/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "InputClassifier" #include "InputClassifier.h" #include "InputCommonConverter.h" #include #include #include #include #include #include #include #if defined(__linux__) #include #endif #include #define INDENT1 " " #define INDENT2 " " #define INDENT3 " " #define INDENT4 " " #define INDENT5 " " using android::base::StringPrintf; using namespace std::chrono_literals; using namespace ::aidl::android::hardware::input; using aidl::android::hardware::input::processor::IInputProcessor; namespace android { //Max number of elements to store in mEvents. static constexpr size_t MAX_EVENTS = 5; template static V getValueForKey(const std::unordered_map& map, K key, V defaultValue) { auto it = map.find(key); if (it == map.end()) { return defaultValue; } return it->second; } static MotionClassification getMotionClassification(common::Classification classification) { static_assert(MotionClassification::NONE == static_cast(common::Classification::NONE)); static_assert(MotionClassification::AMBIGUOUS_GESTURE == static_cast(common::Classification::AMBIGUOUS_GESTURE)); static_assert(MotionClassification::DEEP_PRESS == static_cast(common::Classification::DEEP_PRESS)); return static_cast(classification); } static bool isTouchEvent(const NotifyMotionArgs& args) { return isFromSource(args.source, AINPUT_SOURCE_TOUCHPAD) || isFromSource(args.source, AINPUT_SOURCE_TOUCHSCREEN); } static void setCurrentThreadName(const char* name) { #if defined(__linux__) // Set the thread name for debugging pthread_setname_np(pthread_self(), name); #else (void*)(name); // prevent unused variable warning #endif } static std::shared_ptr getService() { const std::string aidl_instance_name = std::string(IInputProcessor::descriptor) + "/default"; if (!AServiceManager_isDeclared(aidl_instance_name.c_str())) { ALOGI("HAL %s is not declared", aidl_instance_name.c_str()); return nullptr; } ndk::SpAIBinder binder(AServiceManager_waitForService(aidl_instance_name.c_str())); return IInputProcessor::fromBinder(binder); } // Temporarily releases a held mutex for the lifetime of the instance. // Named to match std::scoped_lock class scoped_unlock { public: explicit scoped_unlock(std::mutex& mutex) : mMutex(mutex) { mMutex.unlock(); } ~scoped_unlock() { mMutex.lock(); } private: std::mutex& mMutex; }; // --- ScopedDeathRecipient --- ScopedDeathRecipient::ScopedDeathRecipient(AIBinder_DeathRecipient_onBinderDied onBinderDied, void* cookie) : mCookie(cookie) { mRecipient = AIBinder_DeathRecipient_new(onBinderDied); } void ScopedDeathRecipient::linkToDeath(AIBinder* binder) { binder_status_t linked = AIBinder_linkToDeath(binder, mRecipient, mCookie); if (linked != STATUS_OK) { ALOGE("Could not link death recipient to the HAL death"); } } ScopedDeathRecipient::~ScopedDeathRecipient() { AIBinder_DeathRecipient_delete(mRecipient); } // --- ClassifierEvent --- ClassifierEvent::ClassifierEvent(std::unique_ptr args) : type(ClassifierEventType::MOTION), args(std::move(args)) { }; ClassifierEvent::ClassifierEvent(std::unique_ptr args) : type(ClassifierEventType::DEVICE_RESET), args(std::move(args)) { }; ClassifierEvent::ClassifierEvent(ClassifierEventType type, std::unique_ptr args) : type(type), args(std::move(args)) { }; ClassifierEvent::ClassifierEvent(ClassifierEvent&& other) : type(other.type), args(std::move(other.args)) { }; ClassifierEvent& ClassifierEvent::operator=(ClassifierEvent&& other) { type = other.type; args = std::move(other.args); return *this; } ClassifierEvent ClassifierEvent::createHalResetEvent() { return ClassifierEvent(ClassifierEventType::HAL_RESET, nullptr); } ClassifierEvent ClassifierEvent::createExitEvent() { return ClassifierEvent(ClassifierEventType::EXIT, nullptr); } std::optional