// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include class VUnaryMicrokernelTester { public: enum class OpType { ReLU, RoundToNearestEven, RoundTowardsZero, RoundUp, RoundDown, }; enum class Variant { Native, Scalar, }; inline VUnaryMicrokernelTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline VUnaryMicrokernelTester& inplace(bool inplace) { this->inplace_ = inplace; return *this; } inline bool inplace() const { return this->inplace_; } inline VUnaryMicrokernelTester& slope(float slope) { this->slope_ = slope; return *this; } inline float slope() const { return this->slope_; } inline VUnaryMicrokernelTester& prescale(float prescale) { this->prescale_ = prescale; return *this; } inline float prescale() const { return this->prescale_; } inline VUnaryMicrokernelTester& alpha(float alpha) { this->alpha_ = alpha; return *this; } inline float alpha() const { return this->alpha_; } inline VUnaryMicrokernelTester& beta(float beta) { this->beta_ = beta; return *this; } inline float beta() const { return this->beta_; } inline VUnaryMicrokernelTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline VUnaryMicrokernelTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline VUnaryMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test(xnn_f32_vunary_ukernel_function vunary, OpType op_type, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto distribution = std::uniform_real_distribution(-125.0f, 125.0f); auto f32rng = std::bind(distribution, std::ref(rng)); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::generate(x.begin(), x.end(), std::ref(f32rng)); std::fill(y.begin(), y.end(), nanf("")); } const float* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { switch (op_type) { case OpType::ReLU: y_ref[i] = std::max(x_data[i], 0.0f); break; default: GTEST_FAIL() << "Unexpected operation type"; return; } } // Call optimized micro-kernel. vunary(batch_size() * sizeof(float), x_data, y.data(), nullptr); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_NEAR(y[i], y_ref[i], std::max(5.0e-6, std::abs(y_ref[i]) * 1.0e-5)) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i]; } } } void Test(xnn_f32_vabs_ukernel_function vabs, xnn_init_f32_abs_params_fn init_params = nullptr) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::ref(rng)); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::generate(x.begin(), x.end(), std::ref(f32rng)); std::fill(y.begin(), y.end(), nanf("")); } const float* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::abs(x_data[i]); } // Prepare parameters. union xnn_f32_abs_params params; if (init_params != nullptr) { init_params(¶ms); } // Call optimized micro-kernel. vabs(batch_size() * sizeof(float), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(y[i], y_ref[i]) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i]; } } } void Test(xnn_f32_vclamp_ukernel_function vclamp, xnn_init_f32_minmax_params_fn init_params) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 255.0f), std::ref(rng)); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::generate(x.begin(), x.end(), std::ref(f32rng)); std::fill(y.begin(), y.end(), nanf("")); } const float* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::max(std::min(x_data[i], float(qmax())), float(qmin())); } // Prepare parameters. union xnn_f32_minmax_params params; init_params(¶ms, float(qmin()), float(qmax())); // Call optimized micro-kernel. vclamp(batch_size() * sizeof(float), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(y[i], y_ref[i]) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i]; } } } void Test(xnn_f32_velu_ukernel_function velu, xnn_init_f32_elu_params_fn init_params) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-20.0f, 20.0f), std::ref(rng)); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::generate(x.begin(), x.end(), std::ref(f32rng)); std::fill(y.begin(), y.end(), nanf("")); } const float* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::signbit(x_data[i]) ? alpha() * std::expm1(double(x_data[i]) * prescale()) : double(x_data[i]) * beta(); } // Prepare parameters. union xnn_f32_elu_params params; init_params(¶ms, prescale(), alpha(), beta()); // Call optimized micro-kernel. velu(batch_size() * sizeof(float), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_NEAR(y[i], y_ref[i], std::max(5.0e-6, std::abs(y_ref[i]) * 1.0e-5)) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i]; } } } void Test(xnn_f32_vhswish_ukernel_function vhswish, xnn_init_f32_hswish_params_fn init_params) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-4.0f, 4.0f), std::ref(rng)); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::generate(x.begin(), x.end(), std::ref(f32rng)); std::fill(y.begin(), y.end(), nanf("")); } const float* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = (x_data[i] / 6.0f) * std::max(std::min(x_data[i] + 3.0f, 6.0f), 0.0f); } // Prepare parameters. union xnn_f32_hswish_params params; init_params(¶ms); // Call optimized