// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 Google LLC * Author: Quentin Perret */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP) extern unsigned long hyp_nr_cpus; struct host_kvm host_kvm; static struct hyp_pool host_s2_pool; static pkvm_id pkvm_guest_id(struct kvm_vcpu *vcpu) { return vcpu->arch.hw_mmu->vmid.vmid; } static DEFINE_PER_CPU(struct kvm_shadow_vm *, __current_vm); #define current_vm (*this_cpu_ptr(&__current_vm)) static void __guest_lock(struct kvm_shadow_vm *vm) { hyp_spin_lock(&vm->lock); current_vm = vm; } static void __guest_unlock(struct kvm_shadow_vm *vm) { current_vm = NULL; hyp_spin_unlock(&vm->lock); } static void host_lock_component(void) { hyp_spin_lock(&host_kvm.lock); } static void host_unlock_component(void) { hyp_spin_unlock(&host_kvm.lock); } static void hyp_lock_component(void) { hyp_spin_lock(&pkvm_pgd_lock); } static void hyp_unlock_component(void) { hyp_spin_unlock(&pkvm_pgd_lock); } static void guest_lock_component(struct kvm_vcpu *vcpu) { __guest_lock(vcpu->arch.pkvm.shadow_vm); } static void guest_unlock_component(struct kvm_vcpu *vcpu) { __guest_unlock(vcpu->arch.pkvm.shadow_vm); } static void *host_s2_zalloc_pages_exact(size_t size) { void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size)); hyp_split_page(hyp_virt_to_page(addr)); /* * The size of concatenated PGDs is always a power of two of PAGE_SIZE, * so there should be no need to free any of the tail pages to make the * allocation exact. */ WARN_ON(size != (PAGE_SIZE << get_order(size))); return addr; } static void *host_s2_zalloc_page(void *pool) { return hyp_alloc_pages(pool, 0); } static void host_s2_get_page(void *addr) { hyp_get_page(&host_s2_pool, addr); } static void host_s2_put_page(void *addr) { hyp_put_page(&host_s2_pool, addr); } static int prepare_s2_pool(void *pgt_pool_base) { unsigned long nr_pages, pfn; int ret; pfn = hyp_virt_to_pfn(pgt_pool_base); nr_pages = host_s2_pgtable_pages(); ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0); if (ret) return ret; host_kvm.mm_ops = (struct kvm_pgtable_mm_ops) { .zalloc_pages_exact = host_s2_zalloc_pages_exact, .zalloc_page = host_s2_zalloc_page, .phys_to_virt = hyp_phys_to_virt, .virt_to_phys = hyp_virt_to_phys, .page_count = hyp_page_count, .get_page = host_s2_get_page, .put_page = host_s2_put_page, }; return 0; } static void prepare_host_vtcr(void) { u32 parange, phys_shift; /* The host stage 2 is id-mapped, so use parange for T0SZ */ parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val); phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange); host_kvm.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val, id_aa64mmfr1_el1_sys_val, phys_shift); } static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot); int kvm_host_prepare_stage2(void *pgt_pool_base) { struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu; int ret; prepare_host_vtcr(); hyp_spin_lock_init(&host_kvm.lock); mmu->arch = &host_kvm.arch; ret = prepare_s2_pool(pgt_pool_base); if (ret) return ret; ret = __kvm_pgtable_stage2_init(&host_kvm.pgt, mmu, &host_kvm.mm_ops, KVM_HOST_S2_FLAGS, host_stage2_force_pte_cb); if (ret) return ret; mmu->pgd_phys = __hyp_pa(host_kvm.pgt.pgd); mmu->pgt = &host_kvm.pgt; WRITE_ONCE(mmu->vmid.vmid_gen, 0); WRITE_ONCE(mmu->vmid.vmid, 0); return 0; } static bool guest_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot) { return true; } static void *guest_s2_zalloc_pages_exact(size_t size) { void *addr = hyp_alloc_pages(¤t_vm->pool, get_order(size)); WARN_ON(size != (PAGE_SIZE << get_order(size))); hyp_split_page(hyp_virt_to_page(addr)); return addr; } static void guest_s2_free_pages_exact(void *addr, unsigned long size) { u8 order = get_order(size); unsigned int i; for (i = 0; i < (1 << order); i++) hyp_put_page(¤t_vm->pool, addr + (i * PAGE_SIZE)); } static void *guest_s2_zalloc_page(void *mc) { struct hyp_page *p; void *addr; addr = hyp_alloc_pages(¤t_vm->pool, 0); if (addr) return addr; addr = pop_hyp_memcache(mc, hyp_phys_to_virt); if (!addr) return addr; memset(addr, 0, PAGE_SIZE); p = hyp_virt_to_page(addr); memset(p, 0, sizeof(*p)); p->refcount = 1; return addr; } static void guest_s2_get_page(void *addr) { hyp_get_page(¤t_vm->pool, addr); } static void guest_s2_put_page(void *addr) { hyp_put_page(¤t_vm->pool, addr); } static void clean_dcache_guest_page(void *va, size_t size) { __clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); hyp_fixmap_unmap(); } static void invalidate_icache_guest_page(void *va, size_t size) { __invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); hyp_fixmap_unmap(); } int kvm_guest_prepare_stage2(struct kvm_shadow_vm *vm, void *pgd) { struct kvm_s2_mmu *mmu = &vm->arch.mmu; unsigned long nr_pages; int ret; nr_pages = kvm_pgtable_stage2_pgd_size(vm->arch.vtcr) >> PAGE_SHIFT; ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0); if (ret) return ret; hyp_spin_lock_init(&vm->lock); vm->mm_ops = (struct kvm_pgtable_mm_ops) { .zalloc_pages_exact = guest_s2_zalloc_pages_exact, .free_pages_exact = guest_s2_free_pages_exact, .zalloc_page = guest_s2_zalloc_page, .phys_to_virt = hyp_phys_to_virt, .virt_to_phys = hyp_virt_to_phys, .page_count = hyp_page_count, .get_page = guest_s2_get_page, .put_page = guest_s2_put_page, .dcache_clean_inval_poc = clean_dcache_guest_page, .icache_inval_pou = invalidate_icache_guest_page, }; __guest_lock(vm); ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0, guest_stage2_force_pte_cb); __guest_unlock(vm); if (ret) return ret; vm->arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd); return 0; } static int reclaim_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, enum kvm_pgtable_walk_flags flag, void * const arg) { kvm_pte_t pte = *ptep; struct hyp_page *page; if (!kvm_pte_valid(pte)) return 0; page = hyp_phys_to_page(kvm_pte_to_phys(pte)); switch (pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte))) { case PKVM_PAGE_OWNED: page->flags |= HOST_PAGE_NEED_POISONING; fallthrough; case PKVM_PAGE_SHARED_BORROWED: case PKVM_PAGE_SHARED_OWNED: page->flags |= HOST_PAGE_PENDING_RECLAIM; break; default: return -EPERM; } return 0; } void reclaim_guest_pages(struct kvm_shadow_vm *vm, struct kvm_hyp_memcache *mc) { struct kvm_pgtable_walker walker = { .cb = reclaim_walker, .flags = KVM_PGTABLE_WALK_LEAF }; void *addr; host_lock_component(); __guest_lock(vm); /* Reclaim all guest pages, and dump all pgtable pages in the hyp_pool */ BUG_ON(kvm_pgtable_walk(&vm->pgt, 0, BIT(vm->pgt.ia_bits), &walker)); kvm_pgtable_stage2_destroy(&vm->pgt); vm->arch.mmu.pgd_phys = 0ULL; __guest_unlock(vm); host_unlock_component(); /* Drain the hyp_pool into the memcache */ addr = hyp_alloc_pages(&vm->pool, 0); while (addr) { memset(hyp_virt_to_page(addr), 0, sizeof(struct hyp_page)); push_hyp_memcache(mc, addr, hyp_virt_to_phys); WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1)); addr = hyp_alloc_pages(&vm->pool, 0); } } int __pkvm_prot_finalize(void) { struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu; struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params); if (params->hcr_el2 & HCR_VM) return -EPERM; params->vttbr = kvm_get_vttbr(mmu); params->vtcr = host_kvm.arch.vtcr; params->hcr_el2 |= HCR_VM; kvm_flush_dcache_to_poc(params, sizeof(*params)); write_sysreg(params->hcr_el2, hcr_el2); __load_stage2(&host_kvm.arch.mmu, &host_kvm.arch); /* * Make sure to have an ISB before the TLB maintenance below but only * when __load_stage2() doesn't include one already. */ asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT)); /* Invalidate stale HCR bits that may be cached in TLBs */ __tlbi(vmalls12e1); dsb(nsh); isb(); return 0; } int host_stage2_unmap_dev_locked(phys_addr_t start, u64 size) { int ret; hyp_assert_lock_held(&host_kvm.lock); ret = kvm_pgtable_stage2_unmap(&host_kvm.pgt, start, size); if (ret) return ret; pkvm_iommu_host_stage2_idmap(start, start + size, 0); return 0; } static int host_stage2_unmap_dev_all(void) { struct kvm_pgtable *pgt = &host_kvm.pgt; struct memblock_region *reg; u64 addr = 0; int i, ret; /* Unmap all non-memory regions to recycle the pages */ for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) { reg = &hyp_memory[i]; ret = host_stage2_unmap_dev_locked(addr, reg->base - addr); if (ret) return ret; } return host_stage2_unmap_dev_locked(addr, BIT(pgt->ia_bits) - addr); } struct kvm_mem_range { u64 start; u64 end; }; static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range) { int cur, left = 0, right = hyp_memblock_nr; struct memblock_region *reg; phys_addr_t end; range->start = 0; range->end = ULONG_MAX; /* The list of memblock regions is sorted, binary search it */ while (left < right) { cur = (left + right) >> 1; reg = &hyp_memory[cur]; end = reg->base + reg->size; if (addr < reg->base) { right = cur; range->end = reg->base; } else if (addr >= end) { left = cur + 1; range->start = end; } else { range->start = reg->base; range->end = end; return reg; } } return NULL; } bool addr_is_memory(phys_addr_t phys) { struct kvm_mem_range range; return !!find_mem_range(phys, &range); } static bool addr_is_allowed_memory(phys_addr_t phys) { struct memblock_region *reg; struct kvm_mem_range range; reg = find_mem_range(phys, &range); return reg && !