// // Copyright © 2020 Arm Ltd. All rights reserved. // SPDX-License-Identifier: MIT // // Note: the ArmnnFencedExecutionCallback and code snippet in the executeFenced() function // in this file is based on Android code // under the Apache 2.0 license. See comments below for details. // #define LOG_TAG "ArmnnDriver" #include "ArmnnPreparedModel_1_3.hpp" #include "Utils.hpp" #include #include #include #include #include #include #include #include using namespace android; using namespace android::hardware; namespace { static const V1_2::Timing g_NoTiming = {.timeOnDevice = UINT64_MAX, .timeInDriver = UINT64_MAX}; using namespace armnn_driver; using TimePoint = std::chrono::steady_clock::time_point; TimePoint Now() { return std::chrono::steady_clock::now(); } unsigned long MicrosecondsDuration(TimePoint endPoint, TimePoint startPoint) { return static_cast(std::chrono::duration_cast( endPoint - startPoint).count()); } void NotifyCallbackAndCheck(const ::android::sp& callback, V1_3::ErrorStatus errorStatus, std::vector, const V1_2::Timing, std::string callingFunction) { Return returned = callback->notify(convertToV1_0(errorStatus)); // This check is required, if the callback fails and it isn't checked it will bring down the service if (!returned.isOk()) { ALOGE("ArmnnDriver::%s: hidl callback failed to return properly: %s", callingFunction.c_str(), returned.description().c_str()); } } void NotifyCallbackAndCheck(const ::android::sp& callback, V1_3::ErrorStatus errorStatus, std::vector outputShapes, const V1_2::Timing timing, std::string callingFunction) { Return returned = callback->notify_1_2(convertToV1_0(errorStatus), outputShapes, timing); // This check is required, if the callback fails and it isn't checked it will bring down the service if (!returned.isOk()) { ALOGE("ArmnnDriver::%s: hidl callback failed to return properly: %s", callingFunction.c_str(), returned.description().c_str()); } } void NotifyCallbackAndCheck(const ::android::sp& callback, V1_3::ErrorStatus errorStatus, std::vector outputShapes, const V1_2::Timing timing, std::string callingFunction) { Return returned = callback->notify_1_3(errorStatus, outputShapes, timing); // This check is required, if the callback fails and it isn't checked it will bring down the service if (!returned.isOk()) { ALOGE("ArmnnDriver::%s: hidl callback failed to return properly: %s", callingFunction.c_str(), returned.description().c_str()); } } bool ValidateRequestArgument(const V1_0::RequestArgument& requestArg, const armnn::TensorInfo& tensorInfo) { if (requestArg.dimensions.size() != 0) { if (requestArg.dimensions.size() != tensorInfo.GetNumDimensions()) { ALOGE("Mismatched dimensions (request argument: %zu, expected: %u)", requestArg.dimensions.size(), tensorInfo.GetNumDimensions()); return false; } for (unsigned int d = 0; d < tensorInfo.GetNumDimensions(); ++d) { if (requestArg.dimensions[d] != 0 && requestArg.dimensions[d] != tensorInfo.GetShape()[d]) { ALOGE("Mismatched size for dimension %d (request argument: %u, expected %u)", d, requestArg.dimensions[d], tensorInfo.GetShape()[d]); return false; } } } return true; } armnn::Tensor GetTensorForRequestArgument(const V1_0::RequestArgument& requestArg, const armnn::TensorInfo& tensorInfo, const std::vector<::android::nn::RunTimePoolInfo>& requestPools) { if (!ValidateRequestArgument(requestArg, tensorInfo)) { return armnn::Tensor(); } return