// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include "bench/dwconv.h" #include "bench/utils.h" #include #include #include #include #include #include #include #include static void DWConvBenchmark(benchmark::State& state, xnn_f16_dwconv_minmax_unipass_ukernel_function dwconv, xnn_init_f16_minmax_params_fn init_params, uint32_t cr, uint32_t kr, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (!cpuinfo_initialize()) { state.SkipWithError("cpuinfo initialization failed"); return; } if (isa_check && !isa_check(state)) { return; } const size_t input_height = state.range(0); const size_t input_width = state.range(1); const size_t kernel_height = state.range(2); const size_t kernel_width = state.range(3); const size_t padding_height = state.range(4); const size_t padding_width = state.range(5); const size_t subsampling = state.range(6); const size_t dilation = state.range(7); const size_t channels = state.range(8); const size_t kernel_size = kernel_height * kernel_width; if (kernel_size != kr) { state.SkipWithError("kernel size mismatch"); return; } std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 1.0f), std::ref(rng)); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; const size_t padding_left = padding_width / 2; const size_t padding_top = padding_height / 2; const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; const size_t output_size = output_height * output_width; const size_t step_width = dilation == 1 ? subsampling : kernel_width; const size_t step_height = kernel_size + (output_width - 1) * step_width * kernel_height; const size_t c_stride = benchmark::utils::RoundUp(channels, cr); std::vector a(channels * input_height * input_width + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::generate(a.begin(), a.end(), std::ref(f16rng)); std::vector k(channels * kernel_height * kernel_width); std::generate(k.begin(), k.end(), std::ref(f16rng)); std::vector b(channels); std::generate(b.begin(), b.end(), std::ref(f16rng)); std::vector z(channels + XNN_EXTRA_BYTES / sizeof(uint16_t)); const size_t w_elements = (kernel_size + 1) * c_stride; const size_t i_elements = output_height * step_height; const size_t c_elements = output_size * channels; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp(benchmark::utils::GetMaxCacheSize(), sizeof(uint16_t) * (w_elements + c_elements) + sizeof(void*) * i_elements); std::vector> w(w_elements * num_buffers); std::fill(w.begin(), w.end(), 0.0f); xnn_pack_f16_dwconv_ghw_w(kernel_height, kernel_width, channels, cr, k.data(), b.data(), w.data(), 0 /* extra bytes */, nullptr); for (size_t n = 1; n < num_buffers; n++) { std::copy(w.cbegin(), w.cbegin() + w_elements, w.begin() + n * w_elements); } std::vector i(i_elements * num_buffers); xnn_operator convolution_op = { }; convolution_op.indirection_buffer = reinterpret_cast(i.data()); convolution_op.input = a.data(); convolution_op.input_pixel_stride = channels; convolution_op.zero_buffer = z.data(); convolution_op.input_height = input_height; convolution_op.input_width = input_width; convolution_op.output_height = output_height; convolution_op.output_width = output_width; convolution_op.kernel_height = kernel_height; convolution_op.kernel_width = kernel_width; convolution_op.stride_height = subsampling; convolution_op.stride_width = subsampling; convolution_op.dilation_height = dilation; convolution_op.dilation_width = dilation; convolution_op.padding_top = padding_top; convolution_op.padding_left = padding_left; xnn_indirection_init_dwconv2d(&convolution_op, step_height, step_width, 1 /* log2(sizeof(uint16_t)) */); for (size_t n = 1; n < num_buffers; n++) { std::copy(i.cbegin(), i.cbegin() + i_elements, i.begin() + n * i_elements); } std::vector c(c_elements * num_buffers); std::fill(c.begin(), c.end(), std::nanf("")); xnn_f16_minmax_params params; init_params(¶ms, UINT16_C(0xFC00) /* -inf */, UINT16_C(0x7C00) /* inf */); size_t buffer_index = 0; for (auto _ : state) { state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint16_t)); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (size_t y = 0; y < output_height; y++) { dwconv(channels, output_width, reinterpret_cast(i.data() + buffer_index * i_elements + step_height * y), w.data() + buffer_index * w_elements, c.data() + buffer_index * c_elements + y * output_width * channels, kernel_height * step_width * sizeof(void*), 0, 0, z.data(), ¶ms); } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["FLOPS"] = benchmark::Counter( uint64_t(state.iterations()) * 2 * output_size * channels * kernel_size, benchmark::Counter::kIsRate); state.counters["bytes"] = benchmark::Counter( uint64_t(state.iterations()) * (output_size + input_height * input_width + kernel_size + 1 /* bias */) * channels * sizeof(uint16_t), benchmark::Counter::kIsRate); } #if XNN_ARCH_ARM64 static void f16_dwconv_8x4__neonfp16arith_acc2(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up8x4__neonfp16arith_acc2, xnn_init_f16_minmax_neon_params, 8, 4, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_8x4__neonfp16arith(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up8x4__neonfp16arith, xnn_init_f16_minmax_neon_params, 8, 4, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_8x9__neonfp16arith_acc2(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up8x9__neonfp16arith_acc2, xnn_init_f16_minmax_neon_params, 8, 9, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_8x9__neonfp16arith(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up8x9__neonfp16arith, xnn_init_f16_minmax_neon_params, 8, 9, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_8x25__neonfp16arith_acc2(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up8x25__neonfp16arith_acc2, xnn_init_f16_minmax_neon_params, 8, 25, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_8x25__neonfp16arith(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up8x25__neonfp16arith, xnn_init_f16_minmax_neon_params, 8, 25, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_16x4__neonfp16arith_acc2(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up16x4__neonfp16arith_acc2, xnn_init_f16_minmax_neon_params, 16, 4, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_16x4__neonfp16arith(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up16x4__neonfp16arith, xnn_init_f16_minmax_neon_params, 16, 4, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_16x9__neonfp16arith_acc2(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up16x9__neonfp16arith_acc2, xnn_init_f16_minmax_neon_params, 16, 9, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_16x9__neonfp16arith(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up16x9__neonfp16arith, xnn_init_f16_minmax_neon_params, 16, 9, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_16x25__neonfp16arith_acc2(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up16x25__neonfp16arith_acc2, xnn_init_f16_minmax_neon_params, 16, 25, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_16x25__neonfp16arith(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up16x25__neonfp16arith, xnn_init_f16_minmax_neon_params, 16, 25, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_32x4__neonfp16arith_acc2(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up32x4__neonfp16arith_acc2, xnn_init_f16_minmax_neon_params, 32, 4, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_32x4__neonfp16arith(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up32x4__neonfp16arith, xnn_init_f16_minmax_neon_params, 32, 4, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_32x9__neonfp16arith_acc2(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up32x9__neonfp16arith_acc2, xnn_init_f16_minmax_neon_params, 32, 9, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_32x9__neonfp16arith(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up32x9__neonfp16arith, xnn_init_f16_minmax_neon_params, 32, 9, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_32x25__neonfp16arith_acc2(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up32x25__neonfp16arith_acc2, xnn_init_f16_minmax_neon_params, 32, 25, benchmark::utils::CheckNEONFP16ARITH); } static void f16_dwconv_32x25__neonfp16arith(benchmark::State& state, const char* net) { DWConvBenchmark(state, xnn_f16_dwconv_minmax_ukernel_up32x25__neonfp16arith, xnn_init_f16_minmax_neon_params, 32, 25, benchmark::utils::CheckNEONFP16ARITH); } BENCHMARK_DWCONV(f16_dwconv_8x4__neonfp16arith_acc2) BENCHMARK_DWCONV(f16_dwconv_8x4__neonfp16arith) BENCHMARK_DWCONV(f16_dwconv_8x9__neonfp16arith_acc2) BENCHMARK_DWCONV(f16_dwconv_8x9__neonfp16arith) BENCHMARK_DWCONV(f16_dwconv_8x25__neonfp16arith_acc2) BENCHMARK_DWCONV(f16_dwconv_8x25__neonfp16arith) BENCHMARK_DWCONV(f16_dwconv_16x4__neonfp16arith_acc2) BENCHMARK_DWCONV(f16_dwconv_16x4__neonfp16arith) BENCHMARK_DWCONV(f16_dwconv_16x9__neonfp16arith_acc2) BENCHMARK_DWCONV(f16_dwconv_16x9__neonfp16arith) BENCHMARK_DWCONV(f16_dwconv_16x25__neonfp16arith_acc2) BENCHMARK_DWCONV(f16_dwconv_16x25__neonfp16arith) BENCHMARK_DWCONV(f16_dwconv_32x4__neonfp16arith_acc2) BENCHMARK_DWCONV(f16_dwconv_32x4__neonfp16arith) BENCHMARK_DWCONV(f16_dwconv_32x9__neonfp16arith_acc2) BENCHMARK_DWCONV(f16_dwconv_32x9__neonfp16arith) BENCHMARK_DWCONV(f16_dwconv_32x25__neonfp16arith_acc2) BENCHMARK_DWCONV(f16_dwconv_32x25__neonfp16arith) #endif // XNN_ARCH_ARM64 #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif