// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_loop/message_pump_glib.h" #include #include #include #include #include "base/bind.h" #include "base/bind_helpers.h" #include "base/callback.h" #include "base/macros.h" #include "base/memory/ref_counted.h" #include "base/message_loop/message_loop.h" #include "base/message_loop/message_loop_current.h" #include "base/run_loop.h" #include "base/single_thread_task_runner.h" #include "base/threading/thread.h" #include "base/threading/thread_task_runner_handle.h" #include "testing/gtest/include/gtest/gtest.h" namespace base { namespace { // This class injects dummy "events" into the GLib loop. When "handled" these // events can run tasks. This is intended to mock gtk events (the corresponding // GLib source runs at the same priority). class EventInjector { public: EventInjector() : processed_events_(0) { source_ = static_cast(g_source_new(&SourceFuncs, sizeof(Source))); source_->injector = this; g_source_attach(source_, nullptr); g_source_set_can_recurse(source_, TRUE); } ~EventInjector() { g_source_destroy(source_); g_source_unref(source_); } int HandlePrepare() { // If the queue is empty, block. if (events_.empty()) return -1; TimeDelta delta = events_[0].time - Time::NowFromSystemTime(); return std::max(0, static_cast(ceil(delta.InMillisecondsF()))); } bool HandleCheck() { if (events_.empty()) return false; return events_[0].time <= Time::NowFromSystemTime(); } void HandleDispatch() { if (events_.empty()) return; Event event = std::move(events_[0]); events_.erase(events_.begin()); ++processed_events_; if (!event.callback.is_null()) std::move(event.callback).Run(); else if (!event.task.is_null()) std::move(event.task).Run(); } // Adds an event to the queue. When "handled", executes |callback|. // delay_ms is relative to the last event if any, or to Now() otherwise. void AddEvent(int delay_ms, OnceClosure callback) { AddEventHelper(delay_ms, std::move(callback), OnceClosure()); } void AddDummyEvent(int delay_ms) { AddEventHelper(delay_ms, OnceClosure(), OnceClosure()); } void AddEventAsTask(int delay_ms, OnceClosure task) { AddEventHelper(delay_ms, OnceClosure(), std::move(task)); } void Reset() { processed_events_ = 0; events_.clear(); } int processed_events() const { return processed_events_; } private: struct Event { Time time; OnceClosure callback; OnceClosure task; }; struct Source : public GSource { EventInjector* injector; }; void AddEventHelper(int delay_ms, OnceClosure callback, OnceClosure task) { Time last_time; if (!events_.empty()) last_time = (events_.end()-1)->time; else last_time = Time::NowFromSystemTime(); Time future = last_time + TimeDelta::FromMilliseconds(delay_ms); EventInjector::Event event = {future, std::move(callback), std::move(task)}; events_.push_back(std::move(event)); } static gboolean Prepare(GSource* source, gint* timeout_ms) { *timeout_ms = static_cast(source)->injector->HandlePrepare(); return FALSE; } static gboolean Check(GSource* source) { return static_cast(source)->injector->HandleCheck(); } static gboolean Dispatch(GSource* source, GSourceFunc unused_func, gpointer unused_data) { static_cast(source)->injector->HandleDispatch(); return TRUE; } Source* source_; std::vector events_; int processed_events_; static GSourceFuncs SourceFuncs; DISALLOW_COPY_AND_ASSIGN(EventInjector); }; GSourceFuncs EventInjector::SourceFuncs = {EventInjector::Prepare, EventInjector::Check, EventInjector::Dispatch, nullptr}; void IncrementInt(int *value) { ++*value; } // Checks how many events have been processed by the injector. void ExpectProcessedEvents(EventInjector* injector, int count) { EXPECT_EQ(injector->processed_events(), count); } // Posts a task on the current message loop. void PostMessageLoopTask(const Location& from_here, OnceClosure