/* * (C) Copyright 2017 Rockchip Electronics Co., Ltd * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fg_regs.h" DECLARE_GLOBAL_DATA_PTR; static int dbg_enable = 0; #define DBG(args...) \ do { \ if (dbg_enable) { \ printf(args); \ } \ } while (0) #define BAT_INFO(fmt, args...) printf("rk818-bat: "fmt, ##args) #define DRIVER_VERSION "2.0" /* THERMAL_REG */ #define TEMP_105C (0x02 << 2) #define FB_TEMP_MSK 0x0c /* CHRG_CTRL_REG2 */ #define FINISH_100MA (0x00 << 6) #define FINISH_150MA (0x01 << 6) #define FINISH_200MA (0x02 << 6) #define FINISH_250MA (0x03 << 6) #define FINISH_CUR_MSK 0xc7 /* CHRG_CTRL_REG3 */ #define CHRG_TERM_DIG_SIGNAL (1 << 5) #define CHRG_TERM_ANA_SIGNAL (0 << 5) #define CHRG_TIMER_CCCV_EN (1 << 2) #define CHRG_TERM_SIG_MSK (1 << 5) /* CHRG_CTRL_REG */ #define ILIM_450MA (0x00) #define ILIM_80MA (0x01) #define ILIM_850MA (0x02) #define ILIM_2000MA (0x07) #define CHRG_CT_EN (1 << 7) /* USB_CTRL_REG */ #define INPUT_CUR_MSK 0x0f /* VB_MON_REG */ #define PLUG_IN_STS (1 << 6) /* GGSTS */ #define BAT_CON (1 << 4) #define VOL_INSTANT (1 << 0) #define VOL_AVG (0 << 0) /* TS_CTRL_REG */ #define GG_EN (1 << 7) /* CHRG_USB_CTRL */ #define CHRG_EN (1 << 7) /* ADC_CTRL_REG */ #define ADC_TS2_EN (1 << 4) #define ADC_TS1_EN (1 << 5) /* TS_CTRL_REG */ #define TS2_ADC_MODE (1 << 5) /* SUP_STS_REG */ #define BAT_EXS (1 << 7) #define USB_EXIST (1 << 1) #define USB_EFF (1 << 0) #define CHARGE_OFF (0x00 << 4) #define DEAD_CHARGE (0x01 << 4) #define TRICKLE_CHARGE (0x02 << 4) #define CC_OR_CV (0x03 << 4) #define CHARGE_FINISH (0x04 << 4) #define USB_OVER_VOL (0x05 << 4) #define BAT_TMP_ERR (0x06 << 4) #define TIMER_ERR (0x07 << 4) #define USB_VLIMIT_EN (1 << 3) #define USB_CLIMIT_EN (1 << 2) #define BAT_STATUS_MSK 0x70 /* GGCON */ #define ADC_CUR_MODE (1 << 1) /* CALI PARAM */ #define FINISH_CALI_CURR 1500 #define TERM_CALI_CURR 600 #define VIRTUAL_POWER_VOL 4200 #define VIRTUAL_POWER_CUR 1000 #define VIRTUAL_POWER_SOC 66 #define SECONDS(n) ((n) * 1000) /* CALC PARAM */ #define MAX_PERCENTAGE 100 #define MAX_INTERPOLATE 1000 #define MAX_INT 0x7fff #define MIN_FCC 500 /* sample resistor and division */ #define SAMPLE_RES_10mR 10 #define SAMPLE_RES_20mR 20 #define SAMPLE_RES_DIV1 1 #define SAMPLE_RES_DIV2 2 #define FG_INIT (1 << 5) #define FG_RESET_LATE (1 << 4) #define FG_RESET_NOW (1 << 3) #define DEFAULT_POFFSET 42 #define DEFAULT_COFFSET 0x832 #define INVALID_COFFSET_MIN 0x780 #define INVALID_COFFSET_MAX 0x980 #define CHRG_TERM_DSOC 90 #define CHRG_TERM_K 650 #define CHRG_FULL_K 400 #define ADC_CALIB_THRESHOLD 4 #define TS2_THRESHOLD_VOL 4350 #define TS2_VALID_VOL 1000 #define TS2_VOL_MULTI 0 #define TS2_CHECK_CNT 5 #define ADC_CUR_MSK 0x03 #define ADC_CUR_20UA 0x00 #define ADC_CUR_40UA 0x01 #define ADC_CUR_60UA 0x02 #define ADC_CUR_80UA 0x03 #define NTC_CALC_FACTOR_80UA 7 #define NTC_CALC_FACTOR_60UA 9 #define NTC_CALC_FACTOR_40UA 13 #define NTC_CALC_FACTOR_20UA 27 #define NTC_80UA_MAX_MEASURE 27500 #define NTC_60UA_MAX_MEASURE 36666 #define NTC_40UA_MAX_MEASURE 55000 #define NTC_20UA_MAX_MEASURE 110000 #define ZERO_MIN_VOLTAGE 3800 #define TS1_NOT_READY 0xabcdabcd #define DIV(x) ((x) ? (x) : 1) /***********************************************************/ struct battery_priv { struct udevice *dev; int chrg_type; int poffset; int bat_res; int current_avg; int voltage_avg; int voltage_ocv; int voltage_k; int voltage_b; int dsoc; int rsoc; int fcc; int qmax; int remain_cap; int design_cap; int nac; u32 *ocv_table; u32 ocv_size; u32 *ntc_table; u32 ntc_size; u32 ntc_factor; u32 ntc_uA; int ntc_degree_from; int temperature; int virtual_power; int ts2_vol_multi; int pwroff_min; int sm_old_cap; int sm_linek; int sm_chrg_dsoc; int adc_allow_update; int chrg_vol_sel; int chrg_cur_input; int chrg_cur_sel; int dts_vol_sel; int dts_cur_input; int dts_cur_sel; int max_soc_offset; int sample_res; int res_div; struct gpio_desc dc_det; int dc_det_adc; ulong finish_chrg_base; ulong term_sig_base; u8 calc_dsoc; u8 calc_rsoc; int sm_meet_soc; u8 halt_cnt; u8 dc_active_level; u8 dc_is_valid; bool is_halt; bool is_ocv_calib; bool is_max_soc_offset; bool is_first_power_on; bool is_sw_reset; int pwr_dsoc; int pwr_rsoc; int pwr_vol; }; enum charger_type { NO_CHARGER = 0, USB_CHARGER, AC_CHARGER, DC_CHARGER, UNDEF_CHARGER, }; static const u32 CHRG_VOL_SEL[] = { 4050, 4100, 4150, 4200, 4250, 4300, 4350 }; static const u32 CHRG_CUR_SEL[] = { 1000, 1200, 1400, 1600, 1800, 2000, 2250, 2400, 2600, 2800, 3000 }; static const u32 CHRG_CUR_INPUT[] = { 450, 800, 850, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000 }; static int rk818_bat_read(struct battery_priv *di, u8 reg) { return pmic_reg_read(di->dev->parent, reg); } static void rk818_bat_write(struct battery_priv *di, u8 reg, u8 buf) { pmic_reg_write(di->dev->parent, reg, buf); } static int rk818_bat_dwc_otg_check_dpdm(void) { #if defined(CONFIG_PHY_ROCKCHIP_INNO_USB2) && !defined(CONFIG_SPL_BUILD) return rockchip_chg_get_type(); #else debug("rockchip_chg_get_type() is not implement\n"); return NO_CHARGER; #endif } static int rk818_bat_get_rsoc(struct battery_priv *di) { return (di->remain_cap + di->fcc / 200) * 100 / DIV(di->fcc); } static int rk818_bat_get_dsoc(struct battery_priv *di) { return rk818_bat_read(di, SOC_REG); } static void rk818_bat_enable_gauge(struct battery_priv *di) { u8 val; val = rk818_bat_read(di, TS_CTRL_REG); val |= GG_EN; rk818_bat_write(di, TS_CTRL_REG, val); } static int rk818_bat_get_vcalib0(struct battery_priv *di) { int val = 0; val |= rk818_bat_read(di, VCALIB0_REGL) << 0; val |= rk818_bat_read(di, VCALIB0_REGH) << 8; return val; } static int rk818_bat_get_vcalib1(struct