//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains some templates that are useful if you are working with the // STL at all. // // No library is required when using these functions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_STLEXTRAS_H #define LLVM_ADT_STLEXTRAS_H #include // for std::all_of #include #include // for std::size_t #include // for qsort #include #include #include #include #include // for std::pair #include "llvm/ADT/Optional.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Compiler.h" namespace llvm { // Only used by compiler if both template types are the same. Useful when // using SFINAE to test for the existence of member functions. template struct SameType; namespace detail { template using IterOfRange = decltype(std::begin(std::declval())); } // End detail namespace /// An efficient, type-erasing, non-owning reference to a callable. This is /// intended for use as the type of a function parameter that is not used /// after the function in question returns. /// /// This class does not own the callable, so it is not in general safe to store /// a function_ref. template class function_ref; template class function_ref { Ret (*callback)(intptr_t callable, Params ...params); intptr_t callable; template static Ret callback_fn(intptr_t callable, Params ...params) { return (*reinterpret_cast(callable))( std::forward(params)...); } public: template function_ref(Callable &&callable, typename std::enable_if< !std::is_same::type, function_ref>::value>::type * = nullptr) : callback(callback_fn::type>), callable(reinterpret_cast(&callable)) {} Ret operator()(Params ...params) const { return callback(callable, std::forward(params)...); } }; // deleter - Very very very simple method that is used to invoke operator // delete on something. It is used like this: // // for_each(V.begin(), B.end(), deleter); // template inline void deleter(T *Ptr) { delete Ptr; } //===----------------------------------------------------------------------===// // Extra additions to //===----------------------------------------------------------------------===// // mapped_iterator - This is a simple iterator adapter that causes a function to // be dereferenced whenever operator* is invoked on the iterator. // template class mapped_iterator { RootIt current; UnaryFunc Fn; public: typedef typename std::iterator_traits::iterator_category iterator_category; typedef typename std::iterator_traits::difference_type difference_type; typedef typename std::result_of< UnaryFunc(decltype(*std::declval()))> ::type value_type; typedef void pointer; //typedef typename UnaryFunc::result_type *pointer; typedef void reference; // Can't modify value returned by fn typedef RootIt iterator_type; inline const RootIt &getCurrent() const { return current; } inline const UnaryFunc &getFunc() const { return Fn; } inline explicit mapped_iterator(const RootIt &I, UnaryFunc F) : current(I), Fn(F) {} inline value_type operator*() const { // All this work to do this return Fn(*current); // little change } mapped_iterator &operator++() { ++current; return *this; } mapped_iterator &operator--() { --current; return *this; } mapped_iterator operator++(int) { mapped_iterator __tmp = *this; ++current; return __tmp; } mapped_iterator operator--(int) { mapped_iterator __tmp = *this; --current; return __tmp; } mapped_iterator operator+(difference_type n) const { return mapped_iterator(current + n, Fn); } mapped_iterator &operator+=(difference_type n) { current += n; return *this; } mapped_iterator operator-(difference_type n) const { return mapped_iterator(current - n, Fn); } mapped_iterator &operator-=(difference_type n) { current -= n; return *this; } reference operator[](difference_type n) const { return *(*this + n); } bool operator!=(const mapped_iterator &X) const { return !operator==(X); } bool operator==(const mapped_iterator &X) const { return current == X.current; } bool operator<(const mapped_iterator &X) const { return current < X.current; } difference_type operator-(const mapped_iterator &X) const { return current - X.current; } }; template inline mapped_iterator operator+(typename mapped_iterator::difference_type N, const mapped_iterator &X) { return mapped_iterator(X.getCurrent() - N, X.getFunc()); } // map_iterator - Provide a convenient way to create mapped_iterators, just like // make_pair is useful for creating pairs... // template inline mapped_iterator map_iterator(const ItTy &I, FuncTy F) { return mapped_iterator(I, F); } /// Helper to determine if type T has a member called rbegin(). template class has_rbegin_impl { typedef char yes[1]; typedef char no[2]; template static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); template static no& test(...); public: static const bool value = sizeof(test(nullptr)) == sizeof(yes); }; /// Metafunction to determine if T& or T has a member called rbegin(). template struct has_rbegin : has_rbegin_impl::type> { }; // Returns an iterator_range over the given container which iterates