armnn::Tensor(tensorInfo, GetMemoryFromPool(requestArg.location, requestPools)); } inline std::string BuildTensorName(const char* tensorNamePrefix, std::size_t index) { return tensorNamePrefix + std::to_string(index); } } // anonymous namespace using namespace android::hardware; namespace armnn_driver { template RequestThread_1_3 ArmnnPreparedModel_1_3::m_RequestThread; template template void ArmnnPreparedModel_1_3::DumpTensorsIfRequired(char const* tensorNamePrefix, const TensorBindingCollection& tensorBindings) { if (!m_RequestInputsAndOutputsDumpDir.empty()) { const std::string requestName = std::to_string(m_NetworkId) + "_" + std::to_string(m_RequestCount) + ".dump"; for (std::size_t i = 0u; i < tensorBindings.size(); ++i) { DumpTensor(m_RequestInputsAndOutputsDumpDir, requestName, BuildTensorName(tensorNamePrefix, i), tensorBindings[i].second); } } } template ArmnnPreparedModel_1_3::ArmnnPreparedModel_1_3(armnn::NetworkId networkId, armnn::IRuntime* runtime, const V1_3::Model& model, const std::string& requestInputsAndOutputsDumpDir, const bool gpuProfilingEnabled, V1_3::Priority priority) : m_NetworkId(networkId) , m_Runtime(runtime) , m_Model(model) , m_RequestCount(0) , m_RequestInputsAndOutputsDumpDir(requestInputsAndOutputsDumpDir) , m_GpuProfilingEnabled(gpuProfilingEnabled) , m_ModelPriority(priority) { // Enable profiling if required. m_Runtime->GetProfiler(m_NetworkId)->EnableProfiling(m_GpuProfilingEnabled); } template ArmnnPreparedModel_1_3::~ArmnnPreparedModel_1_3() { // Get a hold of the profiler used by this model. std::shared_ptr profiler = m_Runtime->GetProfiler(m_NetworkId); // Unload the network associated with this model. m_Runtime->UnloadNetwork(m_NetworkId); // Dump the profiling info to a file if required. DumpJsonProfilingIfRequired(m_GpuProfilingEnabled, m_RequestInputsAndOutputsDumpDir, m_NetworkId, profiler.get()); } template Return ArmnnPreparedModel_1_3::execute(const V1_0::Request& request, const ::android::sp& callback) { if (callback.get() == nullptr) { ALOGE("ArmnnPreparedModel_1_3::execute invalid callback passed"); return V1_0::ErrorStatus::INVALID_ARGUMENT; } auto cb = [callback](V1_3::ErrorStatus errorStatus, std::vector outputShapes, const V1_2::Timing& timing, std::string callingFunction) { NotifyCallbackAndCheck(callback, errorStatus, outputShapes, timing, callingFunction); }; return convertToV1_0(Execute(convertToV1_3(request), V1_2::MeasureTiming::NO, cb)); } template Return ArmnnPreparedModel_1_3::execute_1_2( const V1_0::Request& request, V1_2::MeasureTiming measureTiming, const sp& callback) { if (callback.get() == nullptr) { ALOGE("ArmnnPreparedModel_1_3::execute_1_2 invalid callback passed"); return V1_0::ErrorStatus::INVALID_ARGUMENT; } auto cb = [callback](V1_3::ErrorStatus errorStatus, std::vector outputShapes, const V1_2::Timing& timing, std::string callingFunction) { NotifyCallbackAndCheck(callback, errorStatus, outputShapes, timing, callingFunction); }; return convertToV1_0(Execute(convertToV1_3(request), measureTiming, cb)); } template Return ArmnnPreparedModel_1_3::execute_1_3( const V1_3::Request& request, V1_2::MeasureTiming measureTiming, const V1_3::OptionalTimePoint&, const V1_3::OptionalTimeoutDuration&, const sp& callback) { if (callback.get() == nullptr) { ALOGE("ArmnnPreparedModel_1_3::execute_1_3 invalid callback passed"); return V1_3::ErrorStatus::INVALID_ARGUMENT; } auto cb = [callback](V1_3::ErrorStatus errorStatus, std::vector outputShapes, const V1_2::Timing& timing, std::string callingFunction) { NotifyCallbackAndCheck(callback, errorStatus, outputShapes, timing, callingFunction); }; return Execute(request, measureTiming, cb); } /// This class is inspired by the sample implementation in Android named SampleFencedExecutionCallback. /// The original code is licensed under Apache-2.0 and can be found at the following link: /// https://android.googlesource.com/platform/frameworks/ml/+/master/nn/driver/sample/SampleDriver.h class ArmnnFencedExecutionCallback : public V1_3::IFencedExecutionCallback { public: ArmnnFencedExecutionCallback(V1_3::ErrorStatus errorStatus, V1_2::Timing timing, V1_2::Timing fenceTiming) : m_ErrorStatus(errorStatus), m_Timing(timing), m_FenceTiming(fenceTiming) {} ~ArmnnFencedExecutionCallback() {} Return getExecutionInfo(getExecutionInfo_cb callback) override { callback(m_ErrorStatus, m_Timing, m_FenceTiming); return Void(); } private: V1_3::ErrorStatus m_ErrorStatus; V1_2::Timing m_Timing; V1_2::Timing m_FenceTiming; }; template Return ArmnnPreparedModel_1_3::executeFenced(const V1_3::Request& request, const hidl_vec& fenceWaitFor, V1_2::MeasureTiming measureTiming, const V1_3::OptionalTimePoint& deadline, const V1_3::OptionalTimeoutDuration& loopTimeoutDuration, const V1_3::OptionalTimeoutDuration&, executeFenced_cb cb) { ALOGV("ArmnnPreparedModel_1_3::executeFenced(...)"); if (cb == nullptr) { ALOGE("ArmnnPreparedModel_1_3::executeFenced invalid callback passed"); cb(V1_3::ErrorStatus::INVALID_ARGUMENT, hidl_handle(nullptr), nullptr); return Void(); } if (deadline.getDiscriminator() != V1_3::OptionalTimePoint::hidl_discriminator::none) { ALOGW("ArmnnPreparedModel_1_3::executeFenced parameter deadline is set but not supported."); } if (loopTimeoutDuration.getDiscriminator() != V1_3::OptionalTimeoutDuration::hidl_discriminator::none) { ALOGW("ArmnnPreparedModel_1_3::executeFenced parameter loopTimeoutDuration is set but not supported."); } if (!android::nn::validateRequest(request, m_Model, /*allowUnspecifiedOutput=*/false)) { ALOGV("ArmnnPreparedModel_1_3::executeFenced outputs must be specified for fenced execution "); cb(V1_3::ErrorStatus::INVALID_ARGUMENT, hidl_handle(nullptr), nullptr); return Void(); } ExecutionContext_1_3 ctx; if (measureTiming == V1_2::MeasureTiming::YES) { ctx.measureTimings = measureTiming; ctx.driverStart = Now(); } ALOGV("ArmnnPreparedModel_1_3::executeFenced(): %s", GetModelSummary(m_Model).c_str()); m_RequestCount++; if (!m_RequestInputsAndOutputsDumpDir.empty()) { ALOGD("Dumping inputs and outputs for request %" PRIuPTR, reinterpret_cast(&cb)); } // This code snippet is inspired by the sample implementation in Android named SampleDriver::executeFenced() // function. The original code is licensed under Apache-2.0 and can be found at the following link: // https://android.googlesource.com/platform/frameworks/ml/+/master/nn/driver/sample/SampleDriver.cpp const auto fenceSize = fenceWaitFor.size(); for (unsigned int index = 0; index < fenceSize; ++index) { auto fenceNativeHandle = fenceWaitFor[index].getNativeHandle(); if (!fenceNativeHandle) { cb(V1_3::ErrorStatus::INVALID_ARGUMENT, hidl_handle(nullptr), nullptr); return Void(); } if (sync_wait(fenceNativeHandle->data[0], -1) < 0) { ALOGE("ArmnnPreparedModel_1_3::executeFenced sync fence