battery_priv *di) { int val = 0; val |= rk818_bat_read(di, VCALIB1_REGL) << 0; val |= rk818_bat_read(di, VCALIB1_REGH) << 8; return val; } static int rk818_bat_get_ioffset(struct battery_priv *di) { int val = 0; val |= rk818_bat_read(di, IOFFSET_REGL) << 0; val |= rk818_bat_read(di, IOFFSET_REGH) << 8; DBG("<%s>. ioffset: 0x%x\n", __func__, val); return val; } static int rk818_bat_get_coffset(struct battery_priv *di) { int val = 0; val |= rk818_bat_read(di, CAL_OFFSET_REGL) << 0; val |= rk818_bat_read(di, CAL_OFFSET_REGH) << 8; DBG("<%s>. coffset: 0x%x\n", __func__, val); return val; } static void rk818_bat_set_coffset(struct battery_priv *di, int val) { u8 buf; buf = (val >> 0) & 0xff; rk818_bat_write(di, CAL_OFFSET_REGL, buf); buf = (val >> 8) & 0xff; rk818_bat_write(di, CAL_OFFSET_REGH, buf); DBG("<%s>. set coffset: 0x%x\n", __func__, val); } static void rk818_bat_init_coffset(struct battery_priv *di) { int ioffset, coffset; ioffset = rk818_bat_get_ioffset(di); di->poffset = rk818_bat_read(di, POFFSET_REG); if (!di->poffset) di->poffset = DEFAULT_POFFSET; coffset = di->poffset + ioffset; if (coffset < INVALID_COFFSET_MIN || coffset > INVALID_COFFSET_MAX) coffset = DEFAULT_COFFSET; rk818_bat_set_coffset(di, coffset); } static void rk818_bat_init_voltage_kb(struct battery_priv *di) { int vcalib0, vcalib1; vcalib0 = rk818_bat_get_vcalib0(di); vcalib1 = rk818_bat_get_vcalib1(di); di->voltage_k = (4200 - 3000) * 1000 / DIV(vcalib1 - vcalib0); di->voltage_b = 4200 - (di->voltage_k * vcalib1) / 1000; DBG("%s. vk=%d, vb=%d\n", __func__, di->voltage_k, di->voltage_b); } static int rk818_bat_get_ocv_voltage(struct battery_priv *di) { int vol, val = 0; val |= rk818_bat_read(di, BAT_OCV_REGL) << 0; val |= rk818_bat_read(di, BAT_OCV_REGH) << 8; vol = di->voltage_k * val / 1000 + di->voltage_b; return vol; } static int rk818_bat_get_avg_current(struct battery_priv *di) { int val = 0; val |= rk818_bat_read(di, BAT_CUR_AVG_REGL) << 0; val |= rk818_bat_read(di, BAT_CUR_AVG_REGH) << 8; if (val & 0x800) val -= 4096; val = val * di->res_div * 1506 / 1000; return val; } static int rk818_bat_get_avg_voltage(struct battery_priv *di) { int vol, val = 0; val |= rk818_bat_read(di, BAT_VOL_REGL) << 0; val |= rk818_bat_read(di, BAT_VOL_REGH) << 8; vol = di->voltage_k * val / 1000 + di->voltage_b; return vol; } static int rk818_bat_get_est_voltage(struct battery_priv *di) { struct charge_animation_pdata *pdata = NULL; struct udevice *dev; int est_vol, vol, curr; int plugin, timeout = 0; int low_power_voltage = 0; uclass_find_first_device(UCLASS_CHARGE_DISPLAY, &dev); pdata = dev_get_platdata(dev); low_power_voltage = pdata->low_power_voltage; vol = rk818_bat_get_avg_voltage(di); curr = rk818_bat_get_avg_current(di); plugin = rk818_bat_read(di, VB_MON_REG) & PLUG_IN_STS ? 1 : 0; if (di->is_first_power_on || (!plugin && curr >= 0) || (plugin && curr <= 0)) { DBG("%s: curr=%d, plugin=%d, first_on=%d\n", __func__, curr, plugin, di->is_first_power_on); curr = 0; } est_vol = vol - (di->bat_res * curr / 1000); while ((est_vol <= low_power_voltage) && (vol <= low_power_voltage)) { mdelay(100); /* Update */ vol = rk818_bat_get_avg_voltage(di); curr = rk818_bat_get_avg_current(di); plugin = rk818_bat_read(di, VB_MON_REG) & PLUG_IN_STS; if (di->is_first_power_on || (!plugin && curr >= 0) || (plugin && curr <= 0)) { DBG("%s: while curr=%d, plugin=%d, first_on=%d\n", __func__, curr, plugin, di->is_first_power_on); curr = 0; } est_vol = vol - (di->bat_res * curr / 1000); timeout++; if (timeout >= 5) break; } return (est_vol >= low_power_voltage) ? est_vol : vol; } static u8 rk818_bat_finish_ma(struct battery_priv *di, int fcc) { u8 ma; if (di->res_div == 2) ma = FINISH_100MA; else if (fcc > 5000) ma = FINISH_250MA; else if (fcc >= 4000) ma = FINISH_200MA; else if (fcc >= 3000) ma = FINISH_150MA; else ma = FINISH_100MA; return ma; } static void rk818_bat_select_chrg_cv(struct battery_priv *di) { int index, chrg_vol_sel, chrg_cur_sel, chrg_cur_input; chrg_vol_sel = di->dts_vol_sel; chrg_cur_sel = di->dts_cur_sel; chrg_cur_input = di->dts_cur_input; if (di->sample_res == SAMPLE_RES_10mR) { if (chrg_cur_sel > 2000) chrg_cur_sel /= di->res_div; else chrg_cur_sel = 1000; } for (index = 0; index < ARRAY_SIZE(CHRG_VOL_SEL); index++) { if (chrg_vol_sel < CHRG_VOL_SEL[index]) break; di->chrg_vol_sel = (index << 4); } for (index = 0; index < ARRAY_SIZE(CHRG_CUR_INPUT); index++) { if (chrg_cur_input < CHRG_CUR_INPUT[index]) break; di->chrg_cur_input = (index << 0); } for (index = 0; index < ARRAY_SIZE(CHRG_CUR_SEL); index++) { if (chrg_cur_sel < CHRG_CUR_SEL[index]) break; di->chrg_cur_sel = (index << 0); } DBG("<%s>. vol=0x%x, input=0x%x, sel=0x%x\n", __func__, di->chrg_vol_sel, di->chrg_cur_input, di->chrg_cur_sel); } static void rk818_bat_init_chrg_config(struct battery_priv *di) { u8 chrg_ctrl1, usb_ctrl, chrg_ctrl2, chrg_ctrl3; u8 sup_sts, ggcon, thermal, finish_ma; rk818_bat_select_chrg_cv(di); finish_ma = rk818_bat_finish_ma(di, di->fcc); ggcon = rk818_bat_read(di, GGCON_REG); sup_sts = rk818_bat_read(di, SUP_STS_REG); usb_ctrl = rk818_bat_read(di, USB_CTRL_REG); thermal = rk818_bat_read(di, THERMAL_REG); chrg_ctrl2 = rk818_bat_read(di, CHRG_CTRL_REG2); chrg_ctrl3 = rk818_bat_read(di, CHRG_CTRL_REG3); /* set charge current and voltage */ usb_ctrl &= ~INPUT_CUR_MSK; usb_ctrl |= di->chrg_cur_input; chrg_ctrl1 = (CHRG_EN | di->chrg_vol_sel | di->chrg_cur_sel); /* digital signal and finish current*/ chrg_ctrl3 &= ~CHRG_TERM_SIG_MSK; chrg_ctrl3 |= CHRG_TERM_ANA_SIGNAL; chrg_ctrl2 &= ~FINISH_CUR_MSK; chrg_ctrl2 |= finish_ma; /* cccv mode */ chrg_ctrl3 &= ~CHRG_TIMER_CCCV_EN; /* enable