/* * Copyright 2019 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/task_utils/repeating_task.h" #include #include // Not allowed in production per Chromium style guide. #include #include // Not allowed in production per Chromium style guide. #include "rtc_base/event.h" #include "rtc_base/task_queue_for_test.h" #include "test/gmock.h" #include "test/gtest.h" // NOTE: Since these tests rely on real time behavior, they will be flaky // if run on heavily loaded systems. namespace webrtc { namespace { using ::testing::AtLeast; using ::testing::Invoke; using ::testing::MockFunction; using ::testing::NiceMock; using ::testing::Return; constexpr TimeDelta kTimeout = TimeDelta::Millis(1000); void Sleep(TimeDelta time_delta) { // Note that Chromium style guide prohibits use of and in // production code, used here since webrtc::SleepMs may return early. std::this_thread::sleep_for(std::chrono::microseconds(time_delta.us())); } class MockClosure { public: MOCK_METHOD(TimeDelta, Call, ()); MOCK_METHOD(void, Delete, ()); }; class MockTaskQueue : public TaskQueueBase { public: MockTaskQueue() : task_queue_setter_(this) {} MOCK_METHOD(void, Delete, (), (override)); MOCK_METHOD(void, PostTask, (std::unique_ptr task), (override)); MOCK_METHOD(void, PostDelayedTask, (std::unique_ptr task, uint32_t milliseconds), (override)); private: CurrentTaskQueueSetter task_queue_setter_; }; class MoveOnlyClosure { public: explicit MoveOnlyClosure(MockClosure* mock) : mock_(mock) {} MoveOnlyClosure(const MoveOnlyClosure&) = delete; MoveOnlyClosure(MoveOnlyClosure&& other) : mock_(other.mock_) { other.mock_ = nullptr; } ~MoveOnlyClosure() { if (mock_) mock_->Delete(); } TimeDelta operator()() { return mock_->Call(); } private: MockClosure* mock_; }; } // namespace TEST(RepeatingTaskTest, TaskIsStoppedOnStop) { const TimeDelta kShortInterval = TimeDelta::Millis(50); const TimeDelta kLongInterval = TimeDelta::Millis(200); const int kShortIntervalCount = 4; const int kMargin = 1; TaskQueueForTest task_queue("TestQueue"); std::atomic_int counter(0); auto handle = RepeatingTaskHandle::Start(task_queue.Get(), [&] { if (++counter >= kShortIntervalCount) return kLongInterval; return kShortInterval; }); // Sleep long enough to go through the initial phase. Sleep(kShortInterval * (kShortIntervalCount + kMargin)); EXPECT_EQ(counter.load(), kShortIntervalCount); task_queue.PostTask( [handle = std::move(handle)]() mutable { handle.Stop(); }); // Sleep long enough that the task would run at least once more if not // stopped. Sleep(kLongInterval * 2); EXPECT_EQ(counter.load(), kShortIntervalCount); } TEST(RepeatingTaskTest, CompensatesForLongRunTime) { const int kTargetCount = 20; const int kTargetCountMargin = 2; const TimeDelta kRepeatInterval = TimeDelta::Millis(2); // Sleeping inside the task for longer than the repeat interval once, should // be compensated for by repeating the task faster to catch up. const TimeDelta kSleepDuration = TimeDelta::Millis(20); const int kSleepAtCount = 3; std::atomic_int counter(0); TaskQueueForTest task_queue("TestQueue"); RepeatingTaskHandle::Start(task_queue.Get(), [&] { if (++counter == kSleepAtCount) Sleep(kSleepDuration); return kRepeatInterval; }); Sleep(kRepeatInterval * kTargetCount); // Execution time should not have affected the run count, // but we allow some margin to reduce flakiness. EXPECT_GE(counter.load(), kTargetCount - kTargetCountMargin); } TEST(RepeatingTaskTest, CompensatesForShortRunTime) { std::atomic_int counter(0); TaskQueueForTest task_queue("TestQueue"); RepeatingTaskHandle::Start(task_queue.Get(), [&] { ++counter; // Sleeping for the 100 ms should be compensated. Sleep(TimeDelta::Millis(100)); return TimeDelta::Millis(300); }); Sleep(TimeDelta::Millis(400)); // We expect that the task have been called twice, once directly at Start and // once after 300 ms has passed. EXPECT_EQ(counter.load(), 2); } TEST(RepeatingTaskTest, CancelDelayedTaskBeforeItRuns) { rtc::Event