalent to verify and // this change will increase the precision of the telemetry data. void UpdateCompilerOptionsBasedOnProfile() { if (!DoProfileGuidedOptimizations() && compiler_options_->GetCompilerFilter() == CompilerFilter::kSpeedProfile) { VLOG(compiler) << "Changing compiler filter to verify from speed-profile " << "because of empty or non existing profile"; compiler_options_->SetCompilerFilter(CompilerFilter::kVerify); // Note that we could reset the image_type to CompilerOptions::ImageType::kNone // to prevent an app image generation. // However, if we were pass an image file we would essentially leave the image // file empty (possibly triggering some harmless errors when we try to load it). // // Letting the image_type_ be determined by whether or not we passed an image // file will at least write the appropriate header making it an empty but valid // image. } } class ScopedDex2oatReporting { public: explicit ScopedDex2oatReporting(const Dex2Oat& dex2oat) : should_report_(dex2oat.should_report_dex2oat_compilation_) { if (should_report_) { if (dex2oat.zip_fd_ != -1) { zip_dup_fd_.reset(DupCloexecOrError(dex2oat.zip_fd_)); if (zip_dup_fd_ < 0) { return; } } int image_fd = dex2oat.IsAppImage() ? dex2oat.app_image_fd_ : dex2oat.image_fd_; if (image_fd != -1) { image_dup_fd_.reset(DupCloexecOrError(image_fd)); if (image_dup_fd_ < 0) { return; } } oat_dup_fd_.reset(DupCloexecOrError(dex2oat.oat_fd_)); if (oat_dup_fd_ < 0) { return; } vdex_dup_fd_.reset(DupCloexecOrError(dex2oat.output_vdex_fd_)); if (vdex_dup_fd_ < 0) { return; } PaletteNotifyStartDex2oatCompilation(zip_dup_fd_, image_dup_fd_, oat_dup_fd_, vdex_dup_fd_); } error_reporting_ = false; } ~ScopedDex2oatReporting() { if (!error_reporting_) { if (should_report_) { PaletteNotifyEndDex2oatCompilation(zip_dup_fd_, image_dup_fd_, oat_dup_fd_, vdex_dup_fd_); } } } bool ErrorReporting() const { return error_reporting_; } private: int DupCloexecOrError(int fd) { int dup_fd = DupCloexec(fd); if (dup_fd < 0) { LOG(ERROR) << "Error dup'ing a file descriptor " << strerror(errno); error_reporting_ = true; } return dup_fd; } android::base::unique_fd oat_dup_fd_; android::base::unique_fd vdex_dup_fd_; android::base::unique_fd zip_dup_fd_; android::base::unique_fd image_dup_fd_; bool error_reporting_ = false; bool should_report_; }; private: bool UseSwap(bool is_image, const std::vector& dex_files) { if (is_image) { // Don't use swap, we know generation should succeed, and we don't want to slow it down. return false; } if (dex_files.size() < min_dex_files_for_swap_) { // If there are less dex files than the threshold, assume it's gonna be fine. return false; } size_t dex_files_size = 0; for (const auto* dex_file : dex_files) { dex_files_size += dex_file->GetHeader().file_size_; } return dex_files_size >= min_dex_file_cumulative_size_for_swap_; } bool IsVeryLarge(const std::vector& dex_files) { size_t dex_files_size = 0; for (const auto* dex_file : dex_files) { dex_files_size += dex_file->GetHeader().file_size_; } return dex_files_size >= very_large_threshold_; } bool PrepareDirtyObjects() { if (dirty_image_objects_fd_ != -1) { dirty_image_objects_ = ReadCommentedInputFromFd>( dirty_image_objects_fd_, nullptr); // Close since we won't need it again. close(dirty_image_objects_fd_); dirty_image_objects_fd_ = -1; if (dirty_image_objects_ == nullptr) { LOG(ERROR) << "Failed to create list of dirty objects from fd " << dirty_image_objects_fd_; return false; } } else if (dirty_image_objects_filename_ != nullptr) { dirty_image_objects_ = ReadCommentedInputFromFile>( dirty_image_objects_filename_, nullptr); if (dirty_image_objects_ == nullptr) { LOG(ERROR) << "Failed to create list of dirty objects from '" << dirty_image_objects_filename_ << "'"; return false; } } return true; } bool PreparePreloadedClasses() { preloaded_classes_ = std::make_unique>(); if (!preloaded_classes_fds_.empty()) { for (int fd : preloaded_classes_fds_) { if (!ReadCommentedInputFromFd(fd, nullptr, preloaded_classes_.get())) { return false; } } } else { for (const std::string& file : preloaded_classes_files_) { if (!ReadCommentedInputFromFile(file.c_str(), nullptr, preloaded_classes_.get())) { return false; } } } return true; } void PruneNonExistentDexFiles() { DCHECK_EQ(dex_filenames_.size(), dex_locations_.size()); size_t kept = 0u; for (size_t i = 0, size = dex_filenames_.size(); i != size; ++i) { // Keep if the file exist, or is passed as FD. if (!OS::FileExists(dex_filenames_[i].c_str()) && i >= dex_fds_.size()) { LOG(WARNING) << "Skipping non-existent dex file '" << dex_filenames_[i] << "'"; } else { if (kept != i) { dex_filenames_[kept] = dex_filenames_[i]; dex_locations_[kept] = dex_locations_[i]; } ++kept; } } dex_filenames_.resize(kept); dex_locations_.resize(kept); } bool AddDexFileSources() { TimingLogger::ScopedTiming t2("AddDexFileSources", timings_); if (input_vdex_file_ != nullptr && input_vdex_file_->HasDexSection()) { DCHECK_EQ(oat_writers_.size(), 1u); const std::string& name = zip_location_.empty() ? dex_locations_[0] : zip_location_; DCHECK(!name.empty()); if (!oat_writers_[0]->AddVdexDexFilesSource(*input_vdex_file_.get(), name.c_str())) { return false; } } else if (zip_fd_ != -1) { DCHECK_EQ(oat_writers_.size(), 1u); if (!oat_writers_[0]->AddDexFileSource(File(zip_fd_, /* check_usage */ false), zip_location_.c_str())) { return false; } } else { DCHECK_EQ(dex_filenames_.size(), dex_locations_.size()); DCHECK_GE(oat_writers_.size(), 1u); bool use_dex_fds = !dex_fds_.empty(); if (use_dex_fds) { DCHECK_EQ(dex_fds_.size(), dex_filenames_.size()); } bool is_multi_image = oat_writers_.size() > 1u; if (is_multi_image) { DCHECK_EQ(oat_writers_.size(), dex_filenames_.size()); } for (size_t i = 0; i != dex_filenames_.size(); ++i) { int oat_index = is_multi_image ? i : 0; auto oat_writer = oat_writers_[oat_index].get(); if (use_dex_fds) { if (!oat_writer->AddDexFileSource(File(dex_fds_[i], /* check_usage */ false), dex_locations_[i].c_str())) { return false; } } else { if (!oat_writer->AddDexFileSource(dex_filenames_[i].c_str(), dex_locations_[i].c_str())) { return false; } } } } return true; } void CreateOatWriters() { TimingLogger::ScopedTiming t2("CreateOatWriters", timings_); elf_writers_.reserve(oat_files_.size()); oat_writers_.reserve(oat_files_.size()); for (const std::unique_ptr& oat_file : oat_files_) { elf_writers_.emplace_back(linker::CreateElfWriterQuick(*compiler_options_, oat_file.get())); elf_writers_.back()->Start(); bool do_oat_writer_layout = DoDexLayoutOptimizations() || DoOatLayoutOptimizations(); oat_writers_.emplace_back(new linker::OatWriter( *compiler_options_, timings_, do_oat_writer_layout ? profile_compilation_info_.get() : nullptr, compact_dex_level_)); } } void SaveDexInput() { const std::vector& dex_files = compiler_options_->dex_files_for_oat_file_; for (size_t i = 0, size = dex_files.size(); i != size; ++i) { const DexFile* dex_file = dex_files[i]; std::string tmp_file_name(StringPrintf("/data/local/tmp/dex2oat.%d.