voltage limit and enable input current limit */ sup_sts &= ~USB_VLIMIT_EN; sup_sts |= USB_CLIMIT_EN; /* set feedback temperature */ usb_ctrl |= CHRG_CT_EN; thermal &= ~FB_TEMP_MSK; thermal |= TEMP_105C; /* adc current mode */ ggcon |= ADC_CUR_MODE; rk818_bat_write(di, GGCON_REG, ggcon); rk818_bat_write(di, SUP_STS_REG, sup_sts); rk818_bat_write(di, USB_CTRL_REG, usb_ctrl); rk818_bat_write(di, THERMAL_REG, thermal); rk818_bat_write(di, CHRG_CTRL_REG1, chrg_ctrl1); rk818_bat_write(di, CHRG_CTRL_REG2, chrg_ctrl2); rk818_bat_write(di, CHRG_CTRL_REG3, chrg_ctrl3); } static u32 interpolate(int value, u32 *table, int size) { uint8_t i; uint16_t d; for (i = 0; i < size; i++) { if (value < table[i]) break; } if ((i > 0) && (i < size)) { d = (value - table[i - 1]) * (MAX_INTERPOLATE / (size - 1)); d /= table[i] - table[i - 1]; d = d + (i - 1) * (MAX_INTERPOLATE / (size - 1)); } else { d = i * ((MAX_INTERPOLATE + size / 2) / size); } if (d > 1000) d = 1000; return d; } /* returns (a * b) / c */ static int32_t ab_div_c(u32 a, u32 b, u32 c) { bool sign; u32 ans = MAX_INT; int32_t tmp; sign = ((((a ^ b) ^ c) & 0x80000000) != 0); if (c != 0) { if (sign) c = -c; tmp = ((int32_t)a * b + (c >> 1)) / c; if (tmp < MAX_INT) ans = tmp; } if (sign) ans = -ans; return ans; } static int rk818_bat_vol_to_cap(struct battery_priv *di, int voltage) { u32 *ocv_table, tmp; int ocv_size, ocv_cap; ocv_table = di->ocv_table; ocv_size = di->ocv_size; tmp = interpolate(voltage, ocv_table, ocv_size); ocv_cap = ab_div_c(tmp, di->fcc, MAX_INTERPOLATE); return ocv_cap; } static int rk818_bat_vol_to_soc(struct battery_priv *di, int voltage) { u32 *ocv_table, tmp; int ocv_size, ocv_soc; ocv_table = di->ocv_table; ocv_size = di->ocv_size; tmp = interpolate(voltage, ocv_table, ocv_size); ocv_soc = ab_div_c(tmp, MAX_PERCENTAGE, MAX_INTERPOLATE); return ocv_soc; } static int rk818_bat_get_prev_cap(struct battery_priv *di) { int val = 0; val |= rk818_bat_read(di, REMAIN_CAP_REG3) << 24; val |= rk818_bat_read(di, REMAIN_CAP_REG2) << 16; val |= rk818_bat_read(di, REMAIN_CAP_REG1) << 8; val |= rk818_bat_read(di, REMAIN_CAP_REG0) << 0; return val; } static void rk818_bat_save_fcc(struct battery_priv *di, u32 cap) { u8 buf; buf = (cap >> 24) & 0xff; rk818_bat_write(di, NEW_FCC_REG3, buf); buf = (cap >> 16) & 0xff; rk818_bat_write(di, NEW_FCC_REG2, buf); buf = (cap >> 8) & 0xff; rk818_bat_write(di, NEW_FCC_REG1, buf); buf = (cap >> 0) & 0xff; rk818_bat_write(di, NEW_FCC_REG0, buf); } static int rk818_bat_get_fcc(struct battery_priv *di) { int val = 0; val |= rk818_bat_read(di, NEW_FCC_REG3) << 24; val |= rk818_bat_read(di, NEW_FCC_REG2) << 16; val |= rk818_bat_read(di, NEW_FCC_REG1) << 8; val |= rk818_bat_read(di, NEW_FCC_REG0) << 0; if (val < MIN_FCC) val = di->design_cap; else if (val > di->qmax) val = di->qmax; return val; } static int rk818_bat_get_pwroff_min(struct battery_priv *di) { u8 cur, last; cur = rk818_bat_read(di, NON_ACT_TIMER_CNT_REG); last = rk818_bat_read(di, NON_ACT_TIMER_CNT_SAVE_REG); rk818_bat_write(di, NON_ACT_TIMER_CNT_SAVE_REG, cur); return (cur != last) ? cur : 0; } static int rk818_bat_get_coulomb_cap(struct battery_priv *di) { int val = 0; val |= rk818_bat_read(di, GASCNT_REG3) << 24; val |= rk818_bat_read(di, GASCNT_REG2) << 16; val |= rk818_bat_read(di, GASCNT_REG1) << 8; val |= rk818_bat_read(di, GASCNT_REG0) << 0; val /= 2390; return val * di->res_div; } static void rk818_bat_save_cap(struct battery_priv *di, int cap) { u8 buf; static int old_cap; if (old_cap == cap) return; if (cap >= di->qmax) cap = di->qmax; old_cap = cap; buf = (cap >> 24) & 0xff; rk818_bat_write(di, REMAIN_CAP_REG3, buf); buf = (cap >> 16) & 0xff; rk818_bat_write(di, REMAIN_CAP_REG2, buf); buf = (cap >> 8) & 0xff; rk818_bat_write(di, REMAIN_CAP_REG1, buf); buf = (cap >> 0) & 0xff; rk818_bat_write(di, REMAIN_CAP_REG0, buf); } static void rk818_bat_init_capacity(struct battery_priv *di, u32 capacity) { u8 buf; u32 cap; int delta; delta = capacity - di->remain_cap; if (!delta) return; cap = capacity * 2390 / di->res_div; buf = (cap >> 24) & 0xff; rk818_bat_write(di, GASCNT_CAL_REG3, buf); buf = (cap >> 16) & 0xff; rk818_bat_write(di, GASCNT_CAL_REG2, buf); buf = (cap >> 8) & 0xff; rk818_bat_write(di, GASCNT_CAL_REG1, buf); buf = (cap >> 0) & 0xff; rk818_bat_write(di, GASCNT_CAL_REG0, buf); di->remain_cap = rk818_bat_get_coulomb_cap(di); di->rsoc = rk818_bat_get_rsoc(di); rk818_bat_save_cap(di, di->remain_cap); } static bool is_rk818_bat_ocv_valid(struct battery_priv *di) { return di->pwroff_min >= 30 ? true : false; } static int rk818_bat_get_usb_state(struct battery_priv *di) { int charger_type; switch (rk818_bat_dwc_otg_check_dpdm()) { case 0: if ((rk818_bat_read(di, VB_MON_REG) & PLUG_IN_STS) != 0) charger_type = DC_CHARGER; else charger_type = NO_CHARGER; break; case 1: case 3: charger_type = USB_CHARGER; break; case 2: case 4: charger_type = AC_CHARGER; break; default: charger_type = NO_CHARGER; } return charger_type; } static void rk818_bat_clr_initialized_state(struct battery_priv *di) { u8 val; val = rk818_bat_read(di, MISC_MARK_REG); val &= ~FG_INIT; rk818_bat_write(di, MISC_MARK_REG, val); } static bool rk818_bat_is_initialized(struct battery_priv *di) { return (rk818_bat_read(di, MISC_MARK_REG) & FG_INIT) ? true : false; } static void rk818_bat_set_initialized_state(struct battery_priv *di) { u8 val; val = rk818_bat_read(di, MISC_MARK_REG); if (rk818_bat_get_usb_state(di) != NO_CHARGER) { val |= FG_INIT; rk818_bat_write(di, MISC_MARK_REG, val); BAT_INFO("initialized... estv=%d, ch=%d\n", rk818_bat_get_est_voltage(di), rk818_bat_get_usb_state(di)); } } static