ClassifierEvent::getDeviceId() const { switch (type) { case ClassifierEventType::MOTION: { NotifyMotionArgs* motionArgs = static_cast(args.get()); return motionArgs->deviceId; } case ClassifierEventType::DEVICE_RESET: { NotifyDeviceResetArgs* deviceResetArgs = static_cast(args.get()); return deviceResetArgs->deviceId; } case ClassifierEventType::HAL_RESET: { return std::nullopt; } case ClassifierEventType::EXIT: { return std::nullopt; } } } // --- MotionClassifier --- MotionClassifier::MotionClassifier(std::shared_ptr service) : mEvents(MAX_EVENTS), mService(std::move(service)) { // Under normal operation, we do not need to reset the HAL here. But in the case where system // crashed, but HAL didn't, we may be connecting to an existing HAL process that might already // have received events in the past. That means, that HAL could be in an inconsistent state // once it receives events from the newly created MotionClassifier. mEvents.push(ClassifierEvent::createHalResetEvent()); mHalThread = std::thread(&MotionClassifier::processEvents, this); #if defined(__linux__) // Set the thread name for debugging pthread_setname_np(mHalThread.native_handle(), "InputClassifier"); #endif } std::unique_ptr MotionClassifier::create( std::shared_ptr service) { LOG_ALWAYS_FATAL_IF(service == nullptr); // Using 'new' to access a non-public constructor return std::unique_ptr(new MotionClassifier(std::move(service))); } MotionClassifier::~MotionClassifier() { requestExit(); mHalThread.join(); } /** * Obtain the classification from the HAL for a given MotionEvent. * Should only be called from the InputClassifier thread (mHalThread). * Should not be called from the thread that notifyMotion runs on. * * There is no way to provide a timeout for a HAL call. So if the HAL takes too long * to return a classification, this would directly impact the touch latency. * To remove any possibility of negatively affecting the touch latency, the HAL * is called from a dedicated thread. */ void MotionClassifier::processEvents() { while (true) { ClassifierEvent event = mEvents.pop(); bool halResponseOk = true; switch (event.type) { case ClassifierEventType::MOTION: { NotifyMotionArgs* motionArgs = static_cast(event.args.get()); common::MotionEvent motionEvent = notifyMotionArgsToHalMotionEvent(*motionArgs); common::Classification classification; ndk::ScopedAStatus response = mService->classify(motionEvent, &classification); if (response.isOk()) { updateClassification(motionArgs->deviceId, motionArgs->eventTime, getMotionClassification(classification)); } break; } case ClassifierEventType::DEVICE_RESET: { const int32_t deviceId = *(event.getDeviceId()); halResponseOk = mService->resetDevice(deviceId).isOk(); clearDeviceState(deviceId); break; } case ClassifierEventType::HAL_RESET: { halResponseOk = mService->reset().isOk(); clearClassifications(); break; } case ClassifierEventType::EXIT: { clearClassifications(); return; } } if (!halResponseOk) { ALOGE("Error communicating with InputClassifier HAL. " "Exiting MotionClassifier HAL thread"); clearClassifications(); return; } } } void MotionClassifier::enqueueEvent(ClassifierEvent&& event) { bool eventAdded = mEvents.push(std::move(event)); if (!eventAdded) { // If the queue is full, suspect the HAL is slow in processing the events. ALOGE("Could not add the event to the queue. Resetting"); reset(); } } void MotionClassifier::requestExit() { reset(); mEvents.push(ClassifierEvent::createExitEvent()); } void MotionClassifier::updateClassification(int32_t deviceId, nsecs_t eventTime, MotionClassification classification) { std::scoped_lock lock(mLock); const nsecs_t lastDownTime = getValueForKey(mLastDownTimes, deviceId, static_cast(0)); if (eventTime < lastDownTime) { // HAL just finished processing an event