(reg->flags & MEMBLOCK_NOMAP); } static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range) { return range->start <= addr && addr < range->end; } static bool range_is_memory(u64 start, u64 end) { struct kvm_mem_range r; if (!find_mem_range(start, &r)) return false; return is_in_mem_range(end - 1, &r); } static inline int __host_stage2_idmap(u64 start, u64 end, enum kvm_pgtable_prot prot, bool update_iommu) { int ret; ret = kvm_pgtable_stage2_map(&host_kvm.pgt, start, end - start, start, prot, &host_s2_pool); if (ret) return ret; if (update_iommu) pkvm_iommu_host_stage2_idmap(start, end, prot); return 0; } /* * The pool has been provided with enough pages to cover all of memory with * page granularity, but it is difficult to know how much of the MMIO range * we will need to cover upfront, so we may need to 'recycle' the pages if we * run out. */ #define host_stage2_try(fn, ...) \ ({ \ int __ret; \ hyp_assert_lock_held(&host_kvm.lock); \ __ret = fn(__VA_ARGS__); \ if (__ret == -ENOMEM) { \ __ret = host_stage2_unmap_dev_all(); \ if (!__ret) \ __ret = fn(__VA_ARGS__); \ } \ __ret; \ }) static inline bool range_included(struct kvm_mem_range *child, struct kvm_mem_range *parent) { return parent->start <= child->start && child->end <= parent->end; } static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range) { struct kvm_mem_range cur; kvm_pte_t pte; u32 level; int ret; hyp_assert_lock_held(&host_kvm.lock); ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, &level); if (ret) return ret; if (kvm_pte_valid(pte)) return -EAGAIN; if (pte) return -EPERM; do { u64 granule = kvm_granule_size(level); cur.start = ALIGN_DOWN(addr, granule); cur.end = cur.start + granule; level++; } while ((level < KVM_PGTABLE_MAX_LEVELS) && !(kvm_level_supports_block_mapping(level) && range_included(&cur, range))); *range = cur; return 0; } int host_stage2_idmap_locked(phys_addr_t addr, u64 size, enum kvm_pgtable_prot prot, bool update_iommu) { return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot, update_iommu); } #define KVM_INVALID_PTE_OWNER_MASK GENMASK(32, 1) static kvm_pte_t kvm_init_invalid_leaf_owner(pkvm_id owner_id) { return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id); } int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, pkvm_id owner_id) { kvm_pte_t annotation = kvm_init_invalid_leaf_owner(owner_id); enum kvm_pgtable_prot prot; int ret; ret = host_stage2_try(kvm_pgtable_stage2_annotate, &host_kvm.pgt, addr, size, &host_s2_pool, annotation); if (ret) return ret; prot = owner_id == pkvm_host_id ? PKVM_HOST_MEM_PROT : 0; pkvm_iommu_host_stage2_idmap(addr, addr + size, prot); return 0; } static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot) { /* * Block mappings must be used with care in the host stage-2 as a * kvm_pgtable_stage2_map() operation targeting a page in the range of * an existing block will delete the block under the assumption that * mappings in the rest of the block range can always be rebuilt lazily. * That assumption is correct for the host stage-2 with RWX mappings * targeting memory or RW mappings targeting MMIO ranges (see * host_stage2_idmap() below which implements some of the host memory * abort logic). However, this is not safe for any other mappings where * the host stage-2 page-table is in fact the only place where this * state is stored. In all those cases, it is safer to use page-level * mappings, hence avoiding to lose the state because of side-effects in * kvm_pgtable_stage2_map(). */ if (range_is_memory(addr, end)) return prot != PKVM_HOST_MEM_PROT; else return prot != PKVM_HOST_MMIO_PROT; } static int host_stage2_idmap(u64 addr) { struct kvm_mem_range range; bool is_memory = !!find_mem_range(addr, &range); enum kvm_pgtable_prot prot; int ret; hyp_assert_lock_held(&host_kvm.lock); prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT; /* * Adjust against IOMMU devices first. host_stage2_adjust_range() should * be called last for proper alignment. */ if (!is_memory) { ret = pkvm_iommu_host_stage2_adjust_range(addr, &range.start, &range.end); if (ret) return ret; } ret = host_stage2_adjust_range(addr, &range); if (ret) return ret; return host_stage2_idmap_locked(range.start, range.end - range.start, prot, false); } static bool is_dabt(u64 esr) { return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_LOW; } static void host_inject_abort(struct kvm_cpu_context *host_ctxt) { u64 spsr = read_sysreg_el2(SYS_SPSR); u64 esr = read_sysreg_el2(SYS_ESR); u64 ventry, ec; /* Repaint the ESR to report a same-level fault if taken from EL1 */ if ((spsr & PSR_MODE_MASK) != PSR_MODE_EL0t) { ec = ESR_ELx_EC(esr); if (ec == ESR_ELx_EC_DABT_LOW) ec = ESR_ELx_EC_DABT_CUR; else if (ec == ESR_ELx_EC_IABT_LOW) ec = ESR_ELx_EC_IABT_CUR; else WARN_ON(1); esr &= ~ESR_ELx_EC_MASK; esr |= ec << ESR_ELx_EC_SHIFT; } /* * Since S1PTW should only ever be set for stage-2 faults, we're pretty * much guaranteed that it won't be set in ESR_EL1 by the hardware. So, * let's use that bit to allow the host abort handler to differentiate * this abort from normal userspace faults. * * Note: although S1PTW is RES0 at EL1, it is guaranteed by the * architecture to be backed by flops, so it should be safe to use. */ esr |= ESR_ELx_S1PTW; write_sysreg_el1(esr, SYS_ESR); write_sysreg_el1(spsr, SYS_SPSR); write_sysreg_el1(read_sysreg_el2(SYS_ELR), SYS_ELR); write_sysreg_el1(read_sysreg_el2(SYS_FAR), SYS_FAR); ventry = read_sysreg_el1(SYS_VBAR); ventry += get_except64_offset(spsr, PSR_MODE_EL1h, except_type_sync); write_sysreg_el2(ventry, SYS_ELR); spsr = get_except64_cpsr(spsr, system_supports_mte(), read_sysreg_el1(SYS_SCTLR), PSR_MODE_EL1h); write_sysreg_el2(spsr, SYS_SPSR); } void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt) { struct kvm_vcpu_fault_info fault; u64 esr, addr; int ret = -EPERM; esr = read_sysreg_el2(SYS_ESR); BUG_ON(!