// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include class DWConvMicrokernelTester { public: inline DWConvMicrokernelTester& width(uint32_t width) { assert(width >= 1); this->width_ = width; return *this; } inline uint32_t width() const { return this->width_; } inline DWConvMicrokernelTester& step(uint32_t step) { assert(step >= 1); this->step_ = step; return *this; } inline uint32_t step() const { return this->step_; } inline DWConvMicrokernelTester& channels(uint32_t channels) { assert(channels >= 1); this->channels_ = channels; return *this; } inline uint32_t channels() const { return this->channels_; } inline DWConvMicrokernelTester& cr(uint32_t cr) { assert(cr != 0); this->cr_ = cr; return *this; } inline uint32_t cr() const { return this->cr_; } inline DWConvMicrokernelTester& kr(uint32_t kr) { assert(kr != 0); this->kr_ = kr; return *this; } inline uint32_t kr() const { return this->kr_; } inline uint32_t packed_channels() const { return (channels() / cr() + !!(channels() % cr())) * cr(); } inline DWConvMicrokernelTester& output_stride(uint32_t output_stride) { assert(output_stride != 0); this->output_stride_ = output_stride; return *this; } inline uint32_t output_stride() const { if (this->output_stride_ == 0) { return channels(); } else { assert(this->output_stride_ >= channels()); return this->output_stride_; } } inline DWConvMicrokernelTester& input_zero_point(uint8_t input_zero_point) { this->input_zero_point_ = input_zero_point; return *this; } inline uint8_t input_zero_point() const { return this->input_zero_point_; } inline DWConvMicrokernelTester& kernel_zero_point(uint8_t kernel_zero_point) { this->kernel_zero_point_ = kernel_zero_point; return *this; } inline uint8_t kernel_zero_point() const { return this->kernel_zero_point_; } inline DWConvMicrokernelTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline DWConvMicrokernelTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline DWConvMicrokernelTester& input_offset(size_t input_offset) { this->input_offset_ = input_offset; return *this; } inline size_t input_offset() const { return this->input_offset_; } inline DWConvMicrokernelTester& zero_index(size_t zero_index) { this->zero_index_ = zero_index; return *this; } inline size_t zero_index() const { return this->zero_index_; } inline DWConvMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test( xnn_qu8_dwconv_minmax_unipass_ukernel_function dwconv_minmax, xnn_init_qu8_conv_minmax_params_fn init_params, xnn_qu8_requantize_fn requantize) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(-10000, 10000), std::ref(rng)); auto u8rng = std::bind( std::uniform_int_distribution(0, std::numeric_limits::max()), std::ref(rng)); std::vector indirection((width() - 1) * step() + kr()); std::vector input(XNN_EXTRA_BYTES / sizeof(uint8_t) + indirection.size() * channels()); std::vector kernel(channels() * kr()); std::vector bias(channels()); std::vector> packed_weights((kr() + sizeof(int32_t) / sizeof(uint8_t)) * packed_channels()); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector output((width() - 1) * output_stride() + channels()); std::vector accumulators(width() * channels()); std::vector output_ref(width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { do { std::generate(input.begin(), input.end(), std::ref(u8rng)); } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend())); do { std::generate(kernel.begin(), kernel.end(), std::ref(u8rng)); } while (kernel.size() > 1 && *std::max_element(kernel.cbegin(), kernel.cend()) == *std::min_element(kernel.cbegin(), kernel.cend())); std::generate(bias.begin(), bias.end(), std::ref(i32rng)); std::fill(zero.begin(), zero.end(), input_zero_point()); std::fill(output.begin(), output.end(), 0xA5); std::fill(packed_weights.begin(), packed_weights.end(), 0); const xnn_qu8_packing_params packing_params = { input_zero_point(), kernel_zero_point() }; xnn_pack_qu8_dwconv_ghw_w( kr(), 1, channels(), cr(), kernel.data(), bias.data(), packed_weights.data(), 0 /* extra bytes */, &packing_params); for (size_t i = 0; i < indirection.size(); i++) { indirection[i] = input.data() + i * channels() - input_offset(); } std::shuffle(indirection.begin(), indirection.end(), rng); if (zero_index() != SIZE_MAX) { for (size_t i = 0; i < indirection.size(); i += kr()) { indirection[i + zero_index()] = zero.data(); } } // Compute reference results, without renormalization. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { float acc = bias[c]; for (size_t k = 0; k < kr(); k++) { if (indirection[x * step() + k] != zero.data()) { acc += (int32_t(indirection[x * step() + k][c + input_offset()]) - int32_t(input_zero_point())) * (int32_t(kernel[c * kr() + k]) - int32_t(kernel_zero_point())); } } accumulators[x * channels() + c] = acc; } } // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); const uint32_t accumulated_range = uint32_t(accumulated_max) - uint32_t(accumulated_min); const double output_scale = accumulated_range >= 256 ? double(accumulated_range) / 255.0 : 1.00001; const uint8_t output_zero_point = uint8_t(std::max(std::min( lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); // Prepare parameters. const float requantization_scale = 1.0f / float(output_scale); union xnn_qu8_conv_minmax_params quantization_params; init_params(&quantization_params, kernel_zero_point(), requantization_scale, output_zero_point, qmin(), qmax()); // Renormalize reference results. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { output_ref[x * channels() + c] = requantize( accumulators[x * channels() + c], requantization_scale, output_zero_point, qmin(), qmax()); } } // Call optimized micro-kernel. dwconv_minmax( channels(), width(), indirection.data(), packed_weights.data(), output.data(), step() * sizeof(void*), (output_stride() - channels()) * sizeof(uint8_t), input_offset() * sizeof(uint8_t), zero.data(), &quantization_params); // Verify results. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_GE(uint32_t(output[x * output_stride() + c]), uint32_t(qmin())) << "x = " << x << ", channel = " << c; ASSERT_LE(uint32_t(output[x * output_stride() + c]), uint32_t(qmax())) << "x = " << x << ", channel = " << c; ASSERT_EQ(uint32_t(output[x * output_stride() + c]), uint32_t(output_ref[x * channels() + c])) << "x = " << x << ", channel = " << c << ", accumulator = " << accumulators[x * channels() + c]; } } } } void Test( xnn_qc8_dwconv_minmax_unipass_ukernel_function dwconv_minmax, xnn_init_qs8_minmax_params_fn init_params, xnn_qs8_requantize_fn requantize) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(-10000, 10000), std::ref(rng)); auto i8rng = std::bind( std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()), std::ref(rng)); auto w8rng = std::bind( std::uniform_int_distribution(-std::numeric_limits::max(), std::numeric_limits::max()), std::ref(rng)); std::vector indirection((width() - 1) * step() + kr()); std::vector input(XNN_EXTRA_BYTES / sizeof(int8_t) + indirection.size() * channels()); std::vector kernel(channels() * kr()); std::vector bias(channels()); std::vector> packed_weights((kr() + (sizeof(int32_t) + sizeof(float)) / sizeof(int8_t)) * packed_channels()); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(int8_t)); std::vector output((width() - 1) * output_stride() + channels()); std::vector accumulators(width() * channels()); std::vector scale(channels()); std::vector output_ref(width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { do { std::generate(input.begin(), input.end(), std::ref(i8rng)); } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend())); do { std::generate(kernel.begin(), kernel.end(), std::ref(w8rng)); } while (kernel.size() > 1 && *std::max_element(kernel.cbegin(), kernel.cend()) == *std::min_element(kernel.cbegin(), kernel.cend())); std::generate(bias.begin(), bias.end(), std::ref(i32rng)); std::fill(zero.begin(), zero.end(), int8_t(input_zero_point() - 