//===- yaml2elf - Convert YAML to a ELF object file -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// The ELF component of yaml2obj. /// //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringSet.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/ObjectYAML/ELFYAML.h" #include "llvm/ObjectYAML/yaml2obj.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/WithColor.h" #include "llvm/Support/YAMLTraits.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; // This class is used to build up a contiguous binary blob while keeping // track of an offset in the output (which notionally begins at // `InitialOffset`). namespace { class ContiguousBlobAccumulator { const uint64_t InitialOffset; SmallVector Buf; raw_svector_ostream OS; public: ContiguousBlobAccumulator(uint64_t InitialOffset_) : InitialOffset(InitialOffset_), Buf(), OS(Buf) {} template raw_ostream &getOSAndAlignedOffset(Integer &Offset, unsigned Align) { Offset = padToAlignment(Align); return OS; } /// \returns The new offset. uint64_t padToAlignment(unsigned Align) { if (Align == 0) Align = 1; uint64_t CurrentOffset = InitialOffset + OS.tell(); uint64_t AlignedOffset = alignTo(CurrentOffset, Align); OS.write_zeros(AlignedOffset - CurrentOffset); return AlignedOffset; // == CurrentOffset; } void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); } }; // Used to keep track of section and symbol names, so that in the YAML file // sections and symbols can be referenced by name instead of by index. class NameToIdxMap { StringMap Map; public: /// \Returns false if name is already present in the map. bool addName(StringRef Name, unsigned Ndx) { return Map.insert({Name, Ndx}).second; } /// \Returns false if name is not present in the map. bool lookup(StringRef Name, unsigned &Idx) const { auto I = Map.find(Name); if (I == Map.end()) return false; Idx = I->getValue(); return true; } /// Asserts if name is not present in the map. unsigned get(StringRef Name) const { unsigned Idx; if (lookup(Name, Idx)) return Idx; assert(false && "Expected section not found in index"); return 0; } unsigned size() const { return Map.size(); } }; namespace { struct Fragment { uint64_t Offset; uint64_t Size; uint32_t Type; uint64_t AddrAlign; }; } // namespace /// "Single point of truth" for the ELF file construction. /// TODO: This class still has a ways to go before it is truly a "single /// point of truth". template class ELFState { typedef typename ELFT::Ehdr Elf_Ehdr; typedef typename ELFT::Phdr Elf_Phdr; typedef typename ELFT::Shdr Elf_Shdr; typedef typename ELFT::Sym Elf_Sym; typedef typename ELFT::Rel Elf_Rel; typedef typename ELFT::Rela Elf_Rela; typedef typename ELFT::Relr Elf_Relr; typedef typename ELFT::Dyn Elf_Dyn; typedef typename ELFT::uint uintX_t; enum class SymtabType { Static, Dynamic }; /// The future ".strtab" section. StringTableBuilder DotStrtab{StringTableBuilder::ELF}; /// The future ".shstrtab" section. StringTableBuilder DotShStrtab{StringTableBuilder::ELF}; /// The future ".dynstr" section. StringTableBuilder DotDynstr{StringTableBuilder::ELF}; NameToIdxMap SN2I; NameToIdxMap SymN2I; NameToIdxMap DynSymN2I; ELFYAML::Object &Doc; bool HasError = false; yaml::ErrorHandler ErrHandler; void reportError(const Twine &Msg); std::vector toELFSymbols(ArrayRef Symbols, const StringTableBuilder &Strtab); unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = ""); unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic); void buildSectionIndex(); void buildSymbolIndexes(); void initProgramHeaders(std::vector &PHeaders); bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, StringRef SecName, ELFYAML::Section *YAMLSec); void initSectionHeaders(std::vector &SHeaders, ContiguousBlobAccumulator &CBA); void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, ContiguousBlobAccumulator &CBA, ELFYAML::Section *YAMLSec); void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, StringTableBuilder &STB, ContiguousBlobAccumulator &CBA, ELFYAML::Section *YAMLSec); void setProgramHeaderLayout(std::vector &PHeaders, std::vector &SHeaders); std::vector getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, ArrayRef SHeaders); void finalizeStrings(); void writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::RelrSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Group, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::SymverSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::VerneedSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::VerdefSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::MipsABIFlags &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::DynamicSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::HashSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::AddrsigSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::NoteSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::GnuHashSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section, ContiguousBlobAccumulator &CBA); void writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA); ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH); public: static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc, yaml::ErrorHandler EH); }; } // end anonymous namespace template static size_t arrayDataSize(ArrayRef A) { return A.size() * sizeof(T); } template static void writeArrayData(raw_ostream &OS, ArrayRef A) { OS.write((const char *)A.data(), arrayDataSize(A)); } template static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); } template ELFState::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH) : Doc(D), ErrHandler(EH) { std::vector Sections = Doc.getSections(); StringSet<> DocSections; for (const ELFYAML::Section *Sec : Sections) if (!Sec->Name.empty()) DocSections.insert(Sec->Name); // Insert SHT_NULL section implicitly when it is not defined in YAML. if (Sections.empty() || Sections.front()->Type != ELF::SHT_NULL) Doc.Chunks.insert( Doc.Chunks.begin(), std::make_unique( ELFYAML::Chunk::ChunkKind::RawContent, /*IsImplicit=*/true)); std::vector ImplicitSections; if (Doc.Symbols) ImplicitSections.push_back(".symtab"); ImplicitSections.insert(ImplicitSections.end(), {".strtab", ".shstrtab"}); if (Doc.DynamicSymbols) ImplicitSections.insert(ImplicitSections.end(), {".dynsym", ".dynstr"}); // Insert placeholders for implicit sections that are not // defined explicitly in YAML. for (StringRef SecName : ImplicitSections) { if (DocSections.count(SecName)) continue; std::unique_ptr Sec = std::make_unique( ELFYAML::Chunk::ChunkKind::RawContent, true /*IsImplicit*/); Sec->Name = SecName; Doc.Chunks.push_back(std::move(Sec)); } } template void ELFState::writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS) { using namespace llvm::ELF; Elf_Ehdr Header; zero(Header); Header.e_ident[EI_MAG0] = 0x7f; Header.e_ident[EI_MAG1] = 'E'; Header.e_ident[EI_MAG2] = 'L'; Header.e_ident[EI_MAG3] = 'F'; Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; Header.e_ident[EI_DATA] = Doc.Header.Data; Header.e_ident[EI_VERSION] = EV_CURRENT; Header.e_ident[EI_OSABI] = Doc.Header.OSABI; Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion; Header.e_type = Doc.Header.Type; Header.e_machine = Doc.Header.Machine; Header.e_version = EV_CURRENT; Header.e_entry = Doc.Header.Entry; Header.e_phoff = Doc.ProgramHeaders.size() ? sizeof(Header) : 0; Header.e_flags = Doc.Header.Flags; Header.e_ehsize = sizeof(Elf_Ehdr); Header.e_phentsize = Doc.ProgramHeaders.size() ? sizeof(Elf_Phdr) : 0; Header.e_phnum = Doc.ProgramHeaders.size(); Header.e_shentsize = Doc.Header.SHEntSize ? (uint16_t)*Doc.Header.SHEntSize : sizeof(Elf_Shdr); // Immediately following the ELF header and program headers. // Align the start of the section header and write the ELF header. uint64_t SHOff; CBA.getOSAndAlignedOffset(SHOff, sizeof(typename ELFT::uint)); Header.e_shoff = Doc.Header.SHOff ? typename ELFT::uint(*Doc.Header.SHOff) : SHOff; Header.e_shnum = Doc.Header.SHNum ? (uint16_t)*Doc.Header.SHNum : Doc.getSections().size(); Header.e_shstrndx = Doc.Header.SHStrNdx ? (uint16_t)*Doc.Header.SHStrNdx : SN2I.get(".shstrtab"); OS.write((const char *)&Header, sizeof(Header)); } template void ELFState::initProgramHeaders(std::vector &PHeaders) { for (const auto &YamlPhdr : Doc.ProgramHeaders) { Elf_Phdr Phdr; Phdr.p_type = YamlPhdr.Type; Phdr.p_flags = YamlPhdr.Flags; Phdr.p_vaddr = YamlPhdr.VAddr; Phdr.p_paddr = YamlPhdr.PAddr; PHeaders.push_back(Phdr); } } template unsigned ELFState::toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym) { unsigned Index; if (SN2I.lookup(S, Index) || to_integer(S, Index)) return Index; assert(LocSec.empty() || LocSym.empty()); if (!LocSym.empty()) reportError("unknown section referenced: '" + S + "' by YAML symbol '" + LocSym + "'"); else reportError("unknown section referenced: '" + S + "' by YAML section '" + LocSec + "'"); return 0; } template unsigned ELFState::toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic) { const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I; unsigned Index; // Here we try to look up S in the symbol table. If it is not there, // treat its value as a symbol index. if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) { reportError("unknown symbol referenced: '" + S + "' by YAML section '" + LocSec + "'"); return 0; } return Index; } template static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To) { if (!From) return; if (From->ShFlags) To.sh_flags = *From->ShFlags; if (From->ShName) To.sh_name = *From->ShName; if (From->ShOffset) To.sh_offset = *From->ShOffset; if (From->ShSize) To.sh_size = *From->ShSize; } template bool