__get_fault_info(esr, &fault)); addr = (fault.hpfar_el2 & HPFAR_MASK) << 8; addr |= fault.far_el2 & FAR_MASK; host_lock_component(); /* Check if an IOMMU device can handle the DABT. */ if (is_dabt(esr) && !addr_is_memory(addr) && pkvm_iommu_host_dabt_handler(host_ctxt, esr, addr)) ret = 0; /* If not handled, attempt to map the page. */ if (ret == -EPERM) ret = host_stage2_idmap(addr); host_unlock_component(); if (ret == -EPERM) host_inject_abort(host_ctxt); else BUG_ON(ret && ret != -EAGAIN); } /* This corresponds to locking order */ enum pkvm_component_id { PKVM_ID_HOST, PKVM_ID_HYP, PKVM_ID_GUEST, PKVM_ID_FFA, }; struct pkvm_mem_transition { u64 nr_pages; struct { enum pkvm_component_id id; /* Address in the initiator's address space */ u64 addr; union { struct { /* Address in the completer's address space */ u64 completer_addr; } host; struct { u64 completer_addr; } hyp; struct { struct kvm_vcpu *vcpu; } guest; }; } initiator; struct { enum pkvm_component_id id; union { struct { struct kvm_vcpu *vcpu; phys_addr_t phys; } guest; }; } completer; }; struct pkvm_mem_share { const struct pkvm_mem_transition tx; const enum kvm_pgtable_prot completer_prot; }; struct pkvm_mem_donation { const struct pkvm_mem_transition tx; }; static pkvm_id initiator_owner_id(const struct pkvm_mem_transition *tx) { switch (tx->initiator.id) { case PKVM_ID_HOST: return pkvm_host_id; case PKVM_ID_HYP: return pkvm_hyp_id; case PKVM_ID_GUEST: return pkvm_guest_id(tx->initiator.guest.vcpu); default: WARN_ON(1); return -1; } } static pkvm_id completer_owner_id(const struct pkvm_mem_transition *tx) { switch (tx->completer.id) { case PKVM_ID_HOST: return pkvm_host_id; case PKVM_ID_HYP: return pkvm_hyp_id; case PKVM_ID_GUEST: return pkvm_guest_id(tx->completer.guest.vcpu); default: WARN_ON(1); return -1; } } struct check_walk_data { enum pkvm_page_state desired; enum pkvm_page_state (*get_page_state)(kvm_pte_t pte); }; static int __check_page_state_visitor(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, enum kvm_pgtable_walk_flags flag, void * const arg) { struct check_walk_data *d = arg; kvm_pte_t pte = *ptep; if (kvm_pte_valid(pte) && !addr_is_allowed_memory(kvm_pte_to_phys(pte))) return -EINVAL; return d->get_page_state(pte) == d->desired ? 0 : -EPERM; } static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size, struct check_walk_data *data) { struct kvm_pgtable_walker walker = { .cb = __check_page_state_visitor, .arg = data, .flags = KVM_PGTABLE_WALK_LEAF, }; return kvm_pgtable_walk(pgt, addr, size, &walker); } static enum pkvm_page_state host_get_page_state(kvm_pte_t pte) { if (!kvm_pte_valid(pte) && pte) return PKVM_NOPAGE; return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte)); } static int __host_check_page_state_range(u64 addr, u64 size, enum pkvm_page_state state) { struct check_walk_data d = { .desired = state, .get_page_state = host_get_page_state, }; hyp_assert_lock_held(&host_kvm.lock); return check_page_state_range(&host_kvm.pgt, addr, size, &d); } static int __host_set_page_state_range(u64 addr, u64 size, enum pkvm_page_state state) { enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state); return host_stage2_idmap_locked(addr, size, prot, true); } static int host_request_owned_transition(u64 *completer_addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; u64 addr = tx->initiator.addr; *completer_addr = tx->initiator.host.completer_addr; return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED); } static int host_request_unshare(u64 *completer_addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; u64 addr = tx->initiator.addr; *completer_addr = tx->initiator.host.completer_addr; return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED); } static int host_initiate_share(u64 *completer_addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; u64 addr = tx->initiator.addr; *completer_addr = tx->initiator.host.completer_addr; return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED); } static int host_initiate_unshare(u64 *completer_addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; u64 addr = tx->initiator.addr; *completer_addr = tx->initiator.host.completer_addr; return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED); } static