void rk818_bat_save_dsoc(struct battery_priv *di, u8 save_soc) { static int old_soc = -1; if (old_soc != save_soc) { old_soc = save_soc; rk818_bat_write(di, SOC_REG, save_soc); } } static void rk818_bat_first_pwron(struct battery_priv *di) { int ocv_vol, vol, curr; rk818_bat_save_fcc(di, di->design_cap); ocv_vol = rk818_bat_get_ocv_voltage(di); curr = rk818_bat_get_avg_current(di); di->fcc = rk818_bat_get_fcc(di); di->nac = rk818_bat_vol_to_cap(di, ocv_vol); di->rsoc = rk818_bat_vol_to_soc(di, ocv_vol); di->dsoc = di->rsoc; vol = rk818_bat_get_avg_voltage(di); if (ocv_vol < vol) { BAT_INFO("%s: ocv voltage %d\n", __func__, ocv_vol); ocv_vol = vol; } rk818_bat_save_dsoc(di, di->dsoc); rk818_bat_init_capacity(di, di->nac); rk818_bat_set_initialized_state(di); BAT_INFO("first power on: soc=%d, Vavg=%d, Vocv=%d, c=%d, ch=%d, fcc=%d\n", di->dsoc, vol, ocv_vol, curr, rk818_bat_get_usb_state(di), di->fcc); } static u8 rk818_bat_get_halt_cnt(struct battery_priv *di) { return rk818_bat_read(di, HALT_CNT_REG); } static void rk818_bat_inc_halt_cnt(struct battery_priv *di) { u8 cnt; cnt = rk818_bat_read(di, HALT_CNT_REG); rk818_bat_write(di, HALT_CNT_REG, ++cnt); } static bool is_rk818_bat_last_halt(struct battery_priv *di) { int pre_cap = rk818_bat_get_prev_cap(di); int now_cap = rk818_bat_get_coulomb_cap(di); /* over 5%: system halt last time */ if (abs(now_cap - pre_cap) > (di->fcc / 20)) { rk818_bat_inc_halt_cnt(di); return true; } else { return false; } } static void rk818_bat_not_first_pwron(struct battery_priv *di) { int pre_soc, pre_cap, ocv_cap = 0, ocv_soc = 0, ocv_vol, now_cap; int voltage; di->fcc = rk818_bat_get_fcc(di); pre_soc = rk818_bat_get_dsoc(di); pre_cap = rk818_bat_get_prev_cap(di); now_cap = rk818_bat_get_coulomb_cap(di); voltage = rk818_bat_get_est_voltage(di); di->pwr_dsoc = pre_soc; di->pwr_rsoc = (now_cap + di->fcc / 200) * 100 / DIV(di->fcc); di->is_halt = is_rk818_bat_last_halt(di); di->halt_cnt = rk818_bat_get_halt_cnt(di); di->is_ocv_calib = is_rk818_bat_ocv_valid(di); if (di->is_halt) { BAT_INFO("system halt last time... cap: pre=%d, now=%d\n", pre_cap, now_cap); if (now_cap < 0) now_cap = 0; rk818_bat_init_capacity(di, now_cap); pre_cap = di->remain_cap; pre_soc = di->rsoc; goto finish; } else if (di->is_ocv_calib) { ocv_vol = rk818_bat_get_ocv_voltage(di); ocv_soc = rk818_bat_vol_to_soc(di, ocv_vol); ocv_cap = rk818_bat_vol_to_cap(di, ocv_vol); pre_cap = ocv_cap; BAT_INFO("do ocv calib.. rsoc=%d\n", ocv_soc); if (abs(ocv_soc - pre_soc) >= di->max_soc_offset) { BAT_INFO("trigger max soc offset, soc: %d -> %d\n", pre_soc, ocv_soc); pre_soc = ocv_soc; di->is_max_soc_offset = true; } BAT_INFO("OCV calib: cap=%d, rsoc=%d\n", ocv_cap, ocv_soc); } else if ((pre_soc == 0) && (voltage >= ZERO_MIN_VOLTAGE)) { if (now_cap < 0) now_cap = 0; rk818_bat_init_capacity(di, now_cap); pre_cap = di->remain_cap; pre_soc = di->rsoc; BAT_INFO("zero calib: voltage=%d\n", voltage); } finish: di->dsoc = pre_soc; di->nac = pre_cap; rk818_bat_init_capacity(di, di->nac); rk818_bat_save_dsoc(di, di->dsoc); rk818_bat_set_initialized_state(di); BAT_INFO("dl=%d rl=%d cap=%d m=%d v=%d ov=%d c=%d pl=%d ch=%d fcc=%d, Ver=%s\n", di->dsoc, di->rsoc, di->remain_cap, di->pwroff_min, rk818_bat_get_avg_voltage(di), rk818_bat_get_ocv_voltage(di), rk818_bat_get_avg_current(di), rk818_bat_get_dsoc(di), rk818_bat_get_usb_state(di), di->fcc, DRIVER_VERSION ); } static bool is_rk818_bat_first_poweron(struct battery_priv *di) { u8 buf; buf = rk818_bat_read(di, GGSTS_REG); if (buf & BAT_CON) { buf &= ~BAT_CON; rk818_bat_write(di, GGSTS_REG, buf); return true; } return false; } static bool rk818_bat_ocv_sw_reset(struct battery_priv *di) { u8 buf; buf = rk818_bat_read(di, MISC_MARK_REG); if (((buf & FG_RESET_LATE) && di->pwroff_min >= 30) || (buf & FG_RESET_NOW)) { buf &= ~FG_RESET_LATE; buf &= ~FG_RESET_NOW; rk818_bat_write(di, MISC_MARK_REG, buf); BAT_INFO("manual reset fuel gauge\n"); return true; } else { return false; } } static void rk818_bat_init_rsoc(struct battery_priv *di) { int charger, voltage, initialize = 0; struct charge_animation_pdata *pdata; struct udevice *dev; uclass_find_first_device(UCLASS_CHARGE_DISPLAY, &dev); pdata = dev_get_platdata(dev); charger = rk818_bat_get_usb_state(di); voltage = rk818_bat_get_est_voltage(di); di->is_first_power_on = is_rk818_bat_first_poweron(di); /* * Do rsoc initialization only when: * * 1. first power on; * 2. charger online + voltage lower than low_power_voltage; * 3. charger online + uboot_charge enabled. * 4. dsoc is 0 but voltage high, obvious wrong. */ if (di->is_first_power_on) { initialize = 1; } else if ((di->dsoc == 0) && (voltage >= ZERO_MIN_VOLTAGE)) { initialize = 1; } else if (charger != NO_CHARGER) { if (voltage < pdata->low_power_voltage + 50) initialize = 1; else if (pdata->uboot_charge) initialize = 1; } if (!initialize) return; di->pwroff_min = rk818_bat_get_pwroff_min(di); di->is_sw_reset = rk818_bat_ocv_sw_reset(di); if (di->is_first_power_on || di->is_sw_reset) rk818_bat_first_pwron(di); else rk818_bat_not_first_pwron(di); } static int rk818_bat_calc_linek(struct battery_priv *di) { int linek, diff, delta; di->calc_dsoc = di->dsoc; di->calc_rsoc = di->rsoc; di->sm_old_cap = di->remain_cap; delta = abs(di->dsoc - di->rsoc); diff = delta * 3; di->sm_meet_soc = (di->dsoc >= di->rsoc) ? (di->dsoc + diff) : (di->rsoc + diff); if (di->dsoc < di->rsoc) linek = 1000 * (delta + diff) / DIV(diff); else if (di->dsoc > di->rsoc) linek = 1000 * diff / DIV(delta + diff); else linek = 1000; di->sm_chrg_dsoc = di->dsoc * 1000; DBG("<%s>. meet=%d, diff=%d, link=%d, calc: dsoc=%d, rsoc=%d\n", __func__, di->sm_meet_soc, diff, linek, di->calc_dsoc, di->calc_rsoc); return linek; } static void rk818_bat_init_ts1(struct battery_priv *di) { u8 buf; u32 *ntc_table = di->ntc_table; if (!di->ntc_size) return; /* select uA */ buf = rk818_bat_read(di, TS_CTRL_REG); buf &= ~ADC_CUR_MSK; /* chose suitable UA for temperature detect */ if (ntc_table[0] < NTC_80UA_MAX_MEASURE) { di->ntc_factor = NTC_CALC_FACTOR_80UA; di->ntc_uA = 80; buf |= ADC_CUR_80UA; } else if (ntc_table[0] < NTC_60UA_MAX_MEASURE) { di->ntc_factor = NTC_CALC_FACTOR_60UA; di->ntc_uA = 60; buf |= ADC_CUR_60UA; } else if (ntc_table[0] < NTC_40UA_MAX_MEASURE) { di->ntc_factor = NTC_CALC_FACTOR_40UA; di->ntc_uA = 40; buf |= ADC_CUR_40UA; } else { di->ntc_factor = NTC_CALC_FACTOR_20UA; di->ntc_uA = 20; buf |= ADC_CUR_20UA; } rk818_bat_write(di, TS_CTRL_REG, buf); /* ADC_TS1_EN */ buf = rk818_bat_read(di, ADC_CTRL_REG); buf |= ADC_TS1_EN; rk818_bat_write(di, ADC_CTRL_REG, buf); } static void rk818_bat_init_ts2(struct battery_priv *di) { u8 buf; if (!di->ts2_vol_multi) return; /* TS2 adc mode */ buf = rk818_bat_read(di, TS_CTRL_REG); buf |= TS2_ADC_MODE; rk818_bat_write(di, TS_CTRL_REG, buf); /* TS2 adc enable */ buf = rk818_bat_read(di, ADC_CTRL_REG); buf |= ADC_TS2_EN; rk818_bat_write(di, ADC_CTRL_REG, buf); } static int rk818_fg_init(struct battery_priv *di) { int cap; rk818_bat_enable_gauge(di); rk818_bat_init_voltage_kb(di); rk818_bat_init_coffset(di); rk818_bat_init_ts1(di); rk818_bat_init_ts2(di); rk818_bat_clr_initialized_state(di); cap = rk818_bat_get_coulomb_cap(di); di->dsoc = rk818_bat_get_dsoc(di); di->rsoc = (cap + di->fcc / 200) * 100 / DIV(di->fcc); /* dsoc and rsoc maybe initialized here */ rk818_bat_init_rsoc(di); rk818_bat_init_chrg_config(di); di->voltage_avg = rk818_bat_get_avg_voltage(di); di->voltage_ocv = rk818_bat_get_ocv_voltage(di); di->current_avg = rk818_bat_get_avg_current(di); di->sm_linek = rk818_bat_calc_linek(di); di->finish_chrg_base = get_timer(0); di->term_sig_base = get_timer(0); di->pwr_vol = di->voltage_avg; DBG("%s: dsoc=%d, rsoc=%d, v=%d, ov=%d, c=%d, estv=%d\n", __func__, di->dsoc, di->rsoc, di->voltage_avg, di->voltage_ocv, di->current_avg, rk818_bat_get_est_voltage(di)); return 0; } static bool is_rk818_bat_exist(struct battery_priv *di) { return (rk818_bat_read(di, SUP_STS_REG) & BAT_EXS) ? true : false; } static void rk818_bat_set_current(struct battery_priv *di, int input_current) { u8 usb_ctrl; usb_ctrl = rk818_bat_read(di, USB_CTRL_REG); usb_ctrl &= ~INPUT_CUR_MSK; usb_ctrl |= (input_current); rk818_bat_write(di, USB_CTRL_REG, usb_ctrl); } static int rk818_bat_get_ts2_voltage(struct battery_priv *di) { u32 val = 0; val |= rk818_bat_read(di, RK818_TS2_ADC_REGL) << 0; val |= rk818_bat_read(di, RK818_TS2_ADC_REGH) << 8; /* refer voltage 2.2V, 12bit adc accuracy */ val = val * 2200 * di->ts2_vol_multi / 4095; DBG("<%s>. ts2 voltage=%d\n", __func__, val); return val; } static void rk818_bat_ts2_update_current(struct battery_priv *di) { int ts2_vol, input_current, invalid_cnt = 0, confirm_cnt = 0; rk818_bat_set_current(di, ILIM_450MA); input_current = ILIM_850MA; while (input_current < di->chrg_cur_input) { mdelay(100); ts2_vol = rk818_bat_get_ts2_voltage(di); DBG("******** ts2 vol=%d\n", ts2_vol); /* filter invalid voltage */ if (ts2_vol <= TS2_VALID_VOL) { invalid_cnt++; DBG("%s: invalid ts2 voltage: %d\n, cnt=%d", __func__, ts2_vol, invalid_cnt); if (invalid_cnt < TS2_CHECK_CNT) continue; /* if fail, set max input current as default */ input_current = di->chrg_cur_input; rk818_bat_set_current(di, input_current); break; } /* update input current */ if (ts2_vol >= TS2_THRESHOLD_VOL) { /* update input current */ input_current++; rk818_bat_set_current(di, input_current); DBG("********* input=%d\n", CHRG_CUR_INPUT[input_current & 0x0f]); } else { /* confirm lower threshold voltage */ confirm_cnt++; if (confirm_cnt < TS2_CHECK_CNT) { DBG("%s: confirm ts2 voltage: %d\n, cnt=%d", __func__, ts2_vol, confirm_cnt); continue; } /* trigger threshold, so roll back 1 step */ input_current--; if (input_current == ILIM_80MA || input_current < 0) input_current = ILIM_450MA; rk818_bat_set_current(di, input_current); break; } } BAT_INFO("DC_CHARGER charge_cur_input=%d\n", CHRG_CUR_INPUT[input_current]); } static void rk818_bat_charger_setting(struct battery_priv *di, int charger) { static u8 old_charger = UNDEF_CHARGER; struct charge_animation_pdata *pdata; struct udevice *dev; int low_power_voltage = 0; uclass_find_first_device(UCLASS_CHARGE_DISPLAY, &dev); pdata = dev_get_platdata(dev); low_power_voltage = pdata->low_power_voltage; /* charger changed */ if (old_charger != charger) { if (charger == NO_CHARGER) { BAT_INFO("NO_CHARGER\n"); rk818_bat_set_current(di, ILIM_450MA); } else if (charger == USB_CHARGER) { BAT_INFO("USB_CHARGER\n"); rk818_bat_set_current(di, ILIM_450MA); } else if (charger == DC_CHARGER || charger == AC_CHARGER) { if (pdata->uboot_charge && di->ts2_vol_multi) { rk818_bat_ts2_update_current(di); } else if ((rk818_bat_get_est_voltage(di) < low_power_voltage) && (di->ts2_vol_multi)) { rk818_bat_ts2_update_current(di); } else { rk818_bat_set_current(di, di->chrg_cur_input); BAT_INFO("DC_CHARGER\n"); } } else { BAT_INFO("charger setting error %d\n", charger); } old_charger = charger; } } static int rk818_bat_get_dc_state(struct battery_priv *di) { if (!di->dc_is_valid) return NO_CHARGER; return dm_gpio_get_value(&di->dc_det) ? DC_CHARGER : NO_CHARGER; } static int rk818_bat_get_charger_type(struct battery_priv *di) { int charger_type = NO_CHARGER; /* check by ic hardware: this check make check work safer */ if ((rk818_bat_read(di, VB_MON_REG) & PLUG_IN_STS) == 0) return NO_CHARGER; /* virtual or bat not exist */ if (di->virtual_power) return DC_CHARGER; /* check DC firstly */ charger_type = rk818_bat_get_dc_state(di); if (charger_type == DC_CHARGER) return charger_type; /* check USB secondly */ return rk818_bat_get_usb_state(di); } static u8 rk818_bat_get_chrg_status(struct battery_priv *di) { u8 status; status = rk818_bat_read(di, SUP_STS_REG) & BAT_STATUS_MSK; switch (status) { case CHARGE_OFF: DBG("CHARGE-OFF...