micro-kernel. vhswish(batch_size() * sizeof(float), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_NEAR(y[i], y_ref[i], std::max(5.0e-6, std::abs(y_ref[i]) * 1.0e-5)) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i]; } } } void Test(xnn_f32_vlrelu_ukernel_function vlrelu, xnn_init_f32_lrelu_params_fn init_params) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-125.0f, 125.0f), std::ref(rng)); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::generate(x.begin(), x.end(), std::ref(f32rng)); std::fill(y.begin(), y.end(), nanf("")); } const float* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::signbit(x_data[i]) ? x_data[i] * slope() : x_data[i]; } // Prepare parameters. union xnn_f32_lrelu_params params; init_params(¶ms, slope()); // Call optimized micro-kernel. vlrelu(batch_size() * sizeof(float), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(y[i], y_ref[i]) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i]; } } } void Test(xnn_f32_vneg_ukernel_function vneg, xnn_init_f32_neg_params_fn init_params = nullptr) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::ref(rng)); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::generate(x.begin(), x.end(), std::ref(f32rng)); std::fill(y.begin(), y.end(), nanf("")); } const float* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = -x_data[i]; } // Prepare parameters. union xnn_f32_neg_params params; if (init_params != nullptr) { init_params(¶ms); } // Call optimized micro-kernel. vneg(batch_size() * sizeof(float), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(y[i], y_ref[i]) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i]; } } } void Test(xnn_f32_vround_ukernel_function vrnd, OpType op_type, xnn_init_f32_rnd_params_fn init_params = nullptr) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto distribution = std::uniform_real_distribution(-5.0f, 5.0f); auto f32rng = std::bind(distribution, std::ref(rng)); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::generate(x.begin(), x.end(), std::ref(f32rng)); std::fill(y.begin(), y.end(), nanf("")); } const float* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { switch (op_type) { case OpType::RoundToNearestEven: y_ref[i] = std::nearbyint(double(x_data[i])); break; case OpType::RoundTowardsZero: y_ref[i] = std::trunc(double(x_data[i])); break; case OpType::RoundUp: y_ref[i] = std::ceil(double(x_data[i])); break; case OpType::RoundDown: y_ref[i] = std::floor(double(x_data[i])); break; default: GTEST_FAIL() << "Unexpected operation type"; return; } } // Prepare parameters. xnn_f32_rnd_params params; if (init_params != nullptr) { init_params(¶ms); } // Call optimized micro-kernel. vrnd(batch_size() * sizeof(float), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(y[i], y_ref[i]) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i]; } } } void Test(xnn_f32_vsigmoid_ukernel_function vsigmoid, xnn_init_f32_sigmoid_params_fn init_params) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto distribution = std::uniform_real_distribution(-125.0f, 125.0f); auto f32rng = std::bind(distribution, std::ref(rng)); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::generate(x.begin(), x.end(), std::ref(f32rng)); std::fill(y.begin(), y.end(), nanf("")); } const float* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { const double e = std::exp(double(x_data[i])); y_ref[i] = e / (1.0 + e); } // Prepare parameters. union xnn_f32_sigmoid_params params; init_params(¶ms); // Call optimized micro-kernel. vsigmoid(batch_size() * sizeof(float), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_NEAR(y[i], y_ref[i], std::max(5.0e-6, std::abs(y_ref[i]) * 1.0e-5)) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i]; } } } void Test(xnn_f32_vsqr_ukernel_function vsqr, xnn_init_f32_default_params_fn init_params = nullptr) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-10.0f, 10.0f), std::ref(rng)); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::generate(x.begin(), x.end(), std::ref(f32rng)); std::fill(y.begin(), y.end(), nanf("")); } const float* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = x_data[i] * x_data[i]; } // Prepare parameters. union xnn_f32_default_params params; if (init_params != nullptr) { init_params(¶ms); } // Call optimized micro-kernel. vsqr(batch_size() * sizeof(float), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(y[i], y_ref[i]) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i]; } } } void Test(xnn_f32_vsqrt_ukernel_function vsqrt, xnn_init_f32_sqrt_params_fn init_params = nullptr) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 10.0f), std::ref(rng)); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::generate(x.begin(), x.end(), std::ref(f32rng)); std::fill(y.begin(), y.end(), nanf("")); } const float* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::sqrt(x_data[i]); } // Prepare parameters. union xnn_f32_sqrt_params params; if (init_params != nullptr) { init_params(¶ms); } // Call optimized micro-kernel. vsqrt(batch_size() * sizeof(float), x_data, y.data(), init_params != nullptr ? ¶ms : nullptr); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(y[i], y_ref[i]) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << x[i]; } } } inline void Test(xnn_f32_vabs_ukernel_function vunary, OpType op_type, Variant variant = Variant::Native) const { Test(xnn_f32_vunary_ukernel_function(vunary), op_type, variant); } inline void Test(xnn_f32_velu_ukernel_function vunary, OpType op_type, Variant variant = Variant::Native) const { Test(xnn_f32_vunary_ukernel_function(vunary), op_type, variant); } inline void Test(xnn_f32_vneg_ukernel_function vunary, OpType op_type, Variant variant = Variant::Native) const { Test(xnn_f32_vunary_ukernel_function(vunary), op_type, variant); } inline void Test(xnn_f32_vrelu_ukernel_function vunary, OpType op_type, Variant variant = Variant::Native) const { Test(xnn_f32_vunary_ukernel_function(vunary), op_type, variant); } void Test(xnn_f16_vclamp_ukernel_function vclamp, xnn_init_f16_minmax_params_fn init_params) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 255.0f), std::ref(rng)); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(f16rng)); if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f16rng)); } else { std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */); } const uint16_t* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::max(std::min(fp16_ieee_to_fp32_value(x_data[i]), float(qmax())), float(qmin())); } // Prepare parameters. union xnn_f16_minmax_params params; init_params(¶ms, fp16_ieee_from_fp32_value(float(qmin())), fp16_ieee_from_fp32_value(float(qmax()))); // Call optimized micro-kernel. vclamp(batch_size() * sizeof(uint16_t), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_NEAR(y_ref[i], fp16_ieee_to_fp32_value(y[i]), std::max(1.0e-3f, std::abs(y_ref[i]) * 1.0e-2f)) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << fp16_ieee_to_fp32_value(x[i]); } } } void Test(xnn_f16_vhswish_ukernel_function vhswish, xnn_init_f16_hswish_params_fn init_params) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-4.0f, 4.0f), std::ref(rng)); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(f16rng)); if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f16rng)); } else { std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */); } const uint16_t* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { const float x_value = fp16_ieee_to_fp32_value(x_data[i]); y_ref[i] = (x_value / 6.0f) * std::max(std::min(x_value + 3.0f, 6.0f), 0.0f); } // Prepare parameters. union xnn_f16_hswish_params params; init_params(¶ms); // Call optimized micro-kernel. vhswish(batch_size() * sizeof(uint16_t), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_NEAR(y_ref[i], fp16_ieee_to_fp32_value(y[i]), std::max(1.0e-3f, std::abs(y_ref[i]) * 1.0e-2f)) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << fp16_ieee_to_fp32_value(x[i]); } } } void Test(xnn_s8_vclamp_ukernel_function vclamp, xnn_init_s8_minmax_params_fn init_params) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i8rng = std::bind( std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()), std::ref(rng)); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(int8_t) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(i8rng)); if (inplace()) { std::copy(x.cbegin(), x.cend(), y.begin()); } else { std::fill(y.begin(), y.end(), INT8_C(0xA5)); } const int8_t* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::min(std::max(x_data[i], int8_t(qmin() - 0x80)), int8_t(qmax() - 0x80)); } // Prepare parameters. union xnn_s8_minmax_params params; init_params(¶ms, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); // Call optimized micro-kernel. vclamp(batch_size() * sizeof(int8_t), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(int32_t(y_ref[i]), int32_t(y[i])) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << int32_t(x[i]); } } } void Test(xnn_u8_vclamp_ukernel_function vclamp, xnn_init_u8_minmax_params_fn init_params) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind( std::uniform_int_distribution(0, std::numeric_limits::max()), std::ref(rng)); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint8_t) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(u8rng)); if (inplace()) { std::copy(x.cbegin(), x.cend(), y.begin()); } else { std::fill(y.begin(), y.end(), UINT8_C(0xA5)); } const uint8_t* x_data = inplace() ? y.data() : x.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::min(std::max(x_data[i], qmin()), qmax()); } // Prepare parameters. union xnn_u8_minmax_params params; init_params(¶ms, qmin(), qmax()); // Call optimized micro-kernel. vclamp(batch_size() * sizeof(uint8_t), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(uint32_t(y_ref[i]), uint32_t(y[i])) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << uint32_t(x[i]); } } } private: size_t batch_size_ = 1; bool inplace_ = false; float slope_ = 0.5f; float prescale_ = 1.0f; float alpha_ = 1.0f; float beta_ = 1.0f; uint8_t qmin_ = 0; uint8_t qmax_ = 255; size_t iterations_ = 15; };