in reverse. // Note that the container must have rbegin()/rend() methods for this to work. template auto reverse(ContainerTy &&C, typename std::enable_if::value>::type * = nullptr) -> decltype(make_range(C.rbegin(), C.rend())) { return make_range(C.rbegin(), C.rend()); } // Returns a std::reverse_iterator wrapped around the given iterator. template std::reverse_iterator make_reverse_iterator(IteratorTy It) { return std::reverse_iterator(It); } // Returns an iterator_range over the given container which iterates in reverse. // Note that the container must have begin()/end() methods which return // bidirectional iterators for this to work. template auto reverse( ContainerTy &&C, typename std::enable_if::value>::type * = nullptr) -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)), llvm::make_reverse_iterator(std::begin(C)))) { return make_range(llvm::make_reverse_iterator(std::end(C)), llvm::make_reverse_iterator(std::begin(C))); } /// An iterator adaptor that filters the elements of given inner iterators. /// /// The predicate parameter should be a callable object that accepts the wrapped /// iterator's reference type and returns a bool. When incrementing or /// decrementing the iterator, it will call the predicate on each element and /// skip any where it returns false. /// /// \code /// int A[] = { 1, 2, 3, 4 }; /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); /// // R contains { 1, 3 }. /// \endcode template class filter_iterator : public iterator_adaptor_base< filter_iterator, WrappedIteratorT, typename std::common_type< std::forward_iterator_tag, typename std::iterator_traits< WrappedIteratorT>::iterator_category>::type> { using BaseT = iterator_adaptor_base< filter_iterator, WrappedIteratorT, typename std::common_type< std::forward_iterator_tag, typename std::iterator_traits::iterator_category>:: type>; struct PayloadType { WrappedIteratorT End; PredicateT Pred; }; Optional Payload; void findNextValid() { assert(Payload && "Payload should be engaged when findNextValid is called"); while (this->I != Payload->End && !Payload->Pred(*this->I)) BaseT::operator++(); } // Construct the begin iterator. The begin iterator requires to know where end // is, so that it can properly stop when it hits end. filter_iterator(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred) : BaseT(std::move(Begin)), Payload(PayloadType{std::move(End), std::move(Pred)}) { findNextValid(); } // Construct the end iterator. It's not incrementable, so Payload doesn't // have to be engaged. filter_iterator(WrappedIteratorT End) : BaseT(End) {} public: using BaseT::operator++; filter_iterator &operator++() { BaseT::operator++(); findNextValid(); return *this; } template friend iterator_range, PT>> make_filter_range(RT &&, PT); }; /// Convenience function that takes a range of elements and a predicate, /// and return a new filter_iterator range. /// /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the /// lifetime of that temporary is not kept by the returned range object, and the /// temporary is going to be dropped on the floor after the make_iterator_range /// full expression that contains this function call. template iterator_range, PredicateT>> make_filter_range(RangeT &&Range, PredicateT Pred) { using FilterIteratorT = filter_iterator, PredicateT>; return make_range(FilterIteratorT(std::begin(std::forward(Range)), std::end(std::forward(Range)), std::move(Pred)), FilterIteratorT(std::end(std::forward(Range)))); } //===----------------------------------------------------------------------===// // Extra additions to //===----------------------------------------------------------------------===// /// \brief Function object to check whether the first component of a std::pair /// compares less than the first component of another std::pair. struct less_first { template bool operator()(const T &lhs, const T &rhs) const { return lhs.first < rhs.first; } }; /// \brief Function object to check whether the second component of a std::pair /// compares less than the second component of another std::pair. struct less_second { template bool operator()(const T &lhs, const T &rhs) const { return lhs.second < rhs.second; } }; // A subset of N3658. More stuff can be added as-needed. /// \brief Represents a compile-time sequence of integers. template struct integer_sequence { typedef T value_type; static constexpr size_t size() { return sizeof...(I); } }; /// \brief Alias for the common case of a sequence of size_ts. template struct index_sequence : integer_sequence {}; template struct build_index_impl : build_index_impl {}; template struct build_index_impl<0, I...