\n"); break; case DEAD_CHARGE: DBG("DEAD CHARGE...\n"); break; case TRICKLE_CHARGE: DBG("TRICKLE CHARGE...\n "); break; case CC_OR_CV: DBG("CC or CV...\n"); break; case CHARGE_FINISH: DBG("CHARGE FINISH...\n"); break; case USB_OVER_VOL: DBG("USB OVER VOL...\n"); break; case BAT_TMP_ERR: DBG("BAT TMP ERROR...\n"); break; case TIMER_ERR: DBG("TIMER ERROR...\n"); break; case USB_EXIST: DBG("USB EXIST...\n"); break; case USB_EFF: DBG("USB EFF...\n"); break; default: return -EINVAL; } return status; } static void rk818_bat_finish_chrg(struct battery_priv *di) { u32 tgt_sec = 0; if (di->dsoc < 100) { tgt_sec = di->fcc * 3600 / 100 / FINISH_CALI_CURR; if (get_timer(di->finish_chrg_base) > SECONDS(tgt_sec)) { di->finish_chrg_base = get_timer(0); di->dsoc++; } } DBG("<%s>. sec=%d, finish_sec=%lu\n", __func__, SECONDS(tgt_sec), get_timer(di->finish_chrg_base)); } static void rk818_bat_debug_info(struct battery_priv *di) { u8 sup_sts, ggcon, ggsts, vb_mod, rtc, thermal, misc; u8 usb_ctrl, chrg_ctrl1, chrg_ctrl2, chrg_ctrl3; static const char *name[] = {"NONE", "USB", "AC", "DC", "UNDEF"}; if (!dbg_enable) return; ggcon = rk818_bat_read(di, GGCON_REG); ggsts = rk818_bat_read(di, GGSTS_REG); sup_sts = rk818_bat_read(di, SUP_STS_REG); usb_ctrl = rk818_bat_read(di, USB_CTRL_REG); thermal = rk818_bat_read(di, THERMAL_REG); vb_mod = rk818_bat_read(di, VB_MON_REG); misc = rk818_bat_read(di, MISC_MARK_REG); rtc = rk818_bat_read(di, SECONDS_REG); chrg_ctrl1 = rk818_bat_read(di, CHRG_CTRL_REG1); chrg_ctrl2 = rk818_bat_read(di, CHRG_CTRL_REG2); chrg_ctrl3 = rk818_bat_read(di, CHRG_CTRL_REG3); DBG("\n---------------------- DEBUG REGS ------------------------\n" "GGCON=0x%2x, GGSTS=0x%2x, RTC=0x%2x, SUP_STS= 0x%2x\n" "VB_MOD=0x%2x, USB_CTRL=0x%2x, THERMAL=0x%2x, MISC=0x%2x\n" "CHRG_CTRL:REG1=0x%2x, REG2=0x%2x, REG3=0x%2x\n", ggcon, ggsts, rtc, sup_sts, vb_mod, usb_ctrl, thermal, misc, chrg_ctrl1, chrg_ctrl2, chrg_ctrl3 ); DBG("----------------------------------------------------------\n" "Dsoc=%d, Rsoc=%d, Vavg=%d, Iavg=%d, Cap=%d, Fcc=%d, d=%d\n" "K=%d, old_cap=%d, charger=%s, Is=%d, Ip=%d, Vs=%d\n" "min=%d, meet: soc=%d, calc: dsoc=%d, rsoc=%d, Vocv=%d\n" "off: i=0x%x, c=0x%x, max=%d, ocv_c=%d, halt: st=%d, cnt=%d\n" "pwr: dsoc=%d, rsoc=%d, vol=%d, Res=%d, mode=%s, T=%d'C\n", di->dsoc, rk818_bat_get_rsoc(di), rk818_bat_get_avg_voltage(di), rk818_bat_get_avg_current(di), di->remain_cap, di->fcc, di->rsoc - di->dsoc, di->sm_linek, di->sm_old_cap, name[di->chrg_type], di->res_div * CHRG_CUR_SEL[chrg_ctrl1 & 0x0f], CHRG_CUR_INPUT[usb_ctrl & 0x0f], CHRG_VOL_SEL[(chrg_ctrl1 & 0x70) >> 4], di->pwroff_min, di->sm_meet_soc, di->calc_dsoc, di->calc_rsoc, rk818_bat_get_ocv_voltage(di), rk818_bat_get_ioffset(di), rk818_bat_get_coffset(di), di->is_max_soc_offset, di->is_ocv_calib, di->is_halt, di->halt_cnt, di->pwr_dsoc, di->pwr_rsoc, di->pwr_vol, di->sample_res, di->virtual_power ? "VIRTUAL" : "BAT", di->temperature ); rk818_bat_get_chrg_status(di); DBG("###########################################################\n"); } static void rk818_bat_linek_algorithm(struct battery_priv *di) { int delta_cap, ydsoc, tmp; u8 chg_st = rk818_bat_get_chrg_status(di); /* slow down */ if (di->dsoc == 99) di->sm_linek = CHRG_FULL_K; else if (di->dsoc >= CHRG_TERM_DSOC && di->current_avg > TERM_CALI_CURR) di->sm_linek = CHRG_TERM_K; delta_cap = di->remain_cap - di->sm_old_cap; ydsoc = di->sm_linek * delta_cap * 100 / DIV(di->fcc); if (ydsoc > 0) { tmp = (di->sm_chrg_dsoc + 1) / 1000; if (tmp != di->dsoc) di->sm_chrg_dsoc = di->dsoc * 1000; di->sm_chrg_dsoc += ydsoc; di->dsoc = (di->sm_chrg_dsoc + 1) / 1000; di->sm_old_cap = di->remain_cap; if (di->dsoc == di->rsoc && di->sm_linek != CHRG_FULL_K && di->sm_linek != CHRG_TERM_K) di->sm_linek = 1000; } if ((di->sm_linek == 1000 || di->dsoc >= 100) && (chg_st != CHARGE_FINISH)) { if (di->sm_linek == 1000) di->dsoc = di->rsoc; di->sm_chrg_dsoc = di->dsoc * 1000; } DBG("linek=%d, sm_dsoc=%d, delta_cap=%d, ydsoc=%d, old_cap=%d\n" "calc: dsoc=%d, rsoc=%d, meet=%d\n", di->sm_linek, di->sm_chrg_dsoc, delta_cap, ydsoc, di->sm_old_cap, di->calc_dsoc, di->calc_rsoc, di->sm_meet_soc); } static void rk818_bat_set_term_mode(struct battery_priv *di, int mode) { u8 buf; buf = rk818_bat_read(di, CHRG_CTRL_REG3); buf &= ~CHRG_TERM_SIG_MSK; buf |= mode; rk818_bat_write(di, CHRG_CTRL_REG3, buf); DBG("set charge to %s term mode\n", mode ? "digital" : "analog"); } static int rk818_bat_get_iadc(struct battery_priv *di) { int val = 0; val |= rk818_bat_read(di, BAT_CUR_AVG_REGL) << 0; val |= rk818_bat_read(di, BAT_CUR_AVG_REGH) << 8; if (val > 2047) val -= 4096; return val; } static bool rk818_bat_adc_calib(struct battery_priv *di) { int i, ioffset, coffset, adc; if (abs(di->current_avg) < ADC_CALIB_THRESHOLD) return false; for (i = 0; i < 5; i++) { adc = rk818_bat_get_iadc(di); coffset = rk818_bat_get_coffset(di); rk818_bat_set_coffset(di, coffset + adc); mdelay(200); adc = rk818_bat_get_iadc(di); if (abs(adc) < ADC_CALIB_THRESHOLD) { coffset = rk818_bat_get_coffset(di); ioffset = rk818_bat_get_ioffset(di); di->poffset = coffset - ioffset; rk818_bat_write(di, POFFSET_REG, di->poffset); BAT_INFO("new offset:c=0x%x, i=0x%x, p=0x%x\n", coffset, ioffset, di->poffset); return true; } else { BAT_INFO("coffset calib again %d..