that belonged to an earlier gesture, // but new gesture is already in progress. Drop this classification. ALOGW("Received late classification. Late by at least %" PRId64 " ms.", nanoseconds_to_milliseconds(lastDownTime - eventTime)); return; } mClassifications[deviceId] = classification; } void MotionClassifier::setClassification(int32_t deviceId, MotionClassification classification) { std::scoped_lock lock(mLock); mClassifications[deviceId] = classification; } void MotionClassifier::clearClassifications() { std::scoped_lock lock(mLock); mClassifications.clear(); } MotionClassification MotionClassifier::getClassification(int32_t deviceId) { std::scoped_lock lock(mLock); return getValueForKey(mClassifications, deviceId, MotionClassification::NONE); } void MotionClassifier::updateLastDownTime(int32_t deviceId, nsecs_t downTime) { std::scoped_lock lock(mLock); mLastDownTimes[deviceId] = downTime; mClassifications[deviceId] = MotionClassification::NONE; } void MotionClassifier::clearDeviceState(int32_t deviceId) { std::scoped_lock lock(mLock); mClassifications.erase(deviceId); mLastDownTimes.erase(deviceId); } MotionClassification MotionClassifier::classify(const NotifyMotionArgs& args) { if ((args.action & AMOTION_EVENT_ACTION_MASK) == AMOTION_EVENT_ACTION_DOWN) { updateLastDownTime(args.deviceId, args.downTime); } ClassifierEvent event(std::make_unique(args)); enqueueEvent(std::move(event)); return getClassification(args.deviceId); } void MotionClassifier::reset() { mEvents.clear(); mEvents.push(ClassifierEvent::createHalResetEvent()); } /** * Per-device reset. Clear the outstanding events that are going to be sent to HAL. * Request InputClassifier thread to call resetDevice for this particular device. */ void MotionClassifier::reset(const NotifyDeviceResetArgs& args) { int32_t deviceId = args.deviceId; // Clear the pending events right away, to avoid unnecessary work done by the HAL. mEvents.erase([deviceId](const ClassifierEvent& event) { std::optional eventDeviceId = event.getDeviceId(); return eventDeviceId && (*eventDeviceId == deviceId); }); enqueueEvent(std::make_unique(args)); } const char* MotionClassifier::getServiceStatus() REQUIRES(mLock) { if (!mService) { return "null"; } if (AIBinder_ping(mService->asBinder().get()) == STATUS_OK) { return "running"; } return "not responding"; } void MotionClassifier::dump(std::string& dump) { std::scoped_lock lock(mLock); dump += StringPrintf(INDENT2 "mService status: %s\n", getServiceStatus()); dump += StringPrintf(INDENT2 "mEvents: %zu element(s) (max=%zu)\n", mEvents.size(), MAX_EVENTS); dump += INDENT2 "mClassifications, mLastDownTimes:\n"; dump += INDENT3 "Device Id\tClassification\tLast down time"; // Combine mClassifications and mLastDownTimes into a single table. // Create a superset of device ids. std::unordered_set deviceIds; std::for_each(mClassifications.begin(), mClassifications.end(), [&deviceIds](auto pair){ deviceIds.insert(pair.first); }); std::for_each(mLastDownTimes.begin(), mLastDownTimes.end(), [&deviceIds](auto pair){ deviceIds.insert(pair.first); }); for(int32_t deviceId : deviceIds) { const MotionClassification classification = getValueForKey(mClassifications, deviceId, MotionClassification::NONE); const nsecs_t downTime = getValueForKey(mLastDownTimes, deviceId, static_cast(0)); dump += StringPrintf("\n" INDENT4 "%" PRId32 "\t%s\t%" PRId64, deviceId, motionClassificationToString(classification), downTime); } } // --- InputClassifier --- InputClassifier::InputClassifier(InputListenerInterface& listener) : mQueuedListener(listener) {} void InputClassifier::onBinderDied(void* cookie) { InputClassifier* classifier = static_cast(cookie); if (classifier == nullptr) { LOG_ALWAYS_FATAL("Cookie is not valid"); return; } classifier->setMotionClassifierEnabled(false); } void