> : index_sequence {}; /// \brief Creates a compile-time integer sequence for a parameter pack. template struct index_sequence_for : build_index_impl {}; /// Utility type to build an inheritance chain that makes it easy to rank /// overload candidates. template struct rank : rank {}; template <> struct rank<0> {}; /// \brief traits class for checking whether type T is one of any of the given /// types in the variadic list. template struct is_one_of { static const bool value = false; }; template struct is_one_of { static const bool value = std::is_same::value || is_one_of::value; }; //===----------------------------------------------------------------------===// // Extra additions for arrays //===----------------------------------------------------------------------===// /// Find the length of an array. template constexpr inline size_t array_lengthof(T (&)[N]) { return N; } /// Adapt std::less for array_pod_sort. template inline int array_pod_sort_comparator(const void *P1, const void *P2) { if (std::less()(*reinterpret_cast(P1), *reinterpret_cast(P2))) return -1; if (std::less()(*reinterpret_cast(P2), *reinterpret_cast(P1))) return 1; return 0; } /// get_array_pod_sort_comparator - This is an internal helper function used to /// get type deduction of T right. template inline int (*get_array_pod_sort_comparator(const T &)) (const void*, const void*) { return array_pod_sort_comparator; } /// array_pod_sort - This sorts an array with the specified start and end /// extent. This is just like std::sort, except that it calls qsort instead of /// using an inlined template. qsort is slightly slower than std::sort, but /// most sorts are not performance critical in LLVM and std::sort has to be /// template instantiated for each type, leading to significant measured code /// bloat. This function should generally be used instead of std::sort where /// possible. /// /// This function assumes that you have simple POD-like types that can be /// compared with std::less and can be moved with memcpy. If this isn't true, /// you should use std::sort. /// /// NOTE: If qsort_r were portable, we could allow a custom comparator and /// default to std::less. template inline void array_pod_sort(IteratorTy Start, IteratorTy End) { // Don't inefficiently call qsort with one element or trigger undefined // behavior with an empty sequence. auto NElts = End - Start; if (NElts <= 1) return; qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); } template inline void array_pod_sort( IteratorTy Start, IteratorTy End, int (*Compare)( const typename std::iterator_traits::value_type *, const typename std::iterator_traits::value_type *)) { // Don't inefficiently call qsort with one element or trigger undefined // behavior with an empty sequence. auto NElts = End - Start; if (NElts <= 1) return; qsort(&*Start, NElts, sizeof(*Start), reinterpret_cast(Compare)); } //===----------------------------------------------------------------------===// // Extra additions to //===----------------------------------------------------------------------===// /// For a container of pointers, deletes the pointers and then clears the /// container. template void DeleteContainerPointers(Container &C) { for (auto V : C) delete V; C.clear(); } /// In a container of pairs (usually a map) whose second element is a pointer, /// deletes the second elements and then clears the container. template void DeleteContainerSeconds(Container &C) { for (auto &V : C) delete V.second; C.clear(); } /// Provide wrappers to std::all_of which take ranges instead of having to pass /// begin/end explicitly. template bool all_of(R &&Range, UnaryPredicate P) { return std::all_of(std::begin(Range), std::end(Range), P); } /// Provide wrappers to std::any_of which take ranges instead of having to pass /// begin/end explicitly. template bool any_of(R &&Range, UnaryPredicate P) { return std::any_of(std::begin(Range), std::end(Range), P); } /// Provide wrappers to std::none_of which take ranges instead of having to pass /// begin/end explicitly. template bool none_of(R &&Range, UnaryPredicate P) { return std::none_of(std::begin(Range), std::end(Range), P); } /// Provide wrappers to std::find which take ranges instead of having to pass /// begin/end explicitly. template auto find(R &&Range, const T &Val) -> decltype(std::begin(Range)) { return std::find(std::begin(Range), std::end(Range), Val); } /// Provide wrappers to std::find_if which take ranges instead of having to pass /// begin/end explicitly. template auto find_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) { return std::find_if(std::begin(Range), std::end(Range), P); } template auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) { return std::find_if_not(std::begin(Range), std::end(Range), P); } /// Provide wrappers to std::remove_if which take ranges instead of having to /// pass begin/end explicitly. template auto remove_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) { return std::remove_if(std::begin(Range), std::end(Range), P); } /// Wrapper function around std::find to detect if an element exists /// in a container. template bool is_contained(R &&Range, const E &Element) { return std::find(std::begin(Range), std::end(Range), Element) != std::end(Range); } /// Wrapper function around std::count to count the number of times an element /// \p Element occurs in the given