0x80)); std::fill(output.begin(), output.end(), 0xA5); std::fill(packed_weights.begin(), packed_weights.end(), 0); const xnn_qs8_packing_params packing_params = { int8_t(input_zero_point() - 0x80) }; xnn_pack_qs8_dwconv_ghw_w( kr(), 1, channels(), cr(), kernel.data(), bias.data(), packed_weights.data(), cr() * sizeof(float), &packing_params); for (size_t i = 0; i < indirection.size(); i++) { indirection[i] = input.data() + i * channels() - input_offset(); } std::shuffle(indirection.begin(), indirection.end(), rng); if (zero_index() != SIZE_MAX) { for (size_t i = 0; i < indirection.size(); i += kr()) { indirection[i + zero_index()] = zero.data(); } } // Compute reference results, without renormalization. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { float acc = bias[c]; for (size_t k = 0; k < kr(); k++) { if (indirection[x * step() + k] != zero.data()) { acc += (int32_t(indirection[x * step() + k][c + input_offset()]) - int32_t(input_zero_point() - 0x80)) * int32_t(kernel[c * kr() + k]); } } accumulators[x * channels() + c] = acc; } } // Compute renormalization parameters. const int8_t output_zero_point = -1; for (size_t c = 0; c < channels(); c++) { int32_t accumulated_min = accumulators[c]; int32_t accumulated_max = accumulators[c]; for (size_t x = 0; x < width(); x++) { accumulated_min = std::min(accumulated_min, accumulators[x * channels() + c]); accumulated_max = std::max(accumulated_max, accumulators[x * channels() + c]); } const uint32_t accumulated_range = uint32_t(accumulated_max - accumulated_min); const float output_scale = accumulated_range >= 256 ? double(accumulated_range) / 255.0 : 1.00001; scale[c] = 1.0f / output_scale; } xnn_init_qc8_scale_fp32_params( channels(), cr(), cr() * (kr() * sizeof(int8_t) + sizeof(int32_t) + sizeof(float)), scale.data(), (void*) ((uintptr_t) packed_weights.data() + cr() * (kr() * sizeof(int8_t) + sizeof(int32_t)))); // Prepare parameters. union xnn_qs8_minmax_params minmax_params; init_params(&minmax_params, output_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); // Renormalize reference results. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { output_ref[x * channels() + c] = requantize( accumulators[x * channels() + c], scale[c], output_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); } } // Call optimized micro-kernel. dwconv_minmax( channels(), width(), indirection.data(), packed_weights.data(), output.data(), step() * sizeof(void*), (output_stride() - channels()) * sizeof(int8_t), input_offset() * sizeof(int8_t), zero.data(), &minmax_params); // Verify results. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_GE(int32_t(output[x * output_stride() + c]), int32_t(qmin()) - 0x80) << "x = " << x << ", channel = " << c; ASSERT_LE(int32_t(output[x * output_stride() + c]), int32_t(qmax()) - 0x80) << "x = " << x << ", channel = " << c; ASSERT_EQ(int32_t(output[x * output_stride() + c]), int32_t(output_ref[x * channels() + c])) << "x = " << x << ", channel = " << c << ", accumulator = " << accumulators[x * channels() + c]; } } } } void Test( xnn_qs8_dwconv_minmax_unipass_ukernel_function dwconv_minmax, xnn_init_qs8_conv_minmax_params_fn init_params, xnn_qs8_requantize_fn requantize) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(-10000, 10000), std::ref(rng)); auto i8rng = std::bind( std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()), std::ref(rng)); auto w8rng = std::bind( std::uniform_int_distribution(-std::numeric_limits::max(), std::numeric_limits::max()), std::ref(rng)); std::vector indirection((width() - 1) * step() + kr()); std::vector input(XNN_EXTRA_BYTES / sizeof(int8_t) + indirection.size() * channels()); std::vector kernel(channels() * kr()); std::vector bias(channels()); std::vector> packed_weights((kr() + sizeof(int32_t) / sizeof(int8_t)) * packed_channels()); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(int8_t)); std::vector