task) { ThreadTaskRunnerHandle::Get()->PostTask(from_here, std::move(task)); } // Test fixture. class MessagePumpGLibTest : public testing::Test { public: MessagePumpGLibTest() : loop_(nullptr), injector_(nullptr) {} // Overridden from testing::Test: void SetUp() override { loop_ = new MessageLoop(MessageLoop::TYPE_UI); injector_ = new EventInjector(); } void TearDown() override { delete injector_; injector_ = nullptr; delete loop_; loop_ = nullptr; } MessageLoop* loop() const { return loop_; } EventInjector* injector() const { return injector_; } private: MessageLoop* loop_; EventInjector* injector_; DISALLOW_COPY_AND_ASSIGN(MessagePumpGLibTest); }; } // namespace TEST_F(MessagePumpGLibTest, TestQuit) { // Checks that Quit works and that the basic infrastructure is working. // Quit from a task RunLoop().RunUntilIdle(); EXPECT_EQ(0, injector()->processed_events()); injector()->Reset(); // Quit from an event RunLoop run_loop; injector()->AddEvent(0, run_loop.QuitClosure()); run_loop.Run(); EXPECT_EQ(1, injector()->processed_events()); } TEST_F(MessagePumpGLibTest, TestEventTaskInterleave) { // Checks that tasks posted by events are executed before the next event if // the posted task queue is empty. // MessageLoop doesn't make strong guarantees that it is the case, but the // current implementation ensures it and the tests below rely on it. // If changes cause this test to fail, it is reasonable to change it, but // TestWorkWhileWaitingForEvents and TestEventsWhileWaitingForWork have to be // changed accordingly, otherwise they can become flaky. injector()->AddEventAsTask(0, DoNothing()); OnceClosure check_task = BindOnce(&ExpectProcessedEvents, Unretained(injector()), 2); OnceClosure posted_task = BindOnce(&PostMessageLoopTask, FROM_HERE, std::move(check_task)); injector()->AddEventAsTask(0, std::move(posted_task)); injector()->AddEventAsTask(0, DoNothing()); { RunLoop run_loop; injector()->AddEvent(0, run_loop.QuitClosure()); run_loop.Run(); } EXPECT_EQ(4, injector()->processed_events()); injector()->Reset(); injector()->AddEventAsTask(0, DoNothing()); check_task = BindOnce(&ExpectProcessedEvents, Unretained(injector()), 2); posted_task = BindOnce(&PostMessageLoopTask, FROM_HERE, std::move(check_task)); injector()->AddEventAsTask(0, std::move(posted_task)); injector()->AddEventAsTask(10, DoNothing()); { RunLoop run_loop; injector()->AddEvent(0, run_loop.QuitClosure()); run_loop.Run(); } EXPECT_EQ(4, injector()->processed_events()); } TEST_F(MessagePumpGLibTest, TestWorkWhileWaitingForEvents) { int task_count = 0; // Tests that we process tasks while waiting for new events. // The event queue is empty at first. for (int i = 0; i < 10; ++i) { loop()->task_runner()->PostTask(FROM_HERE, BindOnce(&IncrementInt, &task_count)); } // After all the previous tasks have executed, enqueue an event that will // quit. { RunLoop run_loop; loop()->task_runner()->PostTask( FROM_HERE, BindOnce(&EventInjector::AddEvent, Unretained(injector()), 0, run_loop.QuitClosure())); run_loop.Run(); } ASSERT_EQ(10, task_count); EXPECT_EQ(1, injector()->processed_events()); // Tests that we process delayed tasks while waiting for new events. injector()->Reset(); task_count = 0; for (int i = 0; i < 10; ++i) { loop()->task_runner()->PostDelayedTask(FROM_HERE, BindOnce(&IncrementInt, &task_count), TimeDelta::FromMilliseconds(10 * i)); } // After all the previous tasks have executed, enqueue an event that will // quit. // This relies on the fact that delayed tasks are executed in delay order. // That is verified in message_loop_unittest.cc. { RunLoop run_loop; loop()->task_runner()->PostDelayedTask( FROM_HERE, BindOnce(&EventInjector::AddEvent, Unretained(injector()), 0, run_loop.QuitClosure()), TimeDelta::FromMilliseconds(150)); run_loop.Run(); } ASSERT_EQ(10, task_count); EXPECT_EQ(1, injector()->processed_events()); } TEST_F(MessagePumpGLibTest, TestEventsWhileWaitingForWork) { // Tests