range \p Range. template auto count(R &&Range, const E &Element) -> typename std::iterator_traits< decltype(std::begin(Range))>::difference_type { return std::count(std::begin(Range), std::end(Range), Element); } /// Wrapper function around std::count_if to count the number of times an /// element satisfying a given predicate occurs in a range. template auto count_if(R &&Range, UnaryPredicate P) -> typename std::iterator_traits< decltype(std::begin(Range))>::difference_type { return std::count_if(std::begin(Range), std::end(Range), P); } /// Wrapper function around std::transform to apply a function to a range and /// store the result elsewhere. template OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) { return std::transform(std::begin(Range), std::end(Range), d_first, P); } //===----------------------------------------------------------------------===// // Extra additions to //===----------------------------------------------------------------------===// // Implement make_unique according to N3656. /// \brief Constructs a `new T()` with the given args and returns a /// `unique_ptr` which owns the object. /// /// Example: /// /// auto p = make_unique(); /// auto p = make_unique>(0, 1); template typename std::enable_if::value, std::unique_ptr>::type make_unique(Args &&... args) { return std::unique_ptr(new T(std::forward(args)...)); } /// \brief Constructs a `new T[n]` with the given args and returns a /// `unique_ptr` which owns the object. /// /// \param n size of the new array. /// /// Example: /// /// auto p = make_unique(2); // value-initializes the array with 0's. template typename std::enable_if::value && std::extent::value == 0, std::unique_ptr>::type make_unique(size_t n) { return std::unique_ptr(new typename std::remove_extent::type[n]()); } /// This function isn't used and is only here to provide better compile errors. template typename std::enable_if::value != 0>::type make_unique(Args &&...) = delete; struct FreeDeleter { void operator()(void* v) { ::free(v); } }; template struct pair_hash { size_t operator()(const std::pair &P) const { return std::hash()(P.first) * 31 + std::hash()(P.second); } }; /// A functor like C++14's std::less in its absence. struct less { template bool operator()(A &&a, B &&b) const { return std::forward(a) < std::forward(b); } }; /// A functor like C++14's std::equal in its absence. struct equal { template bool operator()(A &&a, B &&b) const { return std::forward(a) == std::forward(b); } }; /// Binary functor that adapts to any other binary functor after dereferencing /// operands. template struct deref { T func; // Could be further improved to cope with non-derivable functors and // non-binary functors (should be a variadic template member function // operator()). template auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) { assert(lhs); assert(rhs); return func(*lhs, *rhs); } }; namespace detail { template class enumerator_impl { public: template struct result_pair { result_pair(std::size_t Index, X Value) : Index(Index), Value(Value) {} const std::size_t Index; X Value; }; class iterator { typedef typename std::iterator_traits>::reference iter_reference; typedef result_pair result_type; public: iterator(IterOfRange &&Iter, std::size_t Index) : Iter(Iter), Index(Index) {} result_type operator*() const { return result_type(Index, *Iter); } iterator &operator++() { ++Iter; ++Index; return *this; } bool operator!=(const iterator &RHS) const { return Iter != RHS.Iter; } private: IterOfRange Iter; std::size_t Index; }; public: explicit enumerator_impl(R &&Range) : Range(std::forward(Range)) {} iterator begin() { return iterator(std::begin(Range), 0); } iterator end() { return iterator(std::end(Range), std::size_t(-1)); } private: R Range; }; } /// Given an input range, returns a new range whose values are are pair (A,B) /// such that A is the 0-based index of the item in the sequence, and B is /// the value from the original sequence. Example: /// /// std::vector Items = {'A', 'B', 'C', 'D'}; /// for (auto X : enumerate(Items)) { /// printf("Item %d - %c\n", X.Index, X.Value); /// } /// /// Output: /// Item 0 - A /// Item 1 - B /// Item 2 - C /// Item 3 - D /// template detail::enumerator_impl enumerate(R &&Range) { return detail::enumerator_impl(std::forward(Range)); } namespace detail { template auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence) -> decltype(std::forward(f)(std::get(std::forward(t))...)) { return std::forward(f)(std::get(std::forward(t))...); } } /// Given an input tuple (a1, a2, ..., an), pass the arguments of the /// tuple variadically to f as if by calling f(a1, a2, ..., an) and /// return the result. template auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl( std::forward(f), std::forward(t), build_index_impl< std::tuple_size::type>::value>{})) { using Indices = build_index_impl< std::tuple_size::type>::value>; return detail::apply_tuple_impl(std::forward(f), std::forward(t), Indices{}); } } // End llvm namespace #endif