failed."); cb(V1_3::ErrorStatus::GENERAL_FAILURE, hidl_handle(nullptr), nullptr); return Void(); } } TimePoint fenceExecutionStart; if (measureTiming == V1_2::MeasureTiming::YES) { fenceExecutionStart = Now(); } // map the memory pool into shared pointers // use a shared memory pools vector on the heap, as it is passed to the request thread auto memPools = std::make_shared>(); // allocate the tensors on the heap, as they are passed to the request thread auto inputs = std::make_shared(); auto outputs = std::make_shared(); auto [status, outShapes, timings, message] = PrepareMemoryForIO(*inputs, *outputs, *memPools, request); if (status != V1_3::ErrorStatus::NONE) { cb(V1_3::ErrorStatus::INVALID_ARGUMENT, hidl_handle(nullptr), nullptr); return Void(); } ALOGV("ArmnnPreparedModel_1_3::executeFenced(...) before ExecuteGraph"); // call it with nullCallback for now as we will report the error status from here.. auto nullCallback = [](V1_3::ErrorStatus, std::vector, const V1_2::Timing&, std::string) {}; CallbackContext_1_3 cbCtx; cbCtx.callback = nullCallback; cbCtx.ctx = ctx; auto errorStatus = ExecuteGraph(memPools, *inputs, *outputs, cbCtx); if (errorStatus != V1_3::ErrorStatus::NONE) { cb(errorStatus, hidl_handle(nullptr), nullptr); return Void(); } ALOGV("ArmnnPreparedModel_1_3::executeFenced(...) after ExecuteGraph"); V1_2::Timing timing = g_NoTiming; V1_2::Timing fenceTiming = g_NoTiming; if (measureTiming == V1_2::MeasureTiming::YES) { fenceTiming.timeOnDevice = MicrosecondsDuration(ctx.deviceEnd, ctx.deviceStart); fenceTiming.timeInDriver = MicrosecondsDuration(ctx.driverEnd, fenceExecutionStart); ALOGV("ArmnnPreparedModel_1_3::fenceFinishExecutionTiming - Device = %" PRIu64 " Driver = %" PRIu64, fenceTiming.timeOnDevice, fenceTiming.timeInDriver); } sp armnnFencedExecutionCallback = new ArmnnFencedExecutionCallback(V1_3::ErrorStatus::NONE, timing, fenceTiming); cb(V1_3::ErrorStatus::NONE, hidl_handle(nullptr), armnnFencedExecutionCallback); return Void(); } template Return ArmnnPreparedModel_1_3::PrepareMemoryForInputs( armnn::InputTensors& inputs, const V1_3::Request& request, const std::vector& memPools) { inputs.reserve(request.inputs.size()); for (unsigned int i = 0; i < request.inputs.size(); i++) { const auto& inputArg = request.inputs[i]; const armnn::TensorInfo inputTensorInfo = m_Runtime->GetInputTensorInfo(m_NetworkId, i); const armnn::Tensor inputTensor = GetTensorForRequestArgument(inputArg, inputTensorInfo, memPools); uint32_t poolIndex = inputArg.location.poolIndex; if (poolIndex >= memPools.size()) { ALOGE("Cannot execute request. Error converting request input %u to tensor: wrong poolIndex", i); return V1_3::ErrorStatus::GENERAL_FAILURE; } uint8_t* inputTensorBegin = static_cast(inputTensor.GetMemoryArea()); if (inputTensorBegin == nullptr) { ALOGE("Cannot execute request. Error converting request input %u to tensor", i); return V1_3::ErrorStatus::GENERAL_FAILURE; } const size_t inputTensorSize = inputTensorInfo.GetNumBytes(); uint8_t* memoryPoolBegin = memPools[poolIndex].getBuffer(); uint32_t memoryPoolSize = memPools[poolIndex].getSize(); bool inputTensorIsOutOfMemoryRage = (inputTensorBegin + inputTensorSize) > (memoryPoolBegin + memoryPoolSize); if (inputTensorIsOutOfMemoryRage) { ALOGE("Cannot execute request. Error converting request input %u to tensor: out of Memory Pool", i); return V1_3::ErrorStatus::GENERAL_FAILURE; } inputs.emplace_back(i, inputTensor); } return