%zd.dex", getpid(), i)); std::unique_ptr tmp_file(OS::CreateEmptyFile(tmp_file_name.c_str())); if (tmp_file.get() == nullptr) { PLOG(ERROR) << "Failed to open file " << tmp_file_name << ". Try: adb shell chmod 777 /data/local/tmp"; continue; } // This is just dumping files for debugging. Ignore errors, and leave remnants. UNUSED(tmp_file->WriteFully(dex_file->Begin(), dex_file->Size())); UNUSED(tmp_file->Flush()); UNUSED(tmp_file->Close()); LOG(INFO) << "Wrote input to " << tmp_file_name; } } bool PrepareRuntimeOptions(RuntimeArgumentMap* runtime_options, QuickCompilerCallbacks* callbacks) { RuntimeOptions raw_options; if (IsBootImage()) { std::string boot_class_path = "-Xbootclasspath:"; boot_class_path += android::base::Join(dex_filenames_, ':'); raw_options.push_back(std::make_pair(boot_class_path, nullptr)); std::string boot_class_path_locations = "-Xbootclasspath-locations:"; boot_class_path_locations += android::base::Join(dex_locations_, ':'); raw_options.push_back(std::make_pair(boot_class_path_locations, nullptr)); } else { std::string boot_image_option = "-Ximage:"; boot_image_option += boot_image_filename_; raw_options.push_back(std::make_pair(boot_image_option, nullptr)); } for (size_t i = 0; i < runtime_args_.size(); i++) { raw_options.push_back(std::make_pair(runtime_args_[i], nullptr)); } raw_options.push_back(std::make_pair("compilercallbacks", callbacks)); raw_options.push_back( std::make_pair("imageinstructionset", GetInstructionSetString(compiler_options_->GetInstructionSet()))); // Never allow implicit image compilation. raw_options.push_back(std::make_pair("-Xnoimage-dex2oat", nullptr)); // Disable libsigchain. We don't don't need it during compilation and it prevents us // from getting a statically linked version of dex2oat (because of dlsym and RTLD_NEXT). raw_options.push_back(std::make_pair("-Xno-sig-chain", nullptr)); // Disable Hspace compaction to save heap size virtual space. // Only need disable Hspace for OOM becasue background collector is equal to // foreground collector by default for dex2oat. raw_options.push_back(std::make_pair("-XX:DisableHSpaceCompactForOOM", nullptr)); if (!Runtime::ParseOptions(raw_options, false, runtime_options)) { LOG(ERROR) << "Failed to parse runtime options"; return false; } return true; } // Create a runtime necessary for compilation. bool CreateRuntime(RuntimeArgumentMap&& runtime_options) { // To make identity hashcode deterministic, set a seed based on the dex file checksums. // That makes the seed also most likely different for different inputs, for example // for primary boot image and different extensions that could be loaded together. mirror::Object::SetHashCodeSeed(987654321u ^ GetCombinedChecksums()); TimingLogger::ScopedTiming t_runtime("Create runtime", timings_); if (!Runtime::Create(std::move(runtime_options))) { LOG(ERROR) << "Failed to create runtime"; return false; } // Runtime::Init will rename this thread to be "main". Prefer "dex2oat" so that "top" and // "ps -a" don't change to non-descript "main." SetThreadName(kIsDebugBuild ? "dex2oatd" : "dex2oat"); runtime_.reset(Runtime::Current()); runtime_->SetInstructionSet(compiler_options_->GetInstructionSet()); for (uint32_t i = 0; i < static_cast(CalleeSaveType::kLastCalleeSaveType); ++i) { CalleeSaveType type = CalleeSaveType(i); if (!runtime_->HasCalleeSaveMethod(type)) { runtime_->SetCalleeSaveMethod(runtime_->CreateCalleeSaveMethod(), type); } } // Initialize maps for unstarted runtime. This needs to be here, as running clinits needs this // set up. interpreter::UnstartedRuntime::Initialize(); Thread* self = Thread::Current(); runtime_->RunRootClinits(self); // Runtime::Create acquired the mutator_lock_ that is normally given away when we // Runtime::Start, give it away now so that we don't starve GC. self->TransitionFromRunnableToSuspended(ThreadState::kNative); // Now that we are in native