InputClassifier::setMotionClassifierEnabled(bool enabled) { std::scoped_lock lock(mLock); if (enabled) { ALOGI("Enabling motion classifier"); if (mInitializeMotionClassifier.valid()) { scoped_unlock unlock(mLock); std::future_status status = mInitializeMotionClassifier.wait_for(5s); if (status != std::future_status::ready) { /** * We don't have a better option here than to crash. We can't stop the thread, * and we can't continue because 'mInitializeMotionClassifier' will block in its * destructor. */ LOG_ALWAYS_FATAL("The thread to load IInputClassifier is stuck!"); } } mInitializeMotionClassifier = std::async(std::launch::async, [this] { setCurrentThreadName("Create MotionClassifier"); std::shared_ptr service = getService(); if (service == nullptr) { // Keep the MotionClassifier null, no service was found return; } { // acquire lock std::scoped_lock threadLock(mLock); mHalDeathRecipient = std::make_unique(onBinderDied, this /*cookie*/); mHalDeathRecipient->linkToDeath(service->asBinder().get()); setMotionClassifierLocked(MotionClassifier::create(std::move(service))); } // release lock }); } else { ALOGI("Disabling motion classifier"); setMotionClassifierLocked(nullptr); } } void InputClassifier::notifyConfigurationChanged(const NotifyConfigurationChangedArgs* args) { // pass through mQueuedListener.notifyConfigurationChanged(args); mQueuedListener.flush(); } void InputClassifier::notifyKey(const NotifyKeyArgs* args) { // pass through mQueuedListener.notifyKey(args); mQueuedListener.flush(); } void InputClassifier::notifyMotion(const NotifyMotionArgs* args) { { // acquire lock std::scoped_lock lock(mLock); // MotionClassifier is only used for touch events, for now const bool sendToMotionClassifier = mMotionClassifier && isTouchEvent(*args); if (!sendToMotionClassifier) { mQueuedListener.notifyMotion(args); } else { NotifyMotionArgs newArgs(*args); newArgs.classification = mMotionClassifier->classify(newArgs); mQueuedListener.notifyMotion(&newArgs); } } // release lock mQueuedListener.flush(); } void InputClassifier::notifySensor(const NotifySensorArgs* args) { // pass through mQueuedListener.notifySensor(args); mQueuedListener.flush(); } void InputClassifier::notifyVibratorState(const NotifyVibratorStateArgs* args) { // pass through mQueuedListener.notifyVibratorState(args); mQueuedListener.flush(); } void InputClassifier::notifySwitch(const NotifySwitchArgs* args) { // pass through mQueuedListener.notifySwitch(args); mQueuedListener.flush(); } void InputClassifier::notifyDeviceReset(const NotifyDeviceResetArgs* args) { { // acquire lock std::scoped_lock lock(mLock); if (mMotionClassifier) { mMotionClassifier->reset(*args); } } // release lock // continue to next stage mQueuedListener.notifyDeviceReset(args); mQueuedListener.flush(); } void InputClassifier::notifyPointerCaptureChanged(const NotifyPointerCaptureChangedArgs* args) { // pass through mQueuedListener.notifyPointerCaptureChanged(args); mQueuedListener.flush(); } void InputClassifier::setMotionClassifierLocked( std::unique_ptr motionClassifier) REQUIRES(mLock) { if (motionClassifier == nullptr) { // Destroy the ScopedDeathRecipient object, which will cause it to unlinkToDeath. // We can't call 'unlink' here because we don't have the binder handle. mHalDeathRecipient = nullptr; } mMotionClassifier = std::move(motionClassifier); } void InputClassifier::dump(std::string& dump) { std::scoped_lock lock(mLock); dump += "Input Classifier State:\n"; dump += INDENT1 "Motion Classifier:\n"; if (mMotionClassifier) { mMotionClassifier->dump(dump); } else { dump += INDENT2 ""; } dump += "\n"; } void InputClassifier::monitor() { std::scoped_lock lock(mLock); } InputClassifier::~InputClassifier() { } } // namespace android