output((width() - 1) * output_stride() + channels()); std::vector accumulators(width() * channels()); std::vector output_ref(width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { do { std::generate(input.begin(), input.end(), std::ref(i8rng)); } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend())); do { std::generate(kernel.begin(), kernel.end(), std::ref(w8rng)); } while (kernel.size() > 1 && *std::max_element(kernel.cbegin(), kernel.cend()) == *std::min_element(kernel.cbegin(), kernel.cend())); std::generate(bias.begin(), bias.end(), std::ref(i32rng)); std::fill(zero.begin(), zero.end(), int8_t(input_zero_point() - 0x80)); std::fill(output.begin(), output.end(), 0xA5); std::fill(packed_weights.begin(), packed_weights.end(), 0); const xnn_qs8_packing_params packing_params = { int8_t(input_zero_point() - 0x80) }; xnn_pack_qs8_dwconv_ghw_w( kr(), 1, channels(), cr(), kernel.data(), bias.data(), packed_weights.data(), 0 /* extra bytes */, &packing_params); for (size_t i = 0; i < indirection.size(); i++) { indirection[i] = input.data() + i * channels() - input_offset(); } std::shuffle(indirection.begin(), indirection.end(), rng); if (zero_index() != SIZE_MAX) { for (size_t i = 0; i < indirection.size(); i += kr()) { indirection[i + zero_index()] = zero.data(); } } // Compute reference results, without renormalization. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { float acc = bias[c]; for (size_t k = 0; k < kr(); k++) { if (indirection[x * step() + k] != zero.data()) { acc += (int32_t(indirection[x * step() + k][c + input_offset()]) - int32_t(input_zero_point() - 0x80)) * int32_t(kernel[c * kr() + k]); } } accumulators[x * channels() + c] = acc; } } // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); const uint32_t accumulated_range = uint32_t(accumulated_max) - uint32_t(accumulated_min); const double output_scale = accumulated_range >= 256 ? double(accumulated_range) / 255.0 : 1.00001; const int8_t output_zero_point = int8_t(std::max(std::min( lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); // Prepare parameters. const float requantization_scale = 1.0f / float(output_scale); union xnn_qs8_conv_minmax_params quantization_params; init_params(&quantization_params, requantization_scale, output_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); // Renormalize reference results. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { output_ref[x * channels() + c] = requantize( accumulators[x * channels() + c], requantization_scale, output_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80)); } } // Call optimized micro-kernel. dwconv_minmax( channels(), width(), indirection.data(), packed_weights.data(), output.data(), step() * sizeof(void*), (output_stride() - channels()) * sizeof(int8_t), input_offset() * sizeof(int8_t), zero.data(), &quantization_params); // Verify results. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_GE(int32_t(output[x * output_stride() + c]), int32_t(qmin()) - 0x80) << "x = " << x << ", channel = " << c; ASSERT_LE(int32_t(output[x * output_stride() + c]), int32_t(qmax()) - 0x80) << "x = " << x << ", channel = " << c; ASSERT_EQ(int32_t(output[x * output_stride() + c]), int32_t(output_ref[x * channels() + c])) << "x = " << x << ", channel = " << c << ", accumulator = " << accumulators[x * channels() + c]; } } } } void Test(xnn_f16_dwconv_minmax_unipass_ukernel_function dwconv_minmax, xnn_init_f16_minmax_params_fn init_params) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 1.0f), std::ref(rng)); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::vector indirection((width() - 1) * step() + kr()); std::vector input(XNN_EXTRA_BYTES / sizeof(uint16_t) + indirection.size() * channels()); std::vector kernel(channels() * kr()); std::vector bias(channels()); std::vector> packed_weights((kr() + 1) * packed_channels()); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector output((width() - 