\n", i); rk818_bat_set_coffset(di, coffset); mdelay(200); } } return false; } static void rk818_bat_smooth_charge(struct battery_priv *di) { u8 chg_st = rk818_bat_get_chrg_status(di); /* set terminal charge mode */ if (di->term_sig_base && get_timer(di->term_sig_base) > SECONDS(1)) { DBG("%s: terminal signal finish mode\n", __func__); rk818_bat_set_term_mode(di, CHRG_TERM_DIG_SIGNAL); di->term_sig_base = 0; } /* not charge mode and not keep in uboot charge: exit */ if ((di->chrg_type == NO_CHARGER) || !rk818_bat_is_initialized(di)) { DBG("chrg=%d, initialized=%d\n", di->chrg_type, rk818_bat_is_initialized(di)); goto out; } /* update rsoc and remain cap */ di->remain_cap = rk818_bat_get_coulomb_cap(di); di->rsoc = rk818_bat_get_rsoc(di); if (di->remain_cap > di->fcc) { di->sm_old_cap -= (di->remain_cap - di->fcc); rk818_bat_init_capacity(di, di->fcc); DBG("%s: init capacity: %d\n", __func__, di->fcc); } /* finish charge step */ if (chg_st == CHARGE_FINISH) { DBG("%s: finish charge step...\n", __func__); if (di->adc_allow_update) di->adc_allow_update = !rk818_bat_adc_calib(di); rk818_bat_finish_chrg(di); rk818_bat_init_capacity(di, di->fcc); } else { DBG("%s: smooth charge step...\n", __func__); di->adc_allow_update = true; di->finish_chrg_base = get_timer(0); rk818_bat_linek_algorithm(di); } /* dsoc limit */ if (di->dsoc > 100) di->dsoc = 100; else if (di->dsoc < 0) di->dsoc = 0; DBG("%s: save dsoc=%d and rsoc=%d\n", __func__, di->dsoc, rk818_bat_get_rsoc(di)); rk818_bat_save_dsoc(di, di->dsoc); rk818_bat_save_cap(di, di->remain_cap); out: rk818_bat_debug_info(di); } /* * Due to hardware design issue, Vdelta = "(R_sample + R_other) * I_avg" will be * included into TS1 adc value. We must subtract it to get correct adc value. * The solution: * * (1) calculate Vdelta: * * adc1 - Vdelta ua1 (adc2 * ua1) - (adc1 * ua2) * ------------- = ----- ==> equals: Vdelta = ----------------------------- * adc2 - Vdelta ua2 ua1 - ua2 * * * (2) calculate correct ADC value: * * charging: ADC = adc1 - abs(Vdelta); * discharging: ADC = adc1 + abs(Vdelta); */ static int rk818_bat_get_ntc_res(struct battery_priv *di) { static int adc1 = 0, adc2 = 0, ua1 = 0, ua2 = 0; static int adc1_update = 0, first_in = 1; static ulong seconds; int v_delta, val, res; u8 buf; /* hold adc1 and wait 1s for adc2 updated */ if (!adc1_update) { /* update flag and init adc1,adc2 !! */ adc1_update = 1; seconds = get_timer(0); adc1 = 0; adc2 = 0; /* read sample ua1 */ buf = rk818_bat_read(di, TS_CTRL_REG); DBG("<%s>. read adc1, sample uA=%d\n", __func__, ((buf & 0x03) + 1) * 20); /* read adc adc1 */ ua1 = di->ntc_uA; adc1 |= rk818_bat_read(di, TS_ADC_REGL) << 0; adc1 |= rk818_bat_read(di, TS_ADC_REGH) << 8; /* chose reference UA for adc2 */ ua2 = (ua1 != 20) ? 20 : 40; buf = rk818_bat_read(di, TS_CTRL_REG); buf &= ~ADC_CUR_MSK; buf |= ((ua2 - 20) / 20); rk818_bat_write(di, TS_CTRL_REG, buf); } /* wait 1s for adc2 updated */ if (get_timer(seconds) < SECONDS(1)) { if (first_in) first_in = 0; else return TS1_NOT_READY; } /* update flags ! */ adc1_update = 0; /* read sample ua2 */ buf = rk818_bat_read(di, TS_CTRL_REG); DBG("<%s>. read adc2, sample uA=%d\n", __func__, ((buf & 0x03) + 1) * 20); /* read adc adc2 */ adc2 |= rk818_bat_read(di, TS_ADC_REGL) << 0; adc2 |= rk818_bat_read(di, TS_ADC_REGH) << 8; DBG("<%s>. ua1=%d, ua2=%d, adc1=%d, adc2=%d\n", __func__, ua1, ua2, adc1, adc2); /* calculate delta voltage */ if (adc2 != adc1) v_delta = abs((adc2 * ua1 - adc1 * ua2) / (ua2 - ua1)); else v_delta = 0; /* considering current avg direction, calcuate real adc value */ val = (di->current_avg >= 0) ? (adc1 - v_delta) : (adc1 + v_delta); DBG("<%s>. Iavg=%d, Vdelta=%d, Vadc=%d\n", __func__, di->current_avg, v_delta, val); res = val * di->ntc_factor; DBG("<%s>. val=%d, ntc_res=%d, ntc_factor=%d\n", __func__, val, res, di->ntc_factor); DBG("<%s>. t=[%d'C(%d) ~ %dC(%d)]\n", __func__, di->ntc_degree_from, di->ntc_table[0], di->ntc_degree_from + di->ntc_size - 1, di->ntc_table[di->ntc_size - 1]); rk818_bat_init_ts1(di); return res; } static int rk818_bat_update_temperature(struct battery_priv *di) { static int first_time = 1, old_temperature = 25; u32 ntc_size, *ntc_table; int i, res, temp; ntc_table = di->ntc_table; ntc_size = di->ntc_size; if (ntc_size) { res = rk818_bat_get_ntc_res(di); if (res == TS1_NOT_READY) { di->temperature = old_temperature; return TS1_NOT_READY; } if (res < ntc_table[ntc_size - 1]) { di->temperature = di->ntc_degree_from; old_temperature = di->ntc_degree_from; printf("bat ntc upper max degree: R=%d\n", res); } else if (res > ntc_table[0]) { di->temperature = di->ntc_degree_from + di->ntc_size - 1; old_temperature = di->ntc_degree_from + di->ntc_size - 1; printf("bat ntc lower min degree: R=%d\n", res); } else { for (i = 0; i < ntc_size; i++) { if (res >= ntc_table[i]) break; } /* if first in, init old_temperature */ temp = (i + di->ntc_degree_from); if (first_time) { di->temperature = temp; old_temperature = temp; first_time = 0; } old_temperature = temp; di->temperature = temp; } } DBG("temperature=%d\n", di->temperature); return 0; } static int rk818_bat_bat_is_exit(struct udevice *dev) { struct battery_priv *di = dev_get_priv(dev); return is_rk818_bat_exist(di); } static int rk818_bat_update_get_soc(struct udevice *dev) { struct battery_priv *di = dev_get_priv(dev); static ulong seconds, ts1_seconds; int wait; /* set charge current */ di->chrg_type = rk818_bat_get_charger_type(di); rk818_bat_charger_setting(di, di->chrg_type); /* fg