that we process events while waiting for work. // The event queue is empty at first. for (int i = 0; i < 10; ++i) { injector()->AddDummyEvent(0); } // After all the events have been processed, post a task that will check that // the events have been processed (note: the task executes after the event // that posted it has been handled, so we expect 11 at that point). OnceClosure check_task = BindOnce(&ExpectProcessedEvents, Unretained(injector()), 11); OnceClosure posted_task = BindOnce(&PostMessageLoopTask, FROM_HERE, std::move(check_task)); injector()->AddEventAsTask(10, std::move(posted_task)); // And then quit (relies on the condition tested by TestEventTaskInterleave). RunLoop run_loop; injector()->AddEvent(10, run_loop.QuitClosure()); run_loop.Run(); EXPECT_EQ(12, injector()->processed_events()); } namespace { // This class is a helper for the concurrent events / posted tasks test below. // It will quit the main loop once enough tasks and events have been processed, // while making sure there is always work to do and events in the queue. class ConcurrentHelper : public RefCounted { public: ConcurrentHelper(EventInjector* injector, OnceClosure done_closure) : injector_(injector), done_closure_(std::move(done_closure)), event_count_(kStartingEventCount), task_count_(kStartingTaskCount) {} void FromTask() { if (task_count_ > 0) { --task_count_; } if (task_count_ == 0 && event_count_ == 0) { std::move(done_closure_).Run(); } else { ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&ConcurrentHelper::FromTask, this)); } } void FromEvent() { if (event_count_ > 0) { --event_count_; } if (task_count_ == 0 && event_count_ == 0) { std::move(done_closure_).Run(); } else { injector_->AddEventAsTask(0, BindOnce(&ConcurrentHelper::FromEvent, this)); } } int event_count() const { return event_count_; } int task_count() const { return task_count_; } private: friend class RefCounted; ~ConcurrentHelper() {} static const int kStartingEventCount = 20; static const int kStartingTaskCount = 20; EventInjector* injector_; OnceClosure done_closure_; int event_count_; int task_count_; }; } // namespace TEST_F(MessagePumpGLibTest, TestConcurrentEventPostedTask) { // Tests that posted tasks don't starve events, nor the opposite. // We use the helper class above. We keep both event and posted task queues // full, the helper verifies that both tasks and events get processed. // If that is not the case, either event_count_ or task_count_ will not get // to 0, and MessageLoop::QuitWhenIdle() will never be called. RunLoop run_loop; scoped_refptr helper = new ConcurrentHelper(injector(), run_loop.QuitClosure()); // Add 2 events to the queue to make sure it is always full (when we remove // the event before processing it). injector()->AddEventAsTask(0, BindOnce(&ConcurrentHelper::FromEvent, helper)); injector()->AddEventAsTask(0, BindOnce(&ConcurrentHelper::FromEvent, helper)); // Similarly post 2 tasks. loop()->task_runner()->PostTask( FROM_HERE, BindOnce(&ConcurrentHelper::FromTask, helper)); loop()->task_runner()->PostTask( FROM_HERE, BindOnce(&ConcurrentHelper::FromTask, helper)); run_loop.Run(); EXPECT_EQ(0, helper->event_count()); EXPECT_EQ(0, helper->task_count()); } namespace { void AddEventsAndDrainGLib(EventInjector* injector, OnceClosure on_drained) { // Add a couple of dummy events injector->AddDummyEvent(0); injector->AddDummyEvent(0); // Then add an event that will quit the main loop. injector->AddEvent(0, std::move(on_drained)); // Post a couple of dummy tasks ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, DoNothing()); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, DoNothing()); // Drain the events while (g_main_context_pending(nullptr)) { g_main_context_iteration(nullptr, FALSE); } } } // namespace