int host_initiate_donation(u64 *completer_addr, const struct pkvm_mem_transition *tx) { pkvm_id owner_id = completer_owner_id(tx); u64 size = tx->nr_pages * PAGE_SIZE; *completer_addr = tx->initiator.host.completer_addr; return host_stage2_set_owner_locked(tx->initiator.addr, size, owner_id); } static bool __host_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx) { return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) || tx->initiator.id != PKVM_ID_HYP); } static int __host_ack_transition(u64 addr, const struct pkvm_mem_transition *tx, enum pkvm_page_state state) { u64 size = tx->nr_pages * PAGE_SIZE; if (__host_ack_skip_pgtable_check(tx)) return 0; return __host_check_page_state_range(addr, size, state); } static int host_ack_share(u64 addr, const struct pkvm_mem_transition *tx, enum kvm_pgtable_prot perms) { if (perms != PKVM_HOST_MEM_PROT) return -EPERM; return __host_ack_transition(addr, tx, PKVM_NOPAGE); } static int host_ack_donation(u64 addr, const struct pkvm_mem_transition *tx) { return __host_ack_transition(addr, tx, PKVM_NOPAGE); } static int host_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx) { return __host_ack_transition(addr, tx, PKVM_PAGE_SHARED_BORROWED); } static int host_complete_share(u64 addr, const struct pkvm_mem_transition *tx, enum kvm_pgtable_prot perms) { u64 size = tx->nr_pages * PAGE_SIZE; if (tx->initiator.id == PKVM_ID_GUEST) psci_mem_protect_dec(); return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_BORROWED); } static int host_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; pkvm_id owner_id = initiator_owner_id(tx); if (tx->initiator.id == PKVM_ID_GUEST) psci_mem_protect_inc(); return host_stage2_set_owner_locked(addr, size, owner_id); } static int host_complete_donation(u64 addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; pkvm_id host_id = completer_owner_id(tx); return host_stage2_set_owner_locked(addr, size, host_id); } static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte) { if (!kvm_pte_valid(pte)) return PKVM_NOPAGE; return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte)); } static int __hyp_check_page_state_range(u64 addr, u64 size, enum pkvm_page_state state) { struct check_walk_data d = { .desired = state, .get_page_state = hyp_get_page_state, }; hyp_assert_lock_held(&pkvm_pgd_lock); return check_page_state_range(&pkvm_pgtable, addr, size, &d); } static int hyp_request_donation(u64 *completer_addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; u64 addr = tx->initiator.addr; *completer_addr = tx->initiator.hyp.completer_addr; return __hyp_check_page_state_range(addr, size, PKVM_PAGE_OWNED); } static int hyp_initiate_donation(u64 *completer_addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; int ret; *completer_addr = tx->initiator.hyp.completer_addr; ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, tx->initiator.addr, size); return (ret != size) ? -EFAULT : 0; } static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx) { return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) || tx->initiator.id != PKVM_ID_HOST); } static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx, enum kvm_pgtable_prot perms) { u64 size = tx->nr_pages * PAGE_SIZE; if (perms != PAGE_HYP) return -EPERM; if (__hyp_ack_skip_pgtable_check(tx)) return 0; return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE); } static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr)) return -EBUSY; if (__hyp_ack_skip_pgtable_check(tx)) return 0; return __hyp_check_page_state_range(addr, size, PKVM_PAGE_SHARED_BORROWED); } static int hyp_ack_donation(u64 addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; if (__hyp_ack_skip_pgtable_check(tx)) return 0; return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE); } static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx, enum kvm_pgtable_prot perms) { void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE); enum kvm_pgtable_prot prot; prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED); return pkvm_create_mappings_locked(start, end, prot); } static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size); return (ret != size) ? -EFAULT : 0; } static int hyp_complete_donation(u64 addr, const struct pkvm_mem_transition *tx) { void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE); enum kvm_pgtable_prot prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED); return pkvm_create_mappings_locked(start, end, prot); } static enum pkvm_page_state guest_get_page_state(kvm_pte_t pte) { if (!kvm_pte_valid(pte)) return PKVM_NOPAGE; return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte)); } static int __guest_check_page_state_range(struct kvm_vcpu *vcpu, u64 addr, u64 size, enum pkvm_page_state state) { struct kvm_shadow_vm *vm = vcpu->arch.pkvm.shadow_vm; struct