1) * output_stride() + channels()); std::vector output_ref(width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f16rng)); std::generate(kernel.begin(), kernel.end(), std::ref(f16rng)); std::generate(bias.begin(), bias.end(), std::ref(f16rng)); std::fill(zero.begin(), zero.end(), 0); std::fill(output_ref.begin(), output_ref.end(), 0.0f); std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); std::fill(packed_weights.begin(), packed_weights.end(), 0); xnn_pack_f16_dwconv_ghw_w( kr(), 1, channels(), cr(), kernel.data(), bias.data(), packed_weights.data(), 0 /* extra bytes */, nullptr); for (size_t i = 0; i < indirection.size(); i++) { indirection[i] = input.data() + i * channels() - input_offset(); } std::shuffle(indirection.begin(), indirection.end(), rng); if (zero_index() != SIZE_MAX) { for (size_t i = 0; i < indirection.size(); i += kr()) { indirection[i + zero_index()] = zero.data(); } } // Compute reference results, without clamping. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { float acc = fp16_ieee_to_fp32_value(bias[c]); for (size_t k = 0; k < kr(); k++) { if (indirection[x * step() + k] != zero.data()) { acc += fp16_ieee_to_fp32_value(indirection[x * step() + k][c + input_offset()]) * fp16_ieee_to_fp32_value(kernel[c * kr() + k]); } } output_ref[x * channels() + c] = acc; } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin()))); const float output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax()))); // Prepare parameters. xnn_f16_minmax_params params; init_params(¶ms, fp16_ieee_from_fp32_value(output_min), fp16_ieee_from_fp32_value(output_max)); // Clamp reference results. for (float& output_val : output_ref) { output_val = std::max(std::min(output_val, output_max), output_min); } // Call optimized micro-kernel. dwconv_minmax( channels(), width(), reinterpret_cast(indirection.data()), packed_weights.data(), output.data(), step() * sizeof(void*), (output_stride() - channels()) * sizeof(uint16_t), input_offset() * sizeof(uint16_t), zero.data(), ¶ms); // Verify results. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_GE(fp16_ieee_to_fp32_value(output[x * output_stride() + c]), output_min) << "x = " << x << ", channel = " << c; ASSERT_LE(fp16_ieee_to_fp32_value(output[x * output_stride() + c]), output_max) << "x = " << x << ", channel = " << c; ASSERT_NEAR(output_ref[x * channels() + c], fp16_ieee_to_fp32_value(output[x * output_stride() + c]), std::max(1.0e-4f, std::abs(output_ref[x * channels() + c]) * 1.0e-2f)) << "x = " << x << ", channel = " << c; } } } } void Test(xnn_f32_dwconv_unipass_ukernel_function dwconv) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 1.0f), std::ref(rng)); std::vector indirection((width() - 1) * step() + kr()); std::vector input(XNN_EXTRA_BYTES / sizeof(float) + indirection.size() * channels()); std::vector kernel(channels() * kr()); std::vector bias(channels()); std::vector> packed_weights((kr() + 1) * packed_channels()); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector output((width() - 1) * output_stride() + channels()); std::vector output_ref(width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); std::generate(bias.begin(), bias.end(), std::ref(f32rng)); std::fill(zero.begin(), zero.end(), 0.0f); std::fill(output_ref.begin(), output_ref.end(), nanf("")); std::fill(output.begin(), output.end(), nanf("")); std::fill(packed_weights.begin(), packed_weights.end(), 0.0f); xnn_pack_f32_dwconv_ghw_w( kr(), 1, channels(), cr(), kernel.data(), bias.data(), packed_weights.data(), 0 /* extra bytes */, nullptr); for (size_t i = 0; i < indirection.size(); i++) { indirection[i] = input.data() + i * channels() - input_offset(); } std::shuffle(indirection.begin(), indirection.end(), rng); if (zero_index() != SIZE_MAX) { for (size_t i = 0; i < indirection.size(); i += kr()) { indirection[i + zero_index()] = zero.data(); } } // Compute reference results, without clamping. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { float acc = bias[c]; for (size_t k = 0; k < kr(); k++) { if (indirection[x * step() + k] != zero.data()) { acc += indirection[x * step() + k][c + input_offset()] * kernel[c * kr() + k]; } } output_ref[x * channels() + c] = acc; } } // Call optimized micro-kernel. dwconv( channels(), width(), indirection.data(), packed_weights.data(), output.data(), step() * sizeof(void*), (output_stride() - channels()) * sizeof(float), input_offset() * sizeof(float), zero.data(), nullptr); // Verify results. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_NEAR( output_ref[x * channels() + c], output[x * output_stride() + c], std::abs(output_ref[x * channels() + c]) * 1.0e-5) << "x = " << x << ", channel = " << c; } } } } void Test(xnn_f32_dwconv_minmax_unipass_ukernel_function dwconv_minmax, xnn_init_f32_minmax_params_fn init_params) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 1.0f), std::ref(rng)); std::vector indirection((width() - 1) * step() + kr()); std::vector input(XNN_EXTRA_BYTES / sizeof(float) + indirection.size() * channels()); std::vector kernel(channels() * kr()); std::vector bias(channels()); std::vector> packed_weights((kr() + 1) * packed_channels()); std::vector zero(channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector output((width() - 1) * output_stride() + channels()); std::vector output_ref(width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); std::generate(bias.begin(), bias.end(), std::ref(f32rng)); std::fill(zero.begin(), zero.end(), 0.0f); std::fill(output_ref.begin(), output_ref.end(), nanf("")); std::fill(output.begin(), output.end(), nanf("")); std::fill(packed_weights.begin(), packed_weights.end(), 0.0f); xnn_pack_f32_dwconv_ghw_w( kr(), 1, channels(), cr(), kernel.data(), bias.data(), packed_weights.data(), 0 /* extra bytes */, nullptr); for (size_t i = 0; i < indirection.size(); i++) { indirection[i] = input.data() + i * channels() - input_offset(); } std::shuffle(indirection.begin(), indirection.end(), rng); if (zero_index() != SIZE_MAX) { for (size_t i = 0; i < indirection.size(); i += kr()) { indirection[i + zero_index()] = zero.data(); } } // Compute reference results, without clamping. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { float acc = bias[c]; for (size_t k = 0; k < kr(); k++) { if (indirection[x * step() + k] != zero.data()) { acc += indirection[x * step() + k][c + input_offset()] * kernel[c * kr() + k]; } } output_ref[x * channels() + c] = acc; } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = accumulated_min + accumulated_range / 255.0f * float(qmin()); const float output_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); // Prepare parameters. xnn_f32_minmax_params params; init_params(¶ms, output_min, output_max); // Clamp reference results. for (float& output_val : output_ref) { output_val = std::max(std::min(output_val, output_max), output_min); } // Call optimized micro-kernel. dwconv_minmax( channels(), width(), indirection.data(), packed_weights.data(), output.data(), step() * sizeof(void*), (output_stride() - channels()) * sizeof(float), input_offset() * sizeof(float), zero.data(), ¶ms); // Verify results. for (size_t x = 0; x < width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_GE(output[x * output_stride() + c], output_min) << "x = " << x << ", channel = " << c; ASSERT_LE(output[x * output_stride() + c], output_max) << "x = " << x << ", channel = " << c; ASSERT_NEAR( output_ref[x * channels() + c], output[x * output_stride() + c], std::abs(output_ref[x * channels() + c]) * 1.0e-5) << "x = " << x << ", channel = " << c; } } } } private: uint32_t channels_{1}; uint32_t cr_{1}; uint32_t kr_{1}; uint32_t width_{1}; uint32_t step_{1}; uint32_t output_stride_{0}; uint8_t input_zero_point_{127}; uint8_t kernel_zero_point_{127}; uint8_t qmin_{0}; uint8_t qmax_{255}; size_t input_offset_{0}; size_t zero_index_{SIZE_MAX}; size_t iterations_{3}; };