TEST_F(MessagePumpGLibTest, TestDrainingGLib) { // Tests that draining events using GLib works. RunLoop run_loop; loop()->task_runner()->PostTask( FROM_HERE, BindOnce(&AddEventsAndDrainGLib, Unretained(injector()), run_loop.QuitClosure())); run_loop.Run(); EXPECT_EQ(3, injector()->processed_events()); } namespace { // Helper class that lets us run the GLib message loop. class GLibLoopRunner : public RefCounted { public: GLibLoopRunner() : quit_(false) { } void RunGLib() { while (!quit_) { g_main_context_iteration(nullptr, TRUE); } } void RunLoop() { while (!quit_) { g_main_context_iteration(nullptr, TRUE); } } void Quit() { quit_ = true; } void Reset() { quit_ = false; } private: friend class RefCounted; ~GLibLoopRunner() {} bool quit_; }; void TestGLibLoopInternal(EventInjector* injector, OnceClosure done) { // Allow tasks to be processed from 'native' event loops. MessageLoopCurrent::Get()->SetNestableTasksAllowed(true); scoped_refptr runner = new GLibLoopRunner(); int task_count = 0; // Add a couple of dummy events injector->AddDummyEvent(0); injector->AddDummyEvent(0); // Post a couple of dummy tasks ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&IncrementInt, &task_count)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&IncrementInt, &task_count)); // Delayed events injector->AddDummyEvent(10); injector->AddDummyEvent(10); // Delayed work ThreadTaskRunnerHandle::Get()->PostDelayedTask( FROM_HERE, BindOnce(&IncrementInt, &task_count), TimeDelta::FromMilliseconds(30)); ThreadTaskRunnerHandle::Get()->PostDelayedTask( FROM_HERE, BindOnce(&GLibLoopRunner::Quit, runner), TimeDelta::FromMilliseconds(40)); // Run a nested, straight GLib message loop. runner->RunGLib(); ASSERT_EQ(3, task_count); EXPECT_EQ(4, injector->processed_events()); std::move(done).Run(); } void TestGtkLoopInternal(EventInjector* injector, OnceClosure done) { // Allow tasks to be processed from 'native' event loops. MessageLoopCurrent::Get()->SetNestableTasksAllowed(true); scoped_refptr runner = new GLibLoopRunner(); int task_count = 0; // Add a couple of dummy events injector->AddDummyEvent(0); injector->AddDummyEvent(0); // Post a couple of dummy tasks ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&IncrementInt, &task_count)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&IncrementInt, &task_count)); // Delayed events injector->AddDummyEvent(10); injector->AddDummyEvent(10); // Delayed work ThreadTaskRunnerHandle::Get()->PostDelayedTask( FROM_HERE, BindOnce(&IncrementInt, &task_count), TimeDelta::FromMilliseconds(30)); ThreadTaskRunnerHandle::Get()->PostDelayedTask( FROM_HERE, BindOnce(&GLibLoopRunner::Quit, runner), TimeDelta::FromMilliseconds(40)); // Run a nested, straight Gtk message loop. runner->RunLoop(); ASSERT_EQ(3, task_count); EXPECT_EQ(4, injector->processed_events()); std::move(done).Run(); } } // namespace TEST_F(MessagePumpGLibTest, TestGLibLoop) { // Tests that events and posted tasks are correctly executed if the message // loop is not run by MessageLoop::Run() but by a straight GLib loop. // Note that in this case we don't make strong guarantees about niceness // between events and posted tasks. RunLoop run_loop; loop()->task_runner()->PostTask( FROM_HERE, BindOnce(&TestGLibLoopInternal, Unretained(injector()), run_loop.QuitClosure())); run_loop.Run(); } TEST_F(MessagePumpGLibTest, TestGtkLoop) { // Tests that events and posted tasks are correctly executed if the message // loop is not run by MessageLoop::Run() but by a straight Gtk loop. // Note that in this case we don't make strong guarantees about niceness // between events and posted tasks. RunLoop run_loop; loop()->task_runner()->PostTask( FROM_HERE, BindOnce(&TestGtkLoopInternal, Unretained(injector()), run_loop.QuitClosure())); run_loop.Run(); } } // namespace base