V1_3::ErrorStatus::NONE; } template Return ArmnnPreparedModel_1_3::PrepareMemoryForOutputs( armnn::OutputTensors& outputs, std::vector &outputShapes, const V1_3::Request& request, const std::vector& memPools) { outputs.reserve(request.outputs.size()); for (unsigned int i = 0; i < request.outputs.size(); i++) { const auto& outputArg = request.outputs[i]; armnn::TensorInfo outputTensorInfo = m_Runtime->GetOutputTensorInfo(m_NetworkId, i); const armnn::Tensor outputTensor = GetTensorForRequestArgument(outputArg, outputTensorInfo, memPools); uint8_t* outputTensorBegin = static_cast(outputTensor.GetMemoryArea()); if (outputTensorBegin == nullptr) { ALOGE("Cannot execute request. Error converting request output %u to tensor", i); return V1_3::ErrorStatus::GENERAL_FAILURE; } const size_t outputSize = outputTensorInfo.GetNumBytes(); uint32_t poolIndex = outputArg.location.poolIndex; if (poolIndex >= memPools.size()) { ALOGE("Cannot execute request. Error converting request output %u to tensor: wrong poolIndex", i); return V1_3::ErrorStatus::GENERAL_FAILURE; } uint8_t* memoryPoolBegin = memPools[poolIndex].getBuffer(); uint32_t memoryPoolSize = memPools[poolIndex].getSize(); bool outputTensorIsOutOfMemoryRage = (outputTensorBegin + outputSize) > (memoryPoolBegin + memoryPoolSize); if (outputTensorIsOutOfMemoryRage) { ALOGE("Cannot execute request. Error converting request output %u to tensor: out of Memory Pool", i); return V1_3::ErrorStatus::GENERAL_FAILURE; } unsigned int count = 0; std::for_each(outputArg.dimensions.begin(), outputArg.dimensions.end(), [&](auto dim) { if (dim != 0) { outputTensorInfo.GetShape()[count] = dim; } else { outputTensorInfo.GetShape()[count] = outputArg.dimensions.size(); } count++; }); outputs.emplace_back(i, outputTensor); outputShapes[i] = ComputeShape(outputTensorInfo); if (outputArg.location.length < outputSize) { ALOGW("ArmnnPreparedModel_1_3::Execute failed outputArg.location.length (%s) < outputSize (%s)", std::to_string(outputArg.location.length).c_str(), std::to_string(outputSize).c_str()); outputShapes[i].isSufficient = false; return V1_3::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE; } const size_t bufferSize = memPools.at(outputArg.location.poolIndex).getSize(); if (bufferSize < outputSize) { ALOGW("ArmnnPreparedModel_1_3::Execute failed bufferSize (%s) < outputSize (%s)", std::to_string(bufferSize).c_str(), std::to_string(outputSize).c_str()); outputShapes[i].isSufficient = false; return V1_3::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE; } } return V1_3::ErrorStatus::NONE; } template std::tuple, V1_2::Timing, std::string> ArmnnPreparedModel_1_3::PrepareMemoryForIO(armnn::InputTensors& inputs, armnn::OutputTensors& outputs, std::vector& memPools, const V1_3::Request& request) { if (!setRunTimePoolInfosFromMemoryPools(&memPools, uncheckedConvert(request.pools))) { return {V1_3::ErrorStatus::INVALID_ARGUMENT, {}, g_NoTiming, "ArmnnPreparedModel_1_3::execute"}; } // add the inputs and outputs with their data try { if (PrepareMemoryForInputs(inputs, request, memPools) != V1_3::ErrorStatus::NONE) { return {V1_3::ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_3::execute"}; } std::vector outputShapes(request.outputs.size()); auto errorStatus = PrepareMemoryForOutputs(outputs, outputShapes, request, memPools); if (errorStatus != V1_3::ErrorStatus::NONE) { return {errorStatus, outputShapes, g_NoTiming, "ArmnnPreparedModel_1_3::execute"}; } } catch (armnn::Exception& e) { ALOGW("armnn::Exception caught while preparing for EnqueueWorkload: %s", e.what()); return {V1_3::ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_3::execute"}; } catch (std::exception& e) { ALOGE("std::exception caught while preparing for EnqueueWorkload: %s", e.what()); return {V1_3::ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_3::execute"}; } return {V1_3::ErrorStatus::NONE, {}, g_NoTiming, "ArmnnPreparedModel_1_3::execute"}; } template template Return ArmnnPreparedModel_1_3::ExecuteSynchronously(const V1_3::Request& request, CallbackContext cbCtx) { if (cbCtx.ctx.measureTimings == V1_2::MeasureTiming::YES) { cbCtx.ctx.driverStart = Now(); } if (!android::nn::validateRequest(convertToV1_3(request), m_Model)) { ALOGE("ArmnnPreparedModel_1_3::ExecuteSynchronously invalid request model"); cbCtx.callback(V1_3::ErrorStatus::INVALID_ARGUMENT, {}, g_NoTiming, "ArmnnPreparedModel_1_3::ExecuteSynchronously invalid request model"); return Void(); } if (!android::nn::validateRequest(request, m_Model)) { ALOGE("ArmnnPreparedModel_1_3::ExecuteSynchronously invalid request model"); cbCtx.callback(V1_3::ErrorStatus::INVALID_ARGUMENT, {}, g_NoTiming, "ArmnnPreparedModel_1_3::ExecuteSynchronously invalid request model"); return Void(); } // map the memory pool into shared pointers // use a shared memory pools vector on the heap, as it is passed to the request thread auto memPools = std::make_shared>(); // allocate the tensors on the heap, as they are passed to the request thread auto inputs = std::make_shared(); auto outputs = std::make_shared(); auto [status, outputShapes, timing, message] = PrepareMemoryForIO(*inputs, *outputs, *memPools, request); if (status != V1_3::ErrorStatus::NONE) { cbCtx.callback(status, outputShapes, timing, message); return Void(); } ALOGV("ArmnnPreparedModel_1_3::ExecuteSynchronously() before Execution"); ExecuteGraph(memPools, *inputs, *outputs, cbCtx); return Void(); } template Return ArmnnPreparedModel_1_3::executeSynchronously(const V1_0::Request& request, V1_2::MeasureTiming measureTiming, executeSynchronously_cb cb) { ALOGV("ArmnnPreparedModel_1_3::executeSynchronously(): %s", GetModelSummary(m_Model).c_str()); m_RequestCount++; if (cb == nullptr) { ALOGE("ArmnnPreparedModel_1_3::executeSynchronously invalid callback passed"); return Void(); } auto cbWrapper = [cb](V1_3::ErrorStatus errorStatus, std::vector outputShapes, const V1_2::Timing& timing, std::string) { cb(convertToV1_0(errorStatus), outputShapes, timing); }; CallbackContext_1_3 cbCtx; cbCtx.callback = cbWrapper; cbCtx.ctx.measureTimings = measureTiming; ExecuteSynchronously(convertToV1_3(request), cbCtx); return Void(); } template Return ArmnnPreparedModel_1_3::executeSynchronously_1_3( const V1_3::Request& request, V1_2::MeasureTiming measureTiming, const V1_3::OptionalTimePoint& deadline, const V1_3::OptionalTimeoutDuration& loopTimeoutDuration, executeSynchronously_1_3_cb cb) { ALOGV("ArmnnPreparedModel_1_3::executeSynchronously_1_3(): %s", GetModelSummary(m_Model).c_str()); m_RequestCount++; if (cb == nullptr) { ALOGE("ArmnnPreparedModel_1_3::executeSynchronously_1_3 invalid callback passed"); return Void(); } if (deadline.getDiscriminator() != V1_3::OptionalTimePoint::hidl_discriminator::none) { ALOGW("ArmnnPreparedModel_1_3::executeSynchronously_1_3 parameter