// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include class ClampOperatorTester { public: inline ClampOperatorTester& channels(size_t channels) { assert(channels != 0); this->channels_ = channels; return *this; } inline size_t channels() const { return this->channels_; } inline ClampOperatorTester& input_stride(size_t input_stride) { assert(input_stride != 0); this->input_stride_ = input_stride; return *this; } inline size_t input_stride() const { if (this->input_stride_ == 0) { return this->channels_; } else { assert(this->input_stride_ >= this->channels_); return this->input_stride_; } } inline ClampOperatorTester& output_stride(size_t output_stride) { assert(output_stride != 0); this->output_stride_ = output_stride; return *this; } inline size_t output_stride() const { if (this->output_stride_ == 0) { return this->channels_; } else { assert(this->output_stride_ >= this->channels_); return this->output_stride_; } } inline ClampOperatorTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline ClampOperatorTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline ClampOperatorTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline ClampOperatorTester& relu_activation(bool relu_activation) { this->relu_activation_ = relu_activation; return *this; } inline bool relu_activation() const { return this->relu_activation_; } inline ClampOperatorTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void TestS8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i8rng = std::bind( std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()), std::ref(rng)); std::vector input(XNN_EXTRA_BYTES / sizeof(int8_t) + (batch_size() - 1) * input_stride() + channels()); std::vector output((batch_size() - 1) * output_stride() + channels()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(i8rng)); std::fill(output.begin(), output.end(), INT8_C(0xA5)); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { const int8_t x = input[i * input_stride() + c]; const int8_t y = std::min(std::max(x, int8_t(qmin() - 0x80)), int8_t(qmax() - 0x80)); output_ref[i * channels() + c] = y; } } // Create, setup, run, and destroy Clamp operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t clamp_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_clamp_nc_s8( channels(), input_stride(), output_stride(), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80), 0, &clamp_op)); ASSERT_NE(nullptr, clamp_op); // Smart pointer to automatically delete clamp_op. std::unique_ptr auto_clamp_op(clamp_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_clamp_nc_s8( clamp_op, batch_size(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(clamp_op, nullptr /* thread pool */)); // Verify results . for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(int32_t(output[i * output_stride() + c]), int32_t(qmax() - 0x80)) << "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels(); ASSERT_GE(int32_t(output[i * output_stride() + c]), int32_t(qmin() - 0x80)) << "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels(); ASSERT_EQ(int32_t(output_ref[i * channels() + c]), int32_t(output[i * output_stride() + c])) << "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels() << ", qmin = " << int32_t(qmin() - 0x80) << ", qmax = " << int32_t(qmax() - 0x80); } } } } void TestU8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(uint8_t) + (batch_size() - 1) * input_stride() + channels()); std::vector output((batch_size() - 1) * output_stride() + channels()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(u8rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { const uint8_t x = input[i * input_stride() + c]; const uint8_t y = std::min(std::max(x, qmin()), qmax()); output_ref[i * channels() + c] = y; } } // Create, setup, run, and destroy Clamp operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t clamp_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_clamp_nc_u8( channels(), input_stride(), output_stride(), qmin(), qmax(), 0, &clamp_op)); ASSERT_NE(nullptr, clamp_op); // Smart pointer to automatically delete clamp_op. std::unique_ptr auto_clamp_op(clamp_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_clamp_nc_u8( clamp_op, batch_size(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(clamp_op, nullptr /* thread pool */)); // Verify results . for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(uint32_t(output[i * output_stride() + c]), uint32_t(qmax())) << "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels(); ASSERT_GE(uint32_t(output[i * output_stride() + c]), uint32_t(qmin())) << "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels(); ASSERT_EQ(uint32_t(output_ref[i * channels() + c]), uint32_t(output[i * output_stride() + c])) << "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels() << ", qmin = " << uint32_t(qmin()) << ", qmax = " << uint32_t(qmax()); } } } } void TestF32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 255.0f), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(float) + (batch_size() - 1) * input_stride() + channels()); std::vector output((batch_size() - 1) * output_stride() + channels()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), std::nanf("")); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { const float x = input[i * input_stride() + c]; const float y = relu_activation() ? std::max(x, 0.f) : std::min(std::max(x, float(qmin())), float(qmax())); output_ref[i * channels() + c] = y; } } // Create, setup, run, and destroy Clamp operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t clamp_op = nullptr; const float output_min = relu_activation() ? 0.0f : float(qmin()); const float output_max = relu_activation() ? std::numeric_limits::infinity() : float(qmax()); ASSERT_EQ(xnn_status_success, xnn_create_clamp_nc_f32( channels(), input_stride(), output_stride(), output_min, output_max, 0, &clamp_op)); ASSERT_NE(nullptr, clamp_op); // Smart pointer to automatically delete clamp_op. std::unique_ptr auto_clamp_op(clamp_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_clamp_nc_f32( clamp_op, batch_size(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(clamp_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(output[i * output_stride() + c], output_max) << "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels(); ASSERT_GE(output[i * output_stride() + c], output_min) << "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels(); ASSERT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c]) << "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels() << ", min = " << output_min << ", max = " << output_max; } } } } private: size_t batch_size_{1}; size_t channels_{1}; size_t input_stride_{0}; size_t output_stride_{0}; uint8_t qmin_{5}; uint8_t qmax_{250}; bool relu_activation_{false}; size_t iterations_{15}; };