import numpy as np import cv2 from rknn.api import RKNN def show_outputs(outputs): output_ = outputs[0].reshape((-1, 1000)) for output in output_: output_sorted = sorted(output, reverse=True) top5_str = 'mobilenet_v1\n-----TOP 5-----\n' for i in range(5): value = output_sorted[i] index = np.where(output == value) for j in range(len(index)): if (i + j) >= 5: break if value > 0: topi = '{}: {}\n'.format(index[j], value) else: topi = '-1: 0.0\n' top5_str += topi print(top5_str) def show_perfs(perfs): perfs = 'perfs: {}\n'.format(outputs) print(perfs) if __name__ == '__main__': # Create RKNN object rknn = RKNN(verbose=True) # The multiple sets of input shapes specified by the user, to simulate the function of dynamic input. # Please make sure the model can be dynamic when enable 'config.dynamic_input', and shape in dynamic_input are correctly! dynamic_input = [ [[1,3,192,192]], # set 0: [input0_192] [[1,3,256,256]], # set 1: [input0_256] [[1,3,160,160]], # set 2: [input0_160] [[1,3,224,224]], # set 3: [input0_224] ] # Pre-process config print('--> Config model') rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2BGR=True, target_platform='rk3566', dynamic_input=dynamic_input) print('done') # Load model (from https://github.com/shicai/MobileNet-Caffe) print('--> Loading model') ret = rknn.load_caffe(model='../../caffe/mobilenet_v2/mobilenet_v2_deploy.prototxt', blobs='../../caffe/mobilenet_v2/mobilenet_v2.caffemodel') if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=True, dataset='../../caffe/mobilenet_v2/dataset.txt') if ret != 0: print('Build model failed!') exit(ret) print('done') # Export rknn model print('--> Export rknn model') ret = rknn.export_rknn('./mobilenet_v2.rknn') if ret != 0: print('Export rknn model failed!') exit(ret) print('done') # Init runtime environment print('--> Init runtime environment') ret = rknn.init_runtime() if ret != 0: print('Init runtime environment failed!') exit(ret) print('done') # Set inputs img = cv2.imread('./dog_224x224.jpg') # Inference print('--> Running model') img2 = cv2.resize(img, (224,224)) img2 = np.expand_dims(img2, 0) img2 = np.transpose(img2, (0,3,1,2)) # [1,3,224,224] outputs = rknn.inference(inputs=[img2], data_format=['nchw']) np.save('./functions_dynamic_input_0.npy', outputs[0]) show_outputs(outputs) img3 = cv2.resize(img, (160,160)) img3 = np.expand_dims(img3, 0) img3 = np.transpose(img3, (0,3,1,2)) # [1,3,160,160] outputs = rknn.inference(inputs=[img3], data_format=['nchw']) np.save('./functions_dynamic_input_1.npy', outputs[0]) show_outputs(outputs) img4 = cv2.resize(img, (256,256)) img4 = np.expand_dims(img4, 0) img4 = np.transpose(img4, (0,3,1,2)) # [1,3,256,256] outputs = rknn.inference(inputs=[img4], data_format=['nchw']) np.save('./functions_dynamic_input_2.npy', outputs[0]) show_outputs(outputs) print('done') rknn.release()