deadline is set but not supported."); } if (loopTimeoutDuration.getDiscriminator() != V1_3::OptionalTimeoutDuration::hidl_discriminator::none) { ALOGW( "ArmnnPreparedModel_1_3::executeSynchronously_1_3 parameter loopTimeoutDuration is set but not supported."); } auto cbWrapper = [cb](V1_3::ErrorStatus errorStatus, std::vector outputShapes, const V1_2::Timing& timing, std::string) { cb(errorStatus, outputShapes, timing); }; CallbackContext_1_3 cbCtx; cbCtx.callback = cbWrapper; cbCtx.ctx.measureTimings = measureTiming; ExecuteSynchronously(request, cbCtx); return Void(); } template Return ArmnnPreparedModel_1_3::configureExecutionBurst( const sp& callback, const MQDescriptorSync& requestChannel, const MQDescriptorSync& resultChannel, V1_3::IPreparedModel::configureExecutionBurst_cb cb) { ALOGV("ArmnnPreparedModel_1_3::configureExecutionBurst"); const sp burst = ExecutionBurstServer::create(callback, requestChannel, resultChannel, this); if (burst == nullptr) { cb(V1_0::ErrorStatus::GENERAL_FAILURE, {}); } else { cb(V1_0::ErrorStatus::NONE, burst); } return Void(); } template template Return ArmnnPreparedModel_1_3::ExecuteGraph( std::shared_ptr>& pMemPools, armnn::InputTensors& inputTensors, armnn::OutputTensors& outputTensors, CallbackContext cb) { ALOGV("ArmnnPreparedModel_1_3::ExecuteGraph(...)"); DumpTensorsIfRequired("Input", inputTensors); std::vector outputShapes(outputTensors.size()); for (unsigned int i = 0; i < outputTensors.size(); i++) { std::pair outputTensorPair = outputTensors[i]; const armnn::Tensor outputTensor = outputTensorPair.second; const armnn::TensorInfo outputTensorInfo = outputTensor.GetInfo(); outputShapes[i] = ComputeShape(outputTensorInfo); } // run it try { if (cb.ctx.measureTimings == V1_2::MeasureTiming::YES) { cb.ctx.deviceStart = Now(); } armnn::Status status = m_Runtime->EnqueueWorkload(m_NetworkId, inputTensors, outputTensors); if (cb.ctx.measureTimings == V1_2::MeasureTiming::YES) { cb.ctx.deviceEnd = Now(); } if (status != armnn::Status::Success) { ALOGW("EnqueueWorkload failed"); cb.callback(V1_3::ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_3::ExecuteGraph"); return V1_3::ErrorStatus::GENERAL_FAILURE; } } catch (armnn::Exception& e) { ALOGW("armnn:Exception caught from EnqueueWorkload: %s", e.what()); cb.callback(V1_3::ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_3::ExecuteGraph"); return V1_3::ErrorStatus::GENERAL_FAILURE; } catch (std::exception& e) { ALOGE("std::exception caught from EnqueueWorkload: %s", e.what()); cb.callback(V1_3::ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_3::ExecuteGraph"); return V1_3::ErrorStatus::GENERAL_FAILURE; } CommitPools(*pMemPools); DumpTensorsIfRequired("Output", outputTensors); if (cb.ctx.measureTimings == V1_2::MeasureTiming::YES) { cb.ctx.driverEnd = Now(); V1_2::Timing timing; timing.timeOnDevice = MicrosecondsDuration(cb.ctx.deviceEnd, cb.ctx.deviceStart); timing.timeInDriver = MicrosecondsDuration(cb.ctx.driverEnd, cb.ctx.driverStart); ALOGV("ArmnnPreparedModel_1_3::execute timing - Device = %" PRIu64 " Driver = %" PRIu64, timing.timeOnDevice, timing.timeInDriver); cb.callback(V1_3::ErrorStatus::NONE, outputShapes, timing, "ArmnnPreparedModel_1_3::ExecuteGraph"); } else { cb.callback(V1_3::ErrorStatus::NONE, outputShapes, g_NoTiming, "ArmnnPreparedModel_1_3::ExecuteGraph"); } return V1_3::ErrorStatus::NONE; } template bool