state, initialize well known classes and // intrinsics if we don't have a boot image. WellKnownClasses::Init(self->GetJniEnv()); if (IsBootImage() || runtime_->GetHeap()->GetBootImageSpaces().empty()) { InitializeIntrinsics(); } WatchDog::SetRuntime(runtime_.get()); return true; } // Let the ImageWriter write the image files. If we do not compile PIC, also fix up the oat files. bool CreateImageFile() REQUIRES(!Locks::mutator_lock_) { CHECK(image_writer_ != nullptr); if (IsAppImage()) { DCHECK(image_filenames_.empty()); if (app_image_fd_ != -1) { image_filenames_.push_back(StringPrintf("FileDescriptor[%d]", app_image_fd_)); } else { image_filenames_.push_back(app_image_file_name_); } } if (image_fd_ != -1) { DCHECK(image_filenames_.empty()); image_filenames_.push_back(StringPrintf("FileDescriptor[%d]", image_fd_)); } if (!image_writer_->Write(IsAppImage() ? app_image_fd_ : image_fd_, image_filenames_, IsAppImage() ? 1u : dex_locations_.size())) { LOG(ERROR) << "Failure during image file creation"; return false; } // We need the OatDataBegin entries. dchecked_vector oat_data_begins; for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) { oat_data_begins.push_back(image_writer_->GetOatDataBegin(i)); } // Destroy ImageWriter. image_writer_.reset(); return true; } template static bool ReadCommentedInputFromFile( const char* input_filename, std::function* process, T* output) { auto input_file = std::unique_ptr{fopen(input_filename, "r"), fclose}; if (!input_file) { LOG(ERROR) << "Failed to open input file " << input_filename; return false; } ReadCommentedInputStream(input_file.get(), process, output); return true; } template static bool ReadCommentedInputFromFd( int input_fd, std::function* process, T* output) { auto input_file = std::unique_ptr{fdopen(input_fd, "r"), fclose}; if (!input_file) { LOG(ERROR) << "Failed to re-open input fd from /prof/self/fd/" << input_fd; return false; } ReadCommentedInputStream(input_file.get(), process, output); return true; } // Read lines from the given file, dropping comments and empty lines. Post-process each line with // the given function. template static std::unique_ptr ReadCommentedInputFromFile( const char* input_filename, std::function* process) { std::unique_ptr output(new T()); ReadCommentedInputFromFile(input_filename, process, output.get()); return output; } // Read lines from the given fd, dropping comments and empty lines. Post-process each line with // the given function. template static std::unique_ptr ReadCommentedInputFromFd( int input_fd, std::function* process) { std::unique_ptr output(new T()); ReadCommentedInputFromFd(input_fd, process, output.get()); return output; } // Read lines from the given stream, dropping comments and empty lines. Post-process each line // with the given function. template static void ReadCommentedInputStream( std::FILE* in_stream, std::function* process, T* output) { char* line = nullptr; size_t line_alloc = 0; ssize_t len = 0; while ((len = getline(&line, &line_alloc, in_stream)) > 0) { if (line[0] == '\0' || line[0] == '#' || line[0] == '\n') { continue; } if (line[len - 1] == '\n') { line[len - 1] = '\0'; } if (process != nullptr) { std::string descriptor((*process)(line)); output->insert(output->end(), descriptor); } else { output->insert(output->end(), line); } } free(line); } void LogCompletionTime() { // Note: when creation of a runtime fails, e.g., when trying to compile an app but when there // is no image, there won't be a Runtime::Current(). // Note: driver creation can fail when loading an invalid dex file. LOG(INFO) << "dex2oat took " << PrettyDuration(NanoTime() - start_ns_) << " (" << PrettyDuration(ProcessCpuNanoTime() - start_cputime_ns_) << " cpu)" << " (threads: " << thread_count_ << ") " << ((Runtime::Current() != nullptr && driver_ != nullptr) ? driver_->GetMemoryUsageString(kIsDebugBuild || VLOG_IS_ON(compiler)) : ""); } std::string StripIsaFrom(const char* image_filename, InstructionSet isa) { std::string res(image_filename); size_t last_slash = res.rfind('/'); if (last_slash == std::string::npos || last_slash == 0) { return res; } size_t penultimate_slash = res.rfind('/', last_slash - 1); if (penultimate_slash == std::string::npos) { return res; } // Check that the string in-between is the expected one. if (res.substr(penultimate_slash + 1, last_slash - penultimate_slash - 1) != GetInstructionSetString(isa)) { LOG(WARNING) << "Unexpected string when trying to strip isa: " << res; return res; } return res.substr(0, penultimate_slash) + res.substr(last_slash); } std::unique_ptr compiler_options_; Compiler::Kind compiler_kind_; std::unique_ptr key_value_store_; std::unique_ptr verification_results_; std::unique_ptr callbacks_; std::unique_ptr runtime_; // The spec describing how the class loader should be setup for compilation. std::unique_ptr class_loader_context_; // Optional list of file descriptors corresponding to dex file locations in // flattened `class_loader_context_`. std::vector class_loader_context_fds_; // The class loader context stored in the oat file. May be equal to class_loader_context_. std::unique_ptr stored_class_loader_context_; size_t thread_count_; std::vector cpu_set_; uint64_t start_ns_; uint64_t start_cputime_ns_; std::unique_ptr watchdog_; std::vector> oat_files_; std::vector> vdex_files_; std::string oat_location_; std::vector oat_filenames_; std::vector oat_unstripped_; bool strip_; int oat_fd_; int input_vdex_fd_; int output_vdex_fd_; std::string input_vdex_; std::string output_vdex_; std::unique_ptr input_vdex_file_; int dm_fd_; std::string dm_file_location_; std::unique_ptr dm_file_; std::vector dex_filenames_; std::vector dex_locations_; std::vector dex_fds_; int zip_fd_; std::string zip_location_; std::string boot_image_filename_; std::vector runtime_args_; std::vector image_filenames_; int image_fd_; bool have_multi_image_arg_; uintptr_t image_base_; ImageHeader::StorageMode image_storage_mode_; const char* passes_to_run_filename_; const char* dirty_image_objects_filename_; int dirty_image_objects_fd_; std::unique_ptr> dirty_image_objects_; std::unique_ptr> preloaded_classes_; std::unique_ptr> passes_to_run_; bool is_host_; std::string android_root_; std::string no_inline_from_string_; bool force_allow_oj_inlines_ = false; CompactDexLevel compact_dex_level_ = kDefaultCompactDexLevel; std::vector> elf_writers_; std::vector> oat_writers_; std::vector rodata_; std::vector> vdex_out_; std::unique_ptr image_writer_; std::unique_ptr driver_; std::vector opened_dex_files_maps_; std::vector> opened_dex_files_; bool avoid_storing_invocation_; android::base::unique_fd invocation_file_; std::string swap_file_name_; int swap_fd_; size_t min_dex_files_for_swap_ = kDefaultMinDexFilesForSwap; size_t min_dex_file_cumulative_size_for_swap_ = kDefaultMinDexFileCumulativeSizeForSwap; size_t very_large_threshold_ = std::numeric_limits::max(); std::string app_image_file_name_; int app_image_fd_; std::vector profile_files_; std::vector profile_file_fds_; std::vector preloaded_classes_files_; std::vector preloaded_classes_fds_; std::unique_ptr profile_compilation_info_; TimingLogger* timings_; std::vector> dex_files_per_oat_file_; HashMap dex_file_oat_index_map_; // Backing storage. std::forward_list char_backing_storage_; // See CompilerOptions.force_determinism_. bool force_determinism_; // See CompilerOptions.crash_on_linkage_violation_. bool check_linkage_conditions_; // See CompilerOptions.crash_on_linkage_violation_. bool crash_on_linkage_violation_; // Directory of relative classpaths. std::string classpath_dir_; // Whether the given input vdex is also the output. bool use_existing_vdex_ = false; // By default, copy the dex to the vdex file only if dex files are // compressed in APK. linker::CopyOption copy_dex_files_ = linker::CopyOption::kOnlyIfCompressed; // The reason for invoking the compiler. std::string compilation_reason_; // Whether to force individual compilation. bool compile_individually_; // The classpath that determines if a given symbol should be resolved at compile time or not. std::string public_sdk_; // The apex versions of jars in the boot classpath. Set through command line // argument. std::string apex_versions_argument_; // Whether or we attempted to load the profile (if given). bool profile_load_attempted_; // Whether PaletteNotify{Start,End}Dex2oatCompilation should be called. bool should_report_dex2oat_compilation_; DISALLOW_IMPLICIT_CONSTRUCTORS(Dex2Oat); }; static void b13564922() { #if defined(__linux__) && defined(__arm__) int major, minor; struct utsname uts; if (uname(&uts) != -1 && sscanf(uts.release, "%d.%d", &major, &minor) == 2 && ((major < 3) || ((major == 3) && (minor < 4)))) { // Kernels before 3.4 don't handle the ASLR well and we can run out of address // space (http://b/13564922). Work around the issue by inhibiting further mmap() randomization. int old_personality = personality(0xffffffff); if ((old_personality & ADDR_NO_RANDOMIZE) == 0) { int new_personality = personality(old_personality | ADDR_NO_RANDOMIZE); if (new_personality == -1) { LOG(WARNING) << "personality(. | ADDR_NO_RANDOMIZE) failed."; } } } #endif } class ScopedGlobalRef { public: explicit ScopedGlobalRef(jobject obj) : obj_(obj) {} ~ScopedGlobalRef() { if (obj_ != nullptr) { ScopedObjectAccess soa(Thread::Current()); soa.Env()->GetVm()->DeleteGlobalRef(soa.Self(), obj_); } } private: jobject obj_; }; static dex2oat::ReturnCode DoCompilation(Dex2Oat& dex2oat) { dex2oat.LoadClassProfileDescriptors(); jobject class_loader = dex2oat.Compile(); // Keep the class loader that was used for compilation live for the rest of the compilation // process. ScopedGlobalRef global_ref(class_loader); if (!dex2oat.WriteOutputFiles(class_loader)) { dex2oat.EraseOutputFiles(); return dex2oat::ReturnCode::kOther; } // Flush output files. Keep them open as we might still modify them later (strip them). if (!dex2oat.FlushOutputFiles()) { dex2oat.EraseOutputFiles(); return dex2oat::ReturnCode::kOther; } // Creates the boot.art and patches the oat files. if (!dex2oat.HandleImage()) { return dex2oat::ReturnCode::kOther; } // When given --host, finish early without stripping. if (dex2oat.IsHost()) { if (!dex2oat.FlushCloseOutputFiles()) { return dex2oat::ReturnCode::kOther; } dex2oat.DumpTiming(); return dex2oat::ReturnCode::kNoFailure; } // Copy stripped to unstripped location, if necessary. This will implicitly flush & close the // stripped versions. If this is given, we expect to be able to open writable files by name. if (!dex2oat.CopyOatFilesToSymbolsDirectoryAndStrip()) { return dex2oat::ReturnCode::kOther; } // FlushClose again, as stripping might have re-opened the oat files. if (!dex2oat.FlushCloseOutputFiles()) { return dex2oat::ReturnCode::kOther; } dex2oat.DumpTiming(); return dex2oat::ReturnCode::kNoFailure; } static dex2oat::ReturnCode Dex2oat(int argc, char** argv) { b13564922(); TimingLogger