check_walk_data d = { .desired = state, .get_page_state = guest_get_page_state, }; hyp_assert_lock_held(&vm->lock); return check_page_state_range(&vm->pgt, addr, size, &d); } static int guest_ack_share(u64 addr, const struct pkvm_mem_transition *tx, enum kvm_pgtable_prot perms) { u64 size = tx->nr_pages * PAGE_SIZE; if (perms != KVM_PGTABLE_PROT_RWX) return -EPERM; return __guest_check_page_state_range(tx->completer.guest.vcpu, addr, size, PKVM_NOPAGE); } static int guest_ack_donation(u64 addr, const struct pkvm_mem_transition *tx) { u64 size = tx->nr_pages * PAGE_SIZE; return __guest_check_page_state_range(tx->completer.guest.vcpu, addr, size, PKVM_NOPAGE); } static int guest_complete_share(u64 addr, const struct pkvm_mem_transition *tx, enum kvm_pgtable_prot perms) { struct kvm_vcpu *vcpu = tx->completer.guest.vcpu; struct kvm_shadow_vm *vm = vcpu->arch.pkvm.shadow_vm; u64 size = tx->nr_pages * PAGE_SIZE; enum kvm_pgtable_prot prot; prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED); return kvm_pgtable_stage2_map(&vm->pgt, addr, size, tx->completer.guest.phys, prot, &vcpu->arch.pkvm_memcache); } static int guest_complete_donation(u64 addr, const struct pkvm_mem_transition *tx) { enum kvm_pgtable_prot prot = pkvm_mkstate(KVM_PGTABLE_PROT_RWX, PKVM_PAGE_OWNED); struct kvm_vcpu *vcpu = tx->completer.guest.vcpu; struct kvm_shadow_vm *vm = vcpu->arch.pkvm.shadow_vm; phys_addr_t phys = tx->completer.guest.phys; u64 size = tx->nr_pages * PAGE_SIZE; int err; if (tx->initiator.id == PKVM_ID_HOST) { psci_mem_protect_inc(); if (ipa_in_pvmfw_region(vm, addr)) { err = pkvm_load_pvmfw_pages(vm, addr, phys, size); if (err) return err; } } return kvm_pgtable_stage2_map(&vm->pgt, addr, size, phys, prot, &vcpu->arch.pkvm_memcache); } static int __guest_get_completer_addr(u64 *completer_addr, phys_addr_t phys, const struct pkvm_mem_transition *tx) { switch (tx->completer.id) { case PKVM_ID_HOST: *completer_addr = phys; break; case PKVM_ID_HYP: *completer_addr = (u64)__hyp_va(phys); break; default: return -EINVAL; } return 0; } static int __guest_request_page_transition(u64 *completer_addr, const struct pkvm_mem_transition *tx, enum pkvm_page_state desired) { struct kvm_vcpu *vcpu = tx->initiator.guest.vcpu; struct kvm_protected_vcpu *pkvm = &vcpu->arch.pkvm; struct kvm_shadow_vm *vm = pkvm->shadow_vm; enum pkvm_page_state state; phys_addr_t phys; kvm_pte_t pte; u32 level; int ret; if (tx->nr_pages != 1) return -E2BIG; ret = kvm_pgtable_get_leaf(&vm->pgt, tx->initiator.addr, &pte, &level); if (ret) return ret; state = guest_get_page_state(pte); if (state == PKVM_NOPAGE) return -EFAULT; if (state != desired) return -EPERM; /* * We only deal with page granular mappings in the guest for now as * the pgtable code relies on being able to recreate page mappings * lazily after zapping a block mapping, which doesn't work once the * pages have been donated. */ if (level != KVM_PGTABLE_MAX_LEVELS - 1) return -EINVAL; phys = kvm_pte_to_phys(pte); if (!addr_is_allowed_memory(phys)) return -EINVAL; return __guest_get_completer_addr(completer_addr, phys, tx); } static int guest_request_share(u64 *completer_addr, const struct pkvm_mem_transition *tx) { return __guest_request_page_transition(completer_addr, tx, PKVM_PAGE_OWNED); } static int guest_request_unshare(u64 *completer_addr, const struct pkvm_mem_transition *tx) { return __guest_request_page_transition(completer_addr, tx, PKVM_PAGE_SHARED_OWNED); } static int __guest_initiate_page_transition(u64 *completer_addr, const struct pkvm_mem_transition *tx, enum pkvm_page_state state) { struct kvm_vcpu *vcpu = tx->initiator.guest.vcpu; struct kvm_protected_vcpu *pkvm = &vcpu->arch.pkvm; struct kvm_shadow_vm *vm = pkvm->shadow_vm; struct kvm_hyp_memcache *mc = &vcpu->arch.pkvm_memcache; u64 size = tx->nr_pages * PAGE_SIZE; u64 addr = tx->initiator.addr; enum kvm_pgtable_prot prot; phys_addr_t phys; kvm_pte_t pte; int ret; ret = kvm_pgtable_get_leaf(&vm->pgt, addr, &pte, NULL); if (ret) return ret; phys = kvm_pte_to_phys(pte); prot = pkvm_mkstate(kvm_pgtable_stage2_pte_prot(pte), state); ret = kvm_pgtable_stage2_map(&vm->pgt, addr, size, phys, prot, mc); if (ret) return ret; return __guest_get_completer_addr(completer_addr, phys, tx); } static int guest_initiate_share(u64 *completer_addr, const struct pkvm_mem_transition *tx) { return __guest_initiate_page_transition(completer_addr, tx, PKVM_PAGE_SHARED_OWNED); } static int guest_initiate_unshare(u64 *completer_addr, const struct pkvm_mem_transition *tx) { return __guest_initiate_page_transition(completer_addr, tx, PKVM_PAGE_OWNED); } static int check_share(struct pkvm_mem_share *share) { const struct pkvm_mem_transition *tx = &share->tx; u64 completer_addr; int ret; switch (tx->initiator.id) { case PKVM_ID_HOST: ret = host_request_owned_transition(&completer_addr, tx); break; case