// Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include class TanhOperatorTester { public: inline TanhOperatorTester& channels(size_t channels) { assert(channels != 0); this->channels_ = channels; return *this; } inline size_t channels() const { return this->channels_; } inline TanhOperatorTester& input_stride(size_t input_stride) { assert(input_stride != 0); this->input_stride_ = input_stride; return *this; } inline size_t input_stride() const { if (this->input_stride_ == 0) { return this->channels_; } else { assert(this->input_stride_ >= this->channels_); return this->input_stride_; } } inline TanhOperatorTester& output_stride(size_t output_stride) { assert(output_stride != 0); this->output_stride_ = output_stride; return *this; } inline size_t output_stride() const { if (this->output_stride_ == 0) { return this->channels_; } else { assert(this->output_stride_ >= this->channels_); return this->output_stride_; } } inline TanhOperatorTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline TanhOperatorTester& input_scale(float input_scale) { assert(input_scale > 0.0f); assert(std::isnormal(input_scale)); this->input_scale_ = input_scale; return *this; } inline float input_scale() const { return this->input_scale_; } inline TanhOperatorTester& input_zero_point(uint8_t input_zero_point) { this->input_zero_point_ = input_zero_point; return *this; } inline uint8_t input_zero_point() const { return this->input_zero_point_; } inline float output_scale() const { return 1.0f / 128.0f; } inline uint8_t output_zero_point() const { return 128; } inline TanhOperatorTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline TanhOperatorTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline TanhOperatorTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void TestQS8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i8rng = std::bind( std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()), std::ref(rng)); std::vector input((batch_size() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(int8_t)); std::vector output((batch_size() - 1) * output_stride() + channels()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(i8rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { const float x = input_scale() * (int32_t(input[i * input_stride() + c]) - int32_t(input_zero_point() - 0x80)); const float tanh_x = std::tanh(x); const float scaled_tanh_x = tanh_x / output_scale(); float y = scaled_tanh_x; y = std::min(y, int32_t(qmax() - 0x80) - int32_t(output_zero_point() - 0x80)); y = std::max(y, int32_t(qmin() - 0x80) - int32_t(output_zero_point() - 0x80)); output_ref[i * channels() + c] = y + int32_t(output_zero_point() - 0x80); } } // Create, setup, run, and destroy Sigmoid operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t tanh_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_tanh_nc_qs8( channels(), input_stride(), output_stride(), int8_t(input_zero_point() - 0x80), input_scale(), int8_t(output_zero_point() - 0x80), output_scale(), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80), 0, &tanh_op)); ASSERT_NE(nullptr, tanh_op); // Smart pointer to automatically delete tanh_op. std::unique_ptr auto_tanh_op(tanh_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_tanh_nc_qs8( tanh_op, batch_size(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(tanh_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.6f); } } } } void TestQU8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), rng); std::vector input((batch_size() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector output((batch_size() - 1) * output_stride() + channels()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(u8rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { const float x = input_scale() * (int32_t(input[i * input_stride() + c]) - int32_t(input_zero_point())); const float tanh_x = std::tanh(x); const float scaled_tanh_x = tanh_x / output_scale(); float y = scaled_tanh_x; y = std::min(y, int32_t(qmax()) - int32_t(output_zero_point())); y = std::max(y, int32_t(qmin()) - int32_t(output_zero_point())); output_ref[i * channels() + c] = y + int32_t(output_zero_point()); } } // Create, setup, run, and destroy Sigmoid operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t tanh_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_tanh_nc_qu8( channels(), input_stride(), output_stride(), input_zero_point(), input_scale(), output_zero_point(), output_scale(), qmin(), qmax(), 0, &tanh_op)); ASSERT_NE(nullptr, tanh_op); // Smart pointer to automatically delete tanh_op. std::unique_ptr auto_tanh_op(tanh_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_tanh_nc_qu8( tanh_op, batch_size(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(tanh_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.6f); } } } } private: size_t batch_size_{1}; size_t channels_{1}; size_t input_stride_{0}; size_t output_stride_{0}; float input_scale_{0.75f}; uint8_t input_zero_point_{121}; uint8_t qmin_{0}; uint8_t qmax_{255}; size_t iterations_{15}; };