timings("compiler", false, false); // Allocate `dex2oat` on the heap instead of on the stack, as Clang // might produce a stack frame too large for this function or for // functions inlining it (such as main), that would not fit the // requirements of the `-Wframe-larger-than` option. std::unique_ptr dex2oat = std::make_unique(&timings); // Parse arguments. Argument mistakes will lead to exit(EXIT_FAILURE) in UsageError. dex2oat->ParseArgs(argc, argv); art::MemMap::Init(); // For ZipEntry::ExtractToMemMap, vdex and profiles. // If needed, process profile information for profile guided compilation. // This operation involves I/O. if (dex2oat->HasProfileInput()) { if (!dex2oat->LoadProfile()) { LOG(ERROR) << "Failed to process profile file"; return dex2oat::ReturnCode::kOther; } } // Check if we need to update any of the compiler options (such as the filter) // and do it before anything else (so that the other operations have a true // view of the state). dex2oat->UpdateCompilerOptionsBasedOnProfile(); // Insert the compiler options in the key value store. // We have to do this after we altered any incoming arguments // (such as the compiler filter). dex2oat->InsertCompileOptions(argc, argv); // Check early that the result of compilation can be written if (!dex2oat->OpenFile()) { // Flush close so that the File Guard checks don't fail the assertions. dex2oat->FlushCloseOutputFiles(); return dex2oat::ReturnCode::kOther; } // Print the complete line when any of the following is true: // 1) Debug build // 2) Compiling an image // 3) Compiling with --host // 4) Compiling on the host (not a target build) // Otherwise, print a stripped command line. if (kIsDebugBuild || dex2oat->IsBootImage() || dex2oat->IsBootImageExtension() || dex2oat->IsHost() || !kIsTargetBuild) { LOG(INFO) << CommandLine(); } else { LOG(INFO) << StrippedCommandLine(); } Dex2Oat::ScopedDex2oatReporting sdr(*dex2oat.get()); if (sdr.ErrorReporting()) { dex2oat->EraseOutputFiles(); return dex2oat::ReturnCode::kOther; } dex2oat::ReturnCode setup_code = dex2oat->Setup(); if (setup_code != dex2oat::ReturnCode::kNoFailure) { dex2oat->EraseOutputFiles(); return setup_code; } // TODO: Due to the cyclic dependencies, profile loading and verifying are // being done separately. Refactor and place the two next to each other. // If verification fails, we don't abort the compilation and instead log an // error. // TODO(b/62602192, b/65260586): We should consider aborting compilation when // the profile verification fails. // Note: If dex2oat fails, installd will remove the oat files causing the app // to fallback to apk with possible in-memory extraction. We want to avoid // that, and thus we're lenient towards profile corruptions. if (dex2oat->DoProfileGuidedOptimizations()) { dex2oat->VerifyProfileData(); } // Helps debugging on device. Can be used to determine which dalvikvm instance invoked a dex2oat // instance. Used by tools/bisection_search/bisection_search.py. VLOG(compiler) << "Running dex2oat (parent PID = " << getppid() << ")"; dex2oat::ReturnCode result = DoCompilation(*dex2oat); return result; } } // namespace art int main(int argc, char** argv) { int result = static_cast(art::Dex2oat(argc, argv)); // Everything was done, do an explicit exit here to avoid running Runtime destructors that take // time (bug 10645725) unless we're a debug or instrumented build or running on a memory tool. // Note: The Dex2Oat class should not destruct the runtime in this case. if (!art::kIsDebugBuild && !art::kIsPGOInstrumentation && !art::kRunningOnMemoryTool) { art::FastExit(result); } return result; }