ArmnnPreparedModel_1_3::ExecuteWithDummyInputs() { std::vector> storage; armnn::InputTensors inputTensors; for (unsigned int i = 0; i < getMainModel(m_Model).inputIndexes.size(); i++) { const armnn::TensorInfo inputTensorInfo = m_Runtime->GetInputTensorInfo(m_NetworkId, i); storage.emplace_back(inputTensorInfo.GetNumBytes()); const armnn::ConstTensor inputTensor(inputTensorInfo, storage.back().data()); inputTensors.emplace_back(i, inputTensor); } armnn::OutputTensors outputTensors; for (unsigned int i = 0; i < getMainModel(m_Model).outputIndexes.size(); i++) { const armnn::TensorInfo outputTensorInfo = m_Runtime->GetOutputTensorInfo(m_NetworkId, i); storage.emplace_back(outputTensorInfo.GetNumBytes()); const armnn::Tensor outputTensor(outputTensorInfo, storage.back().data()); outputTensors.emplace_back(i, outputTensor); } auto nullCallback = [](V1_3::ErrorStatus, std::vector, const V1_2::Timing&, std::string) {}; CallbackContext_1_3 callbackContext; callbackContext.callback = nullCallback; callbackContext.ctx.measureTimings = V1_2::MeasureTiming::NO; auto memPools = std::make_shared>(); auto errorStatus = ExecuteGraph(memPools, inputTensors, outputTensors, callbackContext); return errorStatus == V1_3::ErrorStatus::NONE; } template Return ArmnnPreparedModel_1_3::Execute(const V1_3::Request& request, V1_2::MeasureTiming measureTiming, CallbackAsync_1_3 callback) { ExecutionContext_1_3 ctx; if (measureTiming == V1_2::MeasureTiming::YES) { ctx.measureTimings = measureTiming; ctx.driverStart = Now(); } ALOGV("ArmnnPreparedModel_1_3::execute(): %s", GetModelSummary(m_Model).c_str()); m_RequestCount++; if (!android::nn::validateRequest(request, m_Model)) { callback(V1_3::ErrorStatus::INVALID_ARGUMENT, {}, g_NoTiming, "ArmnnPreparedModel_1_3::execute"); return V1_3::ErrorStatus::INVALID_ARGUMENT; } if (!m_RequestInputsAndOutputsDumpDir.empty()) { ALOGD("Dumping inputs and outputs for request %" PRIuPTR, reinterpret_cast(&callback)); } // map the memory pool into shared pointers // use a shared memory pools vector on the heap, as it is passed to the request thread auto memPools = std::make_shared>(); // allocate the tensors on the heap, as they are passed to the request thread auto inputTensors = std::make_shared(); auto outputTensors = std::make_shared(); auto [status, outShapes, timing, message] = PrepareMemoryForIO(*inputTensors, *outputTensors, *memPools, request); if (status != V1_3::ErrorStatus::NONE) { callback(status, outShapes, timing, message); } switch(status) { case V1_3::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE: return V1_3::ErrorStatus::NONE; case V1_3::ErrorStatus::GENERAL_FAILURE: return V1_3::ErrorStatus::GENERAL_FAILURE; default: {} } ALOGV("ArmnnPreparedModel_1_3::execute(...) before PostMsg"); // post the request for asynchronous execution CallbackContext_1_3 cb; cb.callback = callback; cb.ctx = ctx; m_RequestThread.PostMsg(this, memPools, inputTensors, outputTensors, cb); ALOGV("ArmnnPreparedModel_1_3::execute(...) after PostMsg"); return V1_3::ErrorStatus::NONE; } template V1_3::Priority ArmnnPreparedModel_1_3::GetModelPriority() { return m_ModelPriority; } #ifdef ARMNN_ANDROID_NN_V1_3 template class ArmnnPreparedModel_1_3; template Return ArmnnPreparedModel_1_3::ExecuteGraph( std::shared_ptr>& pMemPools, armnn::InputTensors& pInputTensors, armnn::OutputTensors& pOutputTensors, CallbackContext_1_3 cb); #endif } // namespace armnn_driver