ELFState::initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, StringRef SecName, ELFYAML::Section *YAMLSec) { // Check if the header was already initialized. if (Header.sh_offset) return false; if (SecName == ".symtab") initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec); else if (SecName == ".strtab") initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec); else if (SecName == ".shstrtab") initStrtabSectionHeader(Header, SecName, DotShStrtab, CBA, YAMLSec); else if (SecName == ".dynsym") initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec); else if (SecName == ".dynstr") initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec); else return false; // Override section fields if requested. overrideFields(YAMLSec, Header); return true; } StringRef llvm::ELFYAML::dropUniqueSuffix(StringRef S) { size_t SuffixPos = S.rfind(" ["); if (SuffixPos == StringRef::npos) return S; return S.substr(0, SuffixPos); } template void ELFState::initSectionHeaders(std::vector &SHeaders, ContiguousBlobAccumulator &CBA) { // Ensure SHN_UNDEF entry is present. An all-zero section header is a // valid SHN_UNDEF entry since SHT_NULL == 0. SHeaders.resize(Doc.getSections().size()); size_t SecNdx = -1; for (const std::unique_ptr &D : Doc.Chunks) { if (auto S = dyn_cast(D.get())) { writeFill(*S, CBA); continue; } ++SecNdx; ELFYAML::Section *Sec = cast(D.get()); if (SecNdx == 0 && Sec->IsImplicit) continue; // We have a few sections like string or symbol tables that are usually // added implicitly to the end. However, if they are explicitly specified // in the YAML, we need to write them here. This ensures the file offset // remains correct. Elf_Shdr &SHeader = SHeaders[SecNdx]; if (initImplicitHeader(CBA, SHeader, Sec->Name, Sec->IsImplicit ? nullptr : Sec)) continue; assert(Sec && "It can't be null unless it is an implicit section. But all " "implicit sections should already have been handled above."); SHeader.sh_name = DotShStrtab.getOffset(ELFYAML::dropUniqueSuffix(Sec->Name)); SHeader.sh_type = Sec->Type; if (Sec->Flags) SHeader.sh_flags = *Sec->Flags; SHeader.sh_addr = Sec->Address; SHeader.sh_addralign = Sec->AddressAlign; if (!Sec->Link.empty()) SHeader.sh_link = toSectionIndex(Sec->Link, Sec->Name); if (SecNdx == 0) { if (auto RawSec = dyn_cast(Sec)) { // We do not write any content for special SHN_UNDEF section. if (RawSec->Size) SHeader.sh_size = *RawSec->Size; if (RawSec->Info) SHeader.sh_info = *RawSec->Info; } if (Sec->EntSize) SHeader.sh_entsize = *Sec->EntSize; } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { SHeader.sh_entsize = 0; SHeader.sh_size = S->Size; // SHT_NOBITS section does not have content // so just to setup the section offset. CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else { llvm_unreachable("Unknown section type"); } // Override section fields if requested. overrideFields(Sec, SHeader); } } static size_t findFirstNonGlobal(ArrayRef Symbols) { for (size_t I = 0; I < Symbols.size(); ++I) if (Symbols[I].Binding.value != ELF::STB_LOCAL) return I; return Symbols.size(); } static uint64_t writeContent(raw_ostream &OS, const Optional &Content, const Optional &Size) { size_t ContentSize = 0; if (Content) { Content->writeAsBinary(OS); ContentSize = Content->binary_size(); } if (!Size) return ContentSize; OS.write_zeros(*Size - ContentSize); return *Size; } template std::vector ELFState::toELFSymbols(ArrayRef Symbols, const StringTableBuilder &Strtab) { std::vector Ret; Ret.resize(Symbols.size() + 1); size_t I = 0; for (const ELFYAML::Symbol &Sym : Symbols) { Elf_Sym &Symbol = Ret[++I]; // If NameIndex, which contains the name offset, is explicitly specified, we // use it. This is useful for preparing broken objects. Otherwise, we add // the specified Name to the string table builder to get its offset. if (Sym.NameIndex) Symbol.st_name = *Sym.NameIndex; else if (!Sym.Name.empty()) Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name)); Symbol.setBindingAndType(Sym.Binding, Sym.Type); if (!Sym.Section.empty()) Symbol.st_shndx = toSectionIndex(Sym.Section, "", Sym.Name); else if (Sym.Index) Symbol.st_shndx = *Sym.Index; Symbol.st_value = Sym.Value; Symbol.st_other = Sym.Other ? *Sym.Other : 0; Symbol.st_size = Sym.Size; } return Ret; } template void ELFState::initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, ContiguousBlobAccumulator &CBA, ELFYAML::Section *YAMLSec) { bool IsStatic = STType == SymtabType::Static; ArrayRef Symbols; if (IsStatic && Doc.Symbols) Symbols = *Doc.Symbols; else if (!IsStatic && Doc.DynamicSymbols) Symbols = *Doc.DynamicSymbols; ELFYAML::RawContentSection *RawSec = dyn_cast_or_null(YAMLSec); if (RawSec && (RawSec->Content || RawSec->Size)) { bool HasSymbolsDescription = (IsStatic && Doc.Symbols) || (!IsStatic && Doc.DynamicSymbols); if (HasSymbolsDescription) { StringRef Property = (IsStatic ? "`Symbols`" : "`DynamicSymbols`"); if (RawSec->Content) reportError("cannot specify both `Content` and " + Property + " for symbol table section '" + RawSec->Name + "'"); if (RawSec->Size) reportError("cannot specify both `Size` and " + Property + " for symbol table section '" + RawSec->Name + "'"); return; } } zero(SHeader); SHeader.sh_name = DotShStrtab.getOffset(IsStatic ? ".symtab" : ".dynsym"); if (YAMLSec) SHeader.sh_type = YAMLSec->Type; else SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM; if (RawSec && !RawSec->Link.empty()) { // If the Link field is explicitly defined in the document, // we should use it. SHeader.sh_link = toSectionIndex(RawSec->Link, RawSec->Name); } else { // When we describe the .dynsym section in the document explicitly, it is // allowed to omit the "DynamicSymbols" tag. In this case .dynstr is not // added implicitly and we should be able to leave the Link zeroed if // .dynstr is not defined. unsigned Link = 0; if (IsStatic) Link = SN2I.get(".strtab"); else SN2I.lookup(".dynstr", Link); SHeader.sh_link = Link; } if (YAMLSec && YAMLSec->Flags) SHeader.sh_flags = *YAMLSec->Flags; else if (!IsStatic) SHeader.sh_flags = ELF::SHF_ALLOC; // If the symbol table section is explicitly described in the YAML // then we should set the fields requested. SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info) : findFirstNonGlobal(Symbols) + 1; SHeader.sh_entsize = (YAMLSec && YAMLSec->EntSize) ? (uint64_t)(*YAMLSec->EntSize) : sizeof(Elf_Sym); SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8; SHeader.sh_addr = YAMLSec ? (uint64_t)YAMLSec->Address : 0; auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); if (RawSec && (RawSec->Content || RawSec->Size)) { assert(Symbols.empty()); SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); return; } std::vector Syms = toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr); writeArrayData(OS, makeArrayRef(Syms)); SHeader.sh_size = arrayDataSize(makeArrayRef(Syms)); } template void ELFState::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, StringTableBuilder &STB, ContiguousBlobAccumulator &CBA, ELFYAML::Section *YAMLSec) { zero(SHeader); SHeader.sh_name = DotShStrtab.getOffset(Name); SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB; SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1; ELFYAML::RawContentSection *RawSec = dyn_cast_or_null(YAMLSec); auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); if (RawSec && (RawSec->Content || RawSec->Size)) { SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); } else { STB.write(OS); SHeader.sh_size = STB.getSize(); } if (YAMLSec && YAMLSec->EntSize) SHeader.sh_entsize = *YAMLSec->EntSize; if (RawSec && RawSec->Info) SHeader.sh_info = *RawSec->Info; if (YAMLSec && YAMLSec->Flags) SHeader.sh_flags = *YAMLSec->Flags; else if (Name == ".dynstr") SHeader.sh_flags = ELF::SHF_ALLOC; // If the section is explicitly described in the YAML // then we want to use its section address. if (YAMLSec) SHeader.sh_addr = YAMLSec->Address; } template void ELFState::reportError(const Twine &Msg) { ErrHandler(Msg); HasError = true; } template std::vector ELFState::getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, ArrayRef SHeaders) { DenseMap NameToFill; for (const std::unique_ptr &D : Doc.Chunks) if (auto S = dyn_cast(D.get())) NameToFill[S->Name] = S; std::vector Ret; for (const ELFYAML::SectionName &SecName : Phdr.Sections) { unsigned Index; if (SN2I.lookup(SecName.Section, Index)) { const typename ELFT::Shdr &H = SHeaders[Index]; Ret.push_back({H.sh_offset, H.sh_size, H.sh_type, H.sh_addralign}); continue; } if (ELFYAML::Fill *Fill = NameToFill.lookup(SecName.Section)) { Ret.push_back({Fill->ShOffset, Fill->Size, llvm::ELF::SHT_PROGBITS, /*ShAddrAlign=*/1}); continue; } reportError("unknown section or fill referenced: '" + SecName.Section + "' by program header"); } return Ret; } template void ELFState::setProgramHeaderLayout(std::vector &PHeaders, std::vector &SHeaders) { uint32_t PhdrIdx = 0; for (auto &YamlPhdr : Doc.ProgramHeaders) { Elf_Phdr &PHeader = PHeaders[PhdrIdx++]; std::vector Fragments = getPhdrFragments(YamlPhdr, SHeaders); if (YamlPhdr.Offset) { PHeader.p_offset = *YamlPhdr.Offset; } else { if (YamlPhdr.Sections.size()) PHeader.p_offset = UINT32_MAX; else PHeader.p_offset = 0; // Find the minimum offset for the program header. for (const Fragment &F : Fragments) PHeader.p_offset = std::min((uint64_t)PHeader.p_offset, F.Offset); } // Find the maximum offset of the end of a section in order to set p_filesz // and p_memsz. When setting p_filesz, trailing SHT_NOBITS sections are not // counted. uint64_t FileOffset = PHeader.p_offset, MemOffset = PHeader.p_offset; for (const Fragment &F : Fragments) { uint64_t End = F.Offset + F.Size; MemOffset = std::max(MemOffset, End); if (F.Type != llvm::ELF::SHT_NOBITS) FileOffset = std::max(FileOffset, End); } // Set the file size and the memory size if not set explicitly. PHeader.p_filesz = YamlPhdr.FileSize ? uint64_t(*YamlPhdr.FileSize) : FileOffset - PHeader.p_offset; PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize) : MemOffset - PHeader.p_offset; if (YamlPhdr.Align) { PHeader.p_align = *YamlPhdr.Align; } else { // Set the alignment of the segment to be the maximum alignment of the // sections so that by default the segment has a valid and sensible // alignment. PHeader.p_align = 1; for (const Fragment &F : Fragments) PHeader.p_align = std::max((uint64_t)PHeader.p_align, F.AddrAlign); } } } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, ContiguousBlobAccumulator &CBA) { raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); if (Section.EntSize) SHeader.sh_entsize = *Section.EntSize; if (Section.Info) SHeader.sh_info = *Section.Info; } static bool isMips64EL(const ELFYAML::Object &Doc) { return Doc.Header.Machine == ELFYAML::ELF_EM(llvm::ELF::EM_MIPS) && Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) && Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, ContiguousBlobAccumulator &CBA) { assert((Section.Type == llvm::ELF::SHT_REL || Section.Type == llvm::ELF::SHT_RELA) && "Section type is not SHT_REL nor SHT_RELA"); bool IsRela = Section.Type == llvm::ELF::SHT_RELA; SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); SHeader.sh_size = SHeader.sh_entsize * Section.Relocations.size(); // For relocation section set link to .symtab by default. unsigned Link = 0; if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) SHeader.sh_link = Link; if (!Section.RelocatableSec.empty()) SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name); auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); for (const auto &Rel : Section.Relocations) { unsigned SymIdx = Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, Section.Link == ".dynsym") : 0; if (IsRela) { Elf_Rela REntry; zero(REntry); REntry.r_offset = Rel.Offset; REntry.r_addend = Rel.Addend; REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); OS.write((const char *)&REntry, sizeof(REntry)); } else { Elf_Rel REntry; zero(REntry); REntry.r_offset = Rel.Offset; REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); OS.write((const char *)&REntry, sizeof(REntry)); } } } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::RelrSection &Section, ContiguousBlobAccumulator &CBA) { raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); SHeader.sh_entsize = Section.EntSize ? uint64_t(*Section.EntSize) : sizeof(Elf_Relr); if (Section.Content) { SHeader.sh_size = writeContent(OS, Section.Content, None); return; } if (!Section.Entries) return; for (llvm::yaml::Hex64 E : *Section.Entries) { if (!ELFT::Is64Bits && E > UINT32_MAX) reportError(Section.Name + ": the value is too large for 32-bits: 0x" + Twine::utohexstr(E)); support::endian::write(OS, E, ELFT::TargetEndianness); } SHeader.sh_size = sizeof(uintX_t) * Section.Entries->size(); } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx, ContiguousBlobAccumulator &CBA) { raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); for (uint32_t E : Shndx.Entries) support::endian::write(OS, E, ELFT::TargetEndianness); SHeader.sh_entsize = Shndx.EntSize ? (uint64_t)*Shndx.EntSize : 4; SHeader.sh_size = Shndx.Entries.size() * SHeader.sh_entsize; } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Section, ContiguousBlobAccumulator &CBA) { assert(Section.Type == llvm::ELF::SHT_GROUP && "Section type is not SHT_GROUP"); unsigned Link = 0; if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) SHeader.sh_link = Link; SHeader.sh_entsize = 4; SHeader.sh_size = SHeader.sh_entsize * Section.Members.size(); if (Section.Signature) SHeader.sh_info = toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false); raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); for (const ELFYAML::SectionOrType &Member : Section.Members) { unsigned int SectionIndex = 0; if (Member.sectionNameOrType == "GRP_COMDAT") SectionIndex = llvm::ELF::GRP_COMDAT; else SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name); support::endian::write(OS, SectionIndex, ELFT::TargetEndianness); } } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::SymverSection &Section, ContiguousBlobAccumulator &CBA) { raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); for (uint16_t Version : Section.Entries) support::endian::write(OS, Version, ELFT::TargetEndianness); SHeader.sh_entsize = Section.EntSize ? (uint64_t)*Section.EntSize : 2; SHeader.sh_size = Section.Entries.size() * SHeader.sh_entsize; } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section, ContiguousBlobAccumulator &CBA) { raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); if (Section.Content || Section.Size) { SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); return; } for (const ELFYAML::StackSizeEntry &E : *Section.Entries) { support::endian::write(OS, E.Address, ELFT::TargetEndianness); SHeader.sh_size += sizeof(uintX_t) + encodeULEB128(E.Size, OS); } } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section, ContiguousBlobAccumulator &CBA) { raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); if (Section.Content) { SHeader.sh_size = writeContent(OS, Section.Content, None); return; } if (!Section.Options) return; for (const ELFYAML::LinkerOption &LO : *Section.Options) { OS.write(LO.Key.data(), LO.Key.size()); OS.write('\0'); OS.write(LO.Value.data(), LO.Value.size()); OS.write('\0'); SHeader.sh_size += (LO.Key.size() + LO.Value.size() + 2); } } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section, ContiguousBlobAccumulator &CBA) { raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); if (Section.Content) { SHeader.sh_size = writeContent(OS, Section.Content, None); return; } if (!Section.Libs) return; for (StringRef Lib : *Section.Libs) { OS.write(Lib.data(), Lib.size()); OS.write('\0'); SHeader.sh_size += Lib.size() + 1; } } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::HashSection &Section, ContiguousBlobAccumulator &CBA) { raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); unsigned Link = 0; if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) SHeader.sh_link = Link; if (Section.Content || Section.Size) { SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); return; } support::endian::write(OS, Section.Bucket->size(), ELFT::TargetEndianness); support::endian::write(OS, Section.Chain->size(), ELFT::TargetEndianness); for (uint32_t Val : *Section.Bucket) support::endian::write(OS, Val, ELFT::TargetEndianness); for (uint32_t Val : *Section.Chain) support::endian::write(OS, Val, ELFT::TargetEndianness); SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4; } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::VerdefSection &Section, ContiguousBlobAccumulator &CBA) { typedef typename ELFT::Verdef Elf_Verdef; typedef typename ELFT::Verdaux Elf_Verdaux; raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); SHeader.sh_info = Section.Info; if (Section.Content) { SHeader.sh_size = writeContent(OS, Section.Content, None); return; } if (!Section.Entries) return; uint64_t AuxCnt = 0; for (size_t I = 0; I < Section.Entries->size(); ++I) { const ELFYAML::VerdefEntry &E = (*Section.Entries)[I]; Elf_Verdef VerDef; VerDef.vd_version = E.Version; VerDef.vd_flags = E.Flags; VerDef.vd_ndx = E.VersionNdx; VerDef.vd_hash = E.Hash; VerDef.vd_aux = sizeof(Elf_Verdef); VerDef.vd_cnt = E.VerNames.size(); if (I == Section.Entries->size() - 1) VerDef.vd_next = 0; else VerDef.vd_next = sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux); OS.write((const char *)&VerDef, sizeof(Elf_Verdef)); for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) { Elf_Verdaux VernAux; VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]); if (J == E.VerNames.size() - 1) VernAux.vda_next = 0; else VernAux.vda_next = sizeof(Elf_Verdaux); OS.write((const char *)&VernAux, sizeof(Elf_Verdaux)); } } SHeader.sh_size = Section.Entries->size() * sizeof(Elf_Verdef) + AuxCnt * sizeof(Elf_Verdaux); } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::VerneedSection &Section, ContiguousBlobAccumulator &CBA) { typedef typename ELFT::Verneed Elf_Verneed; typedef typename ELFT::Vernaux Elf_Vernaux; auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); SHeader.sh_info = Section.Info; if (Section.Content) { SHeader.sh_size = writeContent(OS, Section.Content, None); return; } if (!Section.VerneedV) return; uint64_t AuxCnt = 0; for (size_t I = 0; I < Section.VerneedV->size(); ++I) { const ELFYAML::VerneedEntry &VE = (*Section.VerneedV)[I]; Elf_Verneed VerNeed; VerNeed.vn_version = VE.Version; VerNeed.vn_file = DotDynstr.getOffset(VE.File); if (I == Section.VerneedV->size() - 1) VerNeed.vn_next = 0; else VerNeed.vn_next = sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux); VerNeed.vn_cnt = VE.AuxV.size(); VerNeed.vn_aux = sizeof(Elf_Verneed); OS.write((const char *)&VerNeed, sizeof(Elf_Verneed)); for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) { const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J]; Elf_Vernaux VernAux; VernAux.vna_hash = VAuxE.Hash; VernAux.vna_flags = VAuxE.Flags; VernAux.vna_other = VAuxE.Other; VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name); if (J == VE.AuxV.size() - 1) VernAux.vna_next = 0; else VernAux.vna_next = sizeof(Elf_Vernaux); OS.write((const char *)&VernAux, sizeof(Elf_Vernaux)); } } SHeader.sh_size = Section.VerneedV->size() * sizeof(Elf_Verneed) + AuxCnt * sizeof(Elf_Vernaux); } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::MipsABIFlags &Section, ContiguousBlobAccumulator &CBA) { assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS && "Section type is not SHT_MIPS_ABIFLAGS"); object::Elf_Mips_ABIFlags Flags; zero(Flags); SHeader.sh_entsize = sizeof(Flags); SHeader.sh_size = SHeader.sh_entsize; auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); Flags.version = Section.Version; Flags.isa_level = Section.ISALevel; Flags.isa_rev = Section.ISARevision; Flags.gpr_size = Section.GPRSize; Flags.cpr1_size = Section.CPR1Size; Flags.cpr2_size = Section.CPR2Size; Flags.fp_abi = Section.FpABI; Flags.isa_ext = Section.ISAExtension; Flags.ases = Section.ASEs; Flags.flags1 = Section.Flags1; Flags.flags2 = Section.Flags2; OS.write((const char *)&Flags, sizeof(Flags)); } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::DynamicSection &Section, ContiguousBlobAccumulator &CBA) { assert(Section.Type == llvm::ELF::SHT_DYNAMIC && "Section type is not SHT_DYNAMIC"); if (!Section.Entries.empty() && Section.Content) reportError("cannot specify both raw content and explicit entries " "for dynamic section '" + Section.Name + "'"); if (Section.Content) SHeader.sh_size = Section.Content->binary_size(); else SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries.size(); if (Section.EntSize) SHeader.sh_entsize = *Section.EntSize; else SHeader.sh_entsize = sizeof(Elf_Dyn); raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); for (const ELFYAML::DynamicEntry &DE : Section.Entries) { support::endian::write(OS, DE.Tag, ELFT::TargetEndianness); support::endian::write(OS, DE.Val, ELFT::TargetEndianness); } if (Section.Content) Section.Content->writeAsBinary(OS); } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::AddrsigSection &Section, ContiguousBlobAccumulator &CBA) { raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); unsigned Link = 0; if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) SHeader.sh_link = Link; if (Section.Content || Section.Size) { SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); return; } for (const ELFYAML::AddrsigSymbol &Sym : *Section.Symbols) { uint64_t Val = Sym.Name ? toSymbolIndex(*Sym.Name, Section.Name, /*IsDynamic=*/false) : (uint32_t)*Sym.Index; SHeader.sh_size += encodeULEB128(Val, OS); } } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::NoteSection &Section, ContiguousBlobAccumulator &CBA) { raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); uint64_t Offset = OS.tell(); if (Section.Content || Section.Size) { SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); return; } for (const ELFYAML::NoteEntry &NE : *Section.Notes) { // Write name size. if (NE.Name.empty()) support::endian::write(OS, 0, ELFT::TargetEndianness); else support::endian::write(OS, NE.Name.size() + 1, ELFT::TargetEndianness); // Write description size. if (NE.Desc.binary_size() == 0) support::endian::write(OS, 0, ELFT::TargetEndianness); else support::endian::write(OS, NE.Desc.binary_size(), ELFT::TargetEndianness); // Write type. support::endian::write(OS, NE.Type, ELFT::TargetEndianness); // Write name, null terminator and padding. if (!NE.Name.empty()) { support::endian::write(OS, arrayRefFromStringRef(NE.Name), ELFT::TargetEndianness); support::endian::write(OS, 0, ELFT::TargetEndianness); CBA.padToAlignment(4); } // Write description and padding. if (NE.Desc.binary_size() != 0) { NE.Desc.writeAsBinary(OS); CBA.padToAlignment(4); } } SHeader.sh_size = OS.tell() - Offset; } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::GnuHashSection &Section, ContiguousBlobAccumulator &CBA) { raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); unsigned Link = 0; if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) SHeader.sh_link = Link; if (Section.Content) { SHeader.sh_size = writeContent(OS, Section.Content, None); return; } // We write the header first, starting with the hash buckets count. Normally // it is the number of entries in HashBuckets, but the "NBuckets" property can // be used to override this field, which is useful for producing broken // objects. if (Section.Header->NBuckets) support::endian::write(OS, *Section.Header->NBuckets, ELFT::TargetEndianness); else support::endian::write(OS, Section.HashBuckets->size(), ELFT::TargetEndianness); // Write the index of the first symbol in the dynamic symbol table accessible // via the hash table. support::endian::write(OS, Section.Header->SymNdx, ELFT::TargetEndianness); // Write the number of words in the Bloom filter. As above, the "MaskWords" // property can be used to set this field to any value. if (Section.Header->MaskWords) support::endian::write(OS, *Section.Header->MaskWords, ELFT::TargetEndianness); else