calc every 5 seconds */ if (!seconds || !ts1_seconds) { seconds = get_timer(0); ts1_seconds = get_timer(0); } /* temperature calc every 5 seconds */ if (get_timer(ts1_seconds) >= SECONDS(5)) { DBG("%s: update temperature\n", __func__); wait = rk818_bat_update_temperature(di); if (!wait) ts1_seconds = get_timer(0); } if (get_timer(seconds) >= SECONDS(5)) { DBG("%s: smooth charge\n", __func__); seconds = get_timer(0); rk818_bat_smooth_charge(di); } /* bat exist, fg init success(dts pass) and uboot charge: report data */ if (!di->virtual_power && di->voltage_k) return di->dsoc; else return VIRTUAL_POWER_SOC; } static int rk818_bat_update_get_current(struct udevice *dev) { struct battery_priv *di = dev_get_priv(dev); if (!di->virtual_power && di->voltage_k) return rk818_bat_get_avg_current(di); else return VIRTUAL_POWER_CUR; } static int rk818_bat_update_get_voltage(struct udevice *dev) { struct battery_priv *di = dev_get_priv(dev); if (!di->virtual_power && di->voltage_k) return rk818_bat_get_est_voltage(di); else return VIRTUAL_POWER_VOL; } static bool rk818_bat_update_get_chrg_online(struct udevice *dev) { struct battery_priv *di = dev_get_priv(dev); return rk818_bat_get_charger_type(di); } static struct dm_fuel_gauge_ops fg_ops = { .bat_is_exist = rk818_bat_bat_is_exit, .get_soc = rk818_bat_update_get_soc, .get_voltage = rk818_bat_update_get_voltage, .get_current = rk818_bat_update_get_current, .get_chrg_online = rk818_bat_update_get_chrg_online, }; static int rk818_fg_ofdata_to_platdata(struct udevice *dev) { struct rk8xx_priv *rk8xx = dev_get_priv(dev->parent); struct battery_priv *di = dev_get_priv(dev); u32 sign, degree_from[2]; const char *prop; int len, ret; if (rk8xx->variant != 0x8180) { debug("%s: Not support pmic variant: rk%x\n", __func__, rk8xx->variant); return -EINVAL; } else { di->dev = dev; } /* Parse ocv table */ prop = dev_read_prop(dev, "ocv_table", &len); if (!prop) { printf("can't find ocv_table prop\n"); return -EINVAL; } di->ocv_table = calloc(len, 1); if (!di->ocv_table) { printf("can't calloc ocv_table\n"); return -ENOMEM; } di->ocv_size = len / 4; if (dev_read_u32_array(dev, "ocv_table", di->ocv_table, di->ocv_size)) { printf("can't read ocv_table\n"); free(di->ocv_table); return -EINVAL; } /* Parse neccessay */ di->design_cap = dev_read_u32_default(dev, "design_capacity", -1); if (di->design_cap < 0) { printf("can't read design_capacity\n"); return -EINVAL; } di->qmax = dev_read_u32_default(dev, "design_qmax", -1); if (di->qmax < 0) { printf("can't read design_qmax\n"); return -EINVAL; } /* Parse un-neccessay */ di->dts_vol_sel = dev_read_u32_default(dev, "max_chrg_voltage", 4200); if (di->dts_vol_sel < 0) di->dts_vol_sel = dev_read_u32_default(dev, "max_charge_voltagemV", 4200); di->dts_cur_input = dev_read_u32_default(dev, "max_input_current", 2000); if (di->dts_cur_input < 0) di->dts_cur_input = dev_read_u32_default(dev, "max_input_currentmA", 2000); di->dts_cur_sel = dev_read_u32_default(dev, "max_chrg_current", 1200); if (di->dts_cur_sel < 0) di->dts_cur_sel = dev_read_u32_default(dev, "max_chrg_currentmA", 1400); di->max_soc_offset = dev_read_u32_default(dev, "max_soc_offset", 70); di->virtual_power = dev_read_u32_default(dev, "virtual_power", 0); di->bat_res = dev_read_u32_default(dev, "bat_res", 135); di->sample_res = dev_read_u32_default(dev, "sample_res", SAMPLE_RES_20mR); di->ts2_vol_multi = dev_read_u32_default(dev, "ts2_vol_multi", 0); di->res_div = (di->sample_res == SAMPLE_RES_20mR) ? SAMPLE_RES_DIV1 : SAMPLE_RES_DIV2; ret = gpio_request_by_name_nodev(dev_ofnode(dev), "dc_det_gpio", 0, &di->dc_det, GPIOD_IS_IN); if (!ret) { di->dc_is_valid = 1; debug("DC is valid\n"); } else { debug("DC is invalid, ret=%d\n", ret); } prop = dev_read_prop(dev, "ntc_table", &len); if (!prop) { di->ntc_size = 0; } else { ret = dev_read_u32_array(dev, "ntc_degree_from", degree_from, ARRAY_SIZE(degree_from)); if (ret < 0) { printf("invalid ntc_degree_from\n"); return -EINVAL; } sign = degree_from[0]; di->ntc_degree_from = degree_from[1]; if (sign) di->ntc_degree_from = -di->ntc_degree_from; di->ntc_size = len / sizeof(u32); } if (di->ntc_size) { di->ntc_table = calloc(len, 1); if (!di->ntc_table) { printf("calloc ocv_table fail\n"); return -ENOMEM; } ret = dev_read_u32_array(dev, "ntc_table", di->ntc_table, di->ntc_size); if (ret < 0) { printf("read ntc_table array failed\n"); return ret; } } /* Is battery attached */ if (!is_rk818_bat_exist(di)) di->virtual_power = 1; DBG("-------------------------------:\n"); DBG("max_input_current:%d\n", di->dts_cur_input); DBG("max_chrg_current:%d\n", di->dts_cur_sel); DBG("max_chrg_voltage:%d\n", di->dts_vol_sel); DBG("design_capacity :%d\n", di->design_cap); DBG("design_qmax:%d\n", di->qmax); DBG("max_soc_offset:%d\n", di->max_soc_offset); DBG("sample_res:%d\n", di->sample_res); DBG("virtual_power:%d\n", di->virtual_power); DBG("ts2_vol_multi:%d\n", di->ts2_vol_multi); DBG("dc det: %d\n", di->dc_is_valid); DBG("ntc_size:%d\n", di->ntc_size); DBG("ntc_degree_from:%d\n", di->ntc_degree_from); DBG("ntc_degree_to:%d\n", di->ntc_degree_from + di->ntc_size - 1); return 0; } static int rk818_fg_probe(struct udevice *dev) { struct rk8xx_priv *rk8xx = dev_get_priv(dev->parent); struct battery_priv *di = dev_get_priv(dev); if (rk8xx->variant != 0x8180) { printf("Not support pmic variant: rk%x\n", rk8xx->variant); return -EINVAL; } return rk818_fg_init(di); } U_BOOT_DRIVER(rk818_fg) = { .name = "rk818_fg", .id = UCLASS_FG, .probe = rk818_fg_probe, .ops = &fg_ops, .ofdata_to_platdata = rk818_fg_ofdata_to_platdata, .priv_auto_alloc_size = sizeof(struct battery_priv), };