/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fault_handler.h" #include #include "arch/instruction_set.h" #include "art_method.h" #include "base/enums.h" #include "base/hex_dump.h" #include "base/logging.h" // For VLOG. #include "base/macros.h" #include "registers_arm64.h" #include "runtime_globals.h" #include "thread-current-inl.h" extern "C" void art_quick_throw_stack_overflow(); extern "C" void art_quick_throw_null_pointer_exception_from_signal(); extern "C" void art_quick_implicit_suspend(); // // ARM64 specific fault handler functions. // namespace art { void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo, void* context, ArtMethod** out_method, uintptr_t* out_return_pc, uintptr_t* out_sp, bool* out_is_stack_overflow) { struct ucontext *uc = reinterpret_cast(context); struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); // SEGV_MTEAERR (Async MTE fault) is delivered at an arbitrary point after the actual fault. // Register contents, including PC and SP, are unrelated to the fault and can only confuse ART // signal handlers. if (siginfo->si_signo == SIGSEGV && siginfo->si_code == SEGV_MTEAERR) { return; } *out_sp = static_cast(sc->sp); VLOG(signals) << "sp: " << *out_sp; if (*out_sp == 0) { return; } // In the case of a stack overflow, the stack is not valid and we can't // get the method from the top of the stack. However it's in x0. uintptr_t* fault_addr = reinterpret_cast(sc->fault_address); uintptr_t* overflow_addr = reinterpret_cast( reinterpret_cast(*out_sp) - GetStackOverflowReservedBytes(InstructionSet::kArm64)); if (overflow_addr == fault_addr) { *out_method = reinterpret_cast(sc->regs[0]); *out_is_stack_overflow = true; } else { // The method is at the top of the stack. *out_method = *reinterpret_cast(*out_sp); *out_is_stack_overflow = false; } // Work out the return PC. This will be the address of the instruction // following the faulting ldr/str instruction. VLOG(signals) << "pc: " << std::hex << static_cast(reinterpret_cast(sc->pc)); *out_return_pc = sc->pc + 4; } bool NullPointerHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info, void* context) { if (!IsValidImplicitCheck(info)) { return false; } // The code that looks for the catch location needs to know the value of the // PC at the point of call. For Null checks we insert a GC map that is immediately after // the load/store instruction that might cause the fault. struct ucontext *uc = reinterpret_cast(context); struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); // Push the gc map location to the stack and pass the fault address in LR. sc->sp -= sizeof(uintptr_t); *reinterpret_cast(sc->sp) = sc->pc + 4; sc->regs[30] = reinterpret_cast(info->si_addr); sc->pc = reinterpret_cast(art_quick_throw_null_pointer_exception_from_signal); VLOG(signals) << "Generating null pointer exception"; return true; } // A suspend check is done using the following instruction: // 0x...: f94002b5 ldr x21, [x21, #0] // To check for a suspend check, we examine the instruction that caused the fault (at PC). bool SuspensionHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info ATTRIBUTE_UNUSED, void* context) { constexpr uint32_t kSuspendCheckRegister = 21; constexpr uint32_t checkinst = 0xf9400000 | (kSuspendCheckRegister << 5) | (kSuspendCheckRegister << 0); struct ucontext *uc = reinterpret_cast(context); struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); VLOG(signals) << "checking suspend"; uint32_t inst = *reinterpret_cast(sc->pc); VLOG(signals) << "inst: " << std::hex << inst << " checkinst: " << checkinst; if (inst != checkinst) { // The instruction is not good, not ours. return false; } // This is a suspend check. VLOG(signals) << "suspend check match"; // Set LR so that after the suspend check it will resume after the // `ldr x21, [x21,#0]` instruction that triggered the suspend check. sc->regs[30] = sc->pc + 4; // Arrange for the signal handler to return to `art_quick_implicit_suspend()`. sc->pc = reinterpret_cast(art_quick_implicit_suspend); // Now remove the suspend trigger that caused this fault. Thread::Current()->RemoveSuspendTrigger(); VLOG(signals) << "removed suspend trigger invoking test suspend"; return true; } bool StackOverflowHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info ATTRIBUTE_UNUSED, void* context) { struct ucontext *uc = reinterpret_cast(context); struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); VLOG(signals) << "stack overflow handler with sp at " << std::hex << &uc; VLOG(signals) << "sigcontext: " << std::hex << sc; uintptr_t sp = sc->sp; VLOG(signals) << "sp: " << std::hex << sp; uintptr_t fault_addr = sc->fault_address; VLOG(signals) << "fault_addr: " << std::hex << fault_addr; VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp << ", fault_addr: " << fault_addr; uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(InstructionSet::kArm64); // Check that the fault address is the value expected for a stack overflow. if (fault_addr != overflow_addr) { VLOG(signals) << "Not a stack overflow"; return false; } VLOG(signals) << "Stack overflow found"; // Now arrange for the signal handler to return to art_quick_throw_stack_overflow. // The value of LR must be the same as it was when we entered the code that // caused this fault. This will be inserted into a callee save frame by // the function to which this handler returns (art_quick_throw_stack_overflow). sc->pc = reinterpret_cast(art_quick_throw_stack_overflow); // The kernel will now return to the address in sc->pc. return true; } } // namespace art