support::endian::write(OS, Section.BloomFilter->size(), ELFT::TargetEndianness); // Write the shift constant used by the Bloom filter. support::endian::write(OS, Section.Header->Shift2, ELFT::TargetEndianness); // We've finished writing the header. Now write the Bloom filter. for (llvm::yaml::Hex64 Val : *Section.BloomFilter) support::endian::write(OS, Val, ELFT::TargetEndianness); // Write an array of hash buckets. for (llvm::yaml::Hex32 Val : *Section.HashBuckets) support::endian::write(OS, Val, ELFT::TargetEndianness); // Write an array of hash values. for (llvm::yaml::Hex32 Val : *Section.HashValues) support::endian::write(OS, Val, ELFT::TargetEndianness); SHeader.sh_size = 16 /*Header size*/ + Section.BloomFilter->size() * sizeof(typename ELFT::uint) + Section.HashBuckets->size() * 4 + Section.HashValues->size() * 4; } template void ELFState::writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA) { raw_ostream &OS = CBA.getOSAndAlignedOffset(Fill.ShOffset, /*Align=*/1); size_t PatternSize = Fill.Pattern ? Fill.Pattern->binary_size() : 0; if (!PatternSize) { OS.write_zeros(Fill.Size); return; } // Fill the content with the specified pattern. uint64_t Written = 0; for (; Written + PatternSize <= Fill.Size; Written += PatternSize) Fill.Pattern->writeAsBinary(OS); Fill.Pattern->writeAsBinary(OS, Fill.Size - Written); } template void ELFState::buildSectionIndex() { size_t SecNdx = -1; StringSet<> Seen; for (size_t I = 0; I < Doc.Chunks.size(); ++I) { const std::unique_ptr &C = Doc.Chunks[I]; bool IsSection = isa(C.get()); if (IsSection) ++SecNdx; if (C->Name.empty()) continue; if (!Seen.insert(C->Name).second) reportError("repeated section/fill name: '" + C->Name + "' at YAML section/fill number " + Twine(I)); if (!IsSection || HasError) continue; if (!SN2I.addName(C->Name, SecNdx)) llvm_unreachable("buildSectionIndex() failed"); DotShStrtab.add(ELFYAML::dropUniqueSuffix(C->Name)); } DotShStrtab.finalize(); } template void ELFState::buildSymbolIndexes() { auto Build = [this](ArrayRef V, NameToIdxMap &Map) { for (size_t I = 0, S = V.size(); I < S; ++I) { const ELFYAML::Symbol &Sym = V[I]; if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1)) reportError("repeated symbol name: '" + Sym.Name + "'"); } }; if (Doc.Symbols) Build(*Doc.Symbols, SymN2I); if (Doc.DynamicSymbols) Build(*Doc.DynamicSymbols, DynSymN2I); } template void ELFState::finalizeStrings() { // Add the regular symbol names to .strtab section. if (Doc.Symbols) for (const ELFYAML::Symbol &Sym : *Doc.Symbols) DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name)); DotStrtab.finalize(); // Add the dynamic symbol names to .dynstr section. if (Doc.DynamicSymbols) for (const ELFYAML::Symbol &Sym : *Doc.DynamicSymbols) DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name)); // SHT_GNU_verdef and SHT_GNU_verneed sections might also // add strings to .dynstr section. for (const ELFYAML::Chunk *Sec : Doc.getSections()) { if (auto VerNeed = dyn_cast(Sec)) { if (VerNeed->VerneedV) { for (const ELFYAML::VerneedEntry &VE : *VerNeed->VerneedV) { DotDynstr.add(VE.File); for (const ELFYAML::VernauxEntry &Aux : VE.AuxV) DotDynstr.add(Aux.Name); } } } else if (auto VerDef = dyn_cast(Sec)) { if (VerDef->Entries) for (const ELFYAML::VerdefEntry &E : *VerDef->Entries) for (StringRef Name : E.VerNames) DotDynstr.add(Name); } } DotDynstr.finalize(); } template bool ELFState::writeELF(raw_ostream &OS, ELFYAML::Object &Doc, yaml::ErrorHandler EH) { ELFState State(Doc, EH); // Finalize .strtab and .dynstr sections. We do that early because want to // finalize the string table builders before writing the content of the // sections that might want to use them. State.finalizeStrings(); State.buildSectionIndex(); if (State.HasError) return false; State.buildSymbolIndexes(); std::vector PHeaders; State.initProgramHeaders(PHeaders); // XXX: This offset is tightly coupled with the order that we write // things to `OS`. const size_t SectionContentBeginOffset = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size(); ContiguousBlobAccumulator CBA(SectionContentBeginOffset); std::vector SHeaders; State.initSectionHeaders(SHeaders, CBA); // Now we can decide segment offsets. State.setProgramHeaderLayout(PHeaders, SHeaders); if (State.HasError) return false; State.writeELFHeader(CBA, OS); writeArrayData(OS, makeArrayRef(PHeaders)); CBA.writeBlobToStream(OS); writeArrayData(OS, makeArrayRef(SHeaders)); return true; } namespace llvm { namespace yaml { bool yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH) { bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); if (Is64Bit) { if (IsLE) return ELFState::writeELF(Out, Doc, EH); return ELFState::writeELF(Out, Doc, EH); } if (IsLE) return ELFState::writeELF(Out, Doc, EH); return ELFState::writeELF(Out, Doc, EH); } } // namespace yaml } // namespace llvm