done; MockClosure mock; EXPECT_CALL(mock, Call).Times(0); EXPECT_CALL(mock, Delete).WillOnce(Invoke([&done] { done.Set(); })); TaskQueueForTest task_queue("queue"); auto handle = RepeatingTaskHandle::DelayedStart( task_queue.Get(), TimeDelta::Millis(100), MoveOnlyClosure(&mock)); task_queue.PostTask( [handle = std::move(handle)]() mutable { handle.Stop(); }); EXPECT_TRUE(done.Wait(kTimeout.ms())); } TEST(RepeatingTaskTest, CancelTaskAfterItRuns) { rtc::Event done; MockClosure mock; EXPECT_CALL(mock, Call).WillOnce(Return(TimeDelta::Millis(100))); EXPECT_CALL(mock, Delete).WillOnce(Invoke([&done] { done.Set(); })); TaskQueueForTest task_queue("queue"); auto handle = RepeatingTaskHandle::Start(task_queue.Get(), MoveOnlyClosure(&mock)); task_queue.PostTask( [handle = std::move(handle)]() mutable { handle.Stop(); }); EXPECT_TRUE(done.Wait(kTimeout.ms())); } TEST(RepeatingTaskTest, TaskCanStopItself) { std::atomic_int counter(0); TaskQueueForTest task_queue("TestQueue"); RepeatingTaskHandle handle; task_queue.PostTask([&] { handle = RepeatingTaskHandle::Start(task_queue.Get(), [&] { ++counter; handle.Stop(); return TimeDelta::Millis(2); }); }); Sleep(TimeDelta::Millis(10)); EXPECT_EQ(counter.load(), 1); } TEST(RepeatingTaskTest, ZeroReturnValueRepostsTheTask) { NiceMock closure; rtc::Event done; EXPECT_CALL(closure, Call()) .WillOnce(Return(TimeDelta::Zero())) .WillOnce(Invoke([&done] { done.Set(); return kTimeout; })); TaskQueueForTest task_queue("queue"); RepeatingTaskHandle::Start(task_queue.Get(), MoveOnlyClosure(&closure)); EXPECT_TRUE(done.Wait(kTimeout.ms())); } TEST(RepeatingTaskTest, StartPeriodicTask) { MockFunction closure; rtc::Event done; EXPECT_CALL(closure, Call()) .WillOnce(Return(TimeDelta::Millis(20))) .WillOnce(Return(TimeDelta::Millis(20))) .WillOnce(Invoke([&done] { done.Set(); return kTimeout; })); TaskQueueForTest task_queue("queue"); RepeatingTaskHandle::Start(task_queue.Get(), closure.AsStdFunction()); EXPECT_TRUE(done.Wait(kTimeout.ms())); } TEST(RepeatingTaskTest, Example) { class ObjectOnTaskQueue { public: void DoPeriodicTask() {} TimeDelta TimeUntilNextRun() { return TimeDelta::Millis(100); } void StartPeriodicTask(RepeatingTaskHandle* handle, TaskQueueBase* task_queue) { *handle = RepeatingTaskHandle::Start(task_queue, [this] { DoPeriodicTask(); return TimeUntilNextRun(); }); } }; TaskQueueForTest task_queue("queue"); auto object = std::make_unique(); // Create and start the periodic task. RepeatingTaskHandle handle; object->StartPeriodicTask(&handle, task_queue.Get()); // Restart the task task_queue.PostTask( [handle = std::move(handle)]() mutable { handle.Stop(); }); object->StartPeriodicTask(&handle, task_queue.Get()); task_queue.PostTask( [handle = std::move(handle)]() mutable { handle.Stop(); }); struct Destructor { void operator()() { object.reset(); } std::unique_ptr object; }; task_queue.PostTask(Destructor{std::move(object)}); // Do not wait for the destructor closure in order to create a race between // task queue destruction and running the desctructor closure. } TEST(RepeatingTaskTest, ClockIntegration) { std::unique_ptr delayed_task; uint32_t expected_ms = 0; SimulatedClock clock(Timestamp::Millis(0)); NiceMock task_queue; ON_CALL(task_queue, PostDelayedTask) .WillByDefault( Invoke([&delayed_task, &expected_ms](std::unique_ptr task, uint32_t milliseconds) { EXPECT_EQ(milliseconds, expected_ms); delayed_task = std::move(task); })); expected_ms = 100; RepeatingTaskHandle handle = RepeatingTaskHandle::DelayedStart( &task_queue, TimeDelta::Millis(100), [&clock]() { EXPECT_EQ(Timestamp::Millis(100), clock.CurrentTime()); // Simulate work happening for 10ms. clock.AdvanceTimeMilliseconds(10); return TimeDelta::Millis(100); }, &clock); clock.AdvanceTimeMilliseconds(100); QueuedTask* task_to_run = delayed_task.release(); expected_ms = 90; EXPECT_FALSE(task_to_run->Run()); EXPECT_NE(nullptr, delayed_task.get()); handle.Stop(); } } // namespace webrtc