PKVM_ID_GUEST: ret = guest_request_share(&completer_addr, tx); break; default: ret = -EINVAL; } if (ret) return ret; switch (tx->completer.id) { case PKVM_ID_HOST: ret = host_ack_share(completer_addr, tx, share->completer_prot); break; case PKVM_ID_HYP: ret = hyp_ack_share(completer_addr, tx, share->completer_prot); break; case PKVM_ID_GUEST: ret = guest_ack_share(completer_addr, tx, share->completer_prot); break; case PKVM_ID_FFA: /* * We only check the host; the secure side will check the other * end when we forward the FFA call. */ ret = 0; break; default: ret = -EINVAL; } return ret; } static int __do_share(struct pkvm_mem_share *share) { const struct pkvm_mem_transition *tx = &share->tx; u64 completer_addr; int ret; switch (tx->initiator.id) { case PKVM_ID_HOST: ret = host_initiate_share(&completer_addr, tx); break; case PKVM_ID_GUEST: ret = guest_initiate_share(&completer_addr, tx); break; default: ret = -EINVAL; } if (ret) return ret; switch (tx->completer.id) { case PKVM_ID_HOST: ret = host_complete_share(completer_addr, tx, share->completer_prot); break; case PKVM_ID_HYP: ret = hyp_complete_share(completer_addr, tx, share->completer_prot); break; case PKVM_ID_GUEST: ret = guest_complete_share(completer_addr, tx, share->completer_prot); break; case PKVM_ID_FFA: /* * We're not responsible for any secure page-tables, so there's * nothing to do here. */ ret = 0; break; default: ret = -EINVAL; } return ret; } /* * do_share(): * * The page owner grants access to another component with a given set * of permissions. * * Initiator: OWNED => SHARED_OWNED * Completer: NOPAGE => SHARED_BORROWED */ static int do_share(struct pkvm_mem_share *share) { int ret; ret = check_share(share); if (ret) return ret; return WARN_ON(__do_share(share)); } static int check_unshare(struct pkvm_mem_share *share) { const struct pkvm_mem_transition *tx = &share->tx; u64 completer_addr; int ret; switch (tx->initiator.id) { case PKVM_ID_HOST: ret = host_request_unshare(&completer_addr, tx); break; case PKVM_ID_GUEST: ret = guest_request_unshare(&completer_addr, tx); break; default: ret = -EINVAL; } if (ret) return ret; switch (tx->completer.id) { case PKVM_ID_HOST: ret = host_ack_unshare(completer_addr, tx); break; case PKVM_ID_HYP: ret = hyp_ack_unshare(completer_addr, tx); break; case PKVM_ID_FFA: /* See check_share() */ ret = 0; break; default: ret = -EINVAL; } return ret; } static int __do_unshare(struct pkvm_mem_share *share) { const struct pkvm_mem_transition *tx = &share->tx; u64 completer_addr; int ret; switch (tx->initiator.id) { case PKVM_ID_HOST: ret = host_initiate_unshare(&completer_addr, tx); break; case PKVM_ID_GUEST: ret = guest_initiate_unshare(&completer_addr, tx); break; default: ret = -EINVAL; } if (ret) return ret; switch (tx->completer.id) { case PKVM_ID_HOST: ret = host_complete_unshare(completer_addr, tx); break; case PKVM_ID_HYP: ret = hyp_complete_unshare(completer_addr, tx); break; case PKVM_ID_FFA: /* See __do_share() */ ret = 0; break; default: ret = -EINVAL; } return ret; } /* * do_unshare(): * * The page owner revokes access from another component for a range of * pages which were previously shared using do_share(). * * Initiator: SHARED_OWNED => OWNED * Completer: SHARED_BORROWED => NOPAGE */ static int do_unshare(struct pkvm_mem_share *share) { int ret; ret = check_unshare(share); if (ret) return ret; return WARN_ON(__do_unshare(share)); } static int check_donation(struct pkvm_mem_donation *donation) { const struct pkvm_mem_transition *tx = &donation->tx; u64 completer_addr; int ret; switch (tx->initiator.id) { case PKVM_ID_HOST: ret = host_request_owned_transition(&completer_addr, tx); break; case PKVM_ID_HYP: ret = hyp_request_donation(&completer_addr, tx); break; default: ret = -EINVAL; } if (ret) return ret; switch (tx->completer.id){ case PKVM_ID_HOST: ret = host_ack_donation(completer_addr, tx); break; case PKVM_ID_HYP: ret = hyp_ack_donation(completer_addr, tx); break; case PKVM_ID_GUEST: ret = guest_ack_donation(completer_addr, tx); break; default: ret = -EINVAL; } return ret; } static int __do_donate(struct pkvm_mem_donation *donation) { const struct pkvm_mem_transition *tx = &donation->tx; u64 completer_addr; int ret; switch (tx->initiator.id) { case PKVM_ID_HOST: ret = host_initiate_donation(&completer_addr, tx); break; case PKVM_ID_HYP: ret = hyp_initiate_donation(&completer_addr, tx); break; default: ret = -EINVAL; } if (ret) return ret; switch (tx->completer.id){ case PKVM_ID_HOST: ret = host_complete_donation(completer_addr, tx); break; case PKVM_ID_HYP: ret = hyp_complete_donation(completer_addr, tx); break; case PKVM_ID_GUEST: ret = guest_complete_donation(completer_addr, tx); break; default: ret = -EINVAL; } return ret; } /* * do_donate(): * * The page owner transfers ownership to another component, losing access * as a consequence. * * Initiator: OWNED => NOPAGE * Completer: NOPAGE => OWNED */ static int do_donate(struct pkvm_mem_donation *donation) { int ret; ret = check_donation(donation); if (ret) return ret; return WARN_ON(__do_donate(donation)); } int __pkvm_host_share_hyp(u64 pfn) { int ret; u64 host_addr = hyp_pfn_to_phys(pfn); u64 hyp_addr = (u64)__hyp_va(host_addr); struct pkvm_mem_share share = { .tx = { .nr_pages = 1, .initiator = { .id = PKVM_ID_HOST, .addr = host_addr, .host = { .completer_addr = hyp_addr, }, }, .completer = { .id = PKVM_ID_HYP, }, }, .completer_prot = PAGE_HYP, }; host_lock_component(); hyp_lock_component(); ret = do_share(&share); hyp_unlock_component(); host_unlock_component(); return ret; } int __pkvm_guest_share_host(struct kvm_vcpu *vcpu, u64 ipa) { int ret; struct pkvm_mem_share share = { .tx = { .nr_pages = 1, .initiator = { .id = PKVM_ID_GUEST, .addr = ipa, .guest = { .vcpu = vcpu, }, }, .completer = { .id = PKVM_ID_HOST, }, }, .completer_prot = PKVM_HOST_MEM_PROT, }; host_lock_component(); guest_lock_component(vcpu); ret = do_share(&share); guest_unlock_component(vcpu); host_unlock_component(); return ret; } int __pkvm_guest_unshare_host(struct kvm_vcpu *vcpu, u64 ipa) { int ret; struct pkvm_mem_share share = { .tx = { .nr_pages = 1, .initiator = { .id = PKVM_ID_GUEST, .addr = ipa, .guest = { .vcpu = vcpu, }, }, .completer = { .id = PKVM_ID_HOST, }, }, .completer_prot = PKVM_HOST_MEM_PROT, }; host_lock_component(); guest_lock_component(vcpu); ret = do_unshare(&share); guest_unlock_component(vcpu); host_unlock_component(); return ret; } int __pkvm_host_unshare_hyp(u64 pfn) { int ret; u64 host_addr = hyp_pfn_to_phys(pfn); u64 hyp_addr = (u64)__hyp_va(host_addr); struct pkvm_mem_share share = { .tx = { .nr_pages = 1, .initiator = { .id = PKVM_ID_HOST, .addr = host_addr, .host = { .completer_addr = hyp_addr, }, }, .completer = { .id = PKVM_ID_HYP, }, }, .completer_prot = PAGE_HYP, }; host_lock_component(); hyp_lock_component(); ret = do_unshare(&share); hyp_unlock_component(); host_unlock_component(); return ret; } int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages) { int ret; u64 host_addr = hyp_pfn_to_phys(pfn); u64 hyp_addr = (u64)__hyp_va(host_addr); struct pkvm_mem_donation donation = { .tx = { .nr_pages = nr_pages, .initiator = { .id = PKVM_ID_HOST, .addr = host_addr, .host = { .completer_addr = hyp_addr, }, }, .completer = { .id = PKVM_ID_HYP, }, }, }; host_lock_component(); hyp_lock_component(); ret = do_donate(&donation); hyp_unlock_component(); host_unlock_component(); return ret; } int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages) { int ret; u64 host_addr = hyp_pfn_to_phys(pfn); u64 hyp_addr = (u64)__hyp_va(host_addr); struct pkvm_mem_donation donation = { .tx = { .nr_pages = nr_pages, .initiator = { .id = PKVM_ID_HYP, .addr = hyp_addr, .hyp = { .completer_addr = host_addr, }, }, .completer = { .id = PKVM_ID_HOST, }, }, }; host_lock_component(); hyp_lock_component(); ret = do_donate(&donation); hyp_unlock_component(); host_unlock_component(); return ret; } int hyp_pin_shared_mem(void *from, void *to) { u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); u64 end = PAGE_ALIGN((u64)to); u64 size = end - start; int ret; host_lock_component(); hyp_lock_component(); ret = __host_check_page_state_range(__hyp_pa(start), size, PKVM_PAGE_SHARED_OWNED); if (ret) goto unlock; ret = __hyp_check_page_state_range(start, size, PKVM_PAGE_SHARED_BORROWED); if (ret) goto unlock; for (cur = start; cur < end; cur += PAGE_SIZE) hyp_page_ref_inc(hyp_virt_to_page(cur)); unlock: hyp_unlock_component(); host_unlock_component(); return ret; } void hyp_unpin_shared_mem(void *from, void *to) { u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); u64 end = PAGE_ALIGN((u64)to); host_lock_component(); hyp_lock_component(); for (cur = start; cur < end; cur += PAGE_SIZE) hyp_page_ref_dec(hyp_virt_to_page(cur)); hyp_unlock_component(); host_unlock_component(); } int __pkvm_host_share_guest(u64 pfn, u64 gfn, struct kvm_vcpu *vcpu) { int ret; u64 host_addr = hyp_pfn_to_phys(pfn); u64 guest_addr = hyp_pfn_to_phys(gfn); struct pkvm_mem_share share = { .tx = { .nr_pages = 1, .initiator = { .id = PKVM_ID_HOST, .addr = host_addr, .host = { .completer_addr = guest_addr, }, }, .completer = { .id = PKVM_ID_GUEST, .guest = { .vcpu = vcpu, .phys = host_addr, }, }, }, .completer_prot = KVM_PGTABLE_PROT_RWX, }; host_lock_component(); guest_lock_component(vcpu); ret = do_share(&share); guest_unlock_component(vcpu); host_unlock_component(); return ret; } int __pkvm_host_donate_guest(u64 pfn, u64 gfn, struct kvm_vcpu *vcpu) { int ret; u64 host_addr = hyp_pfn_to_phys(pfn); u64 guest_addr = hyp_pfn_to_phys(gfn); struct pkvm_mem_donation donation = { .tx = { .nr_pages = 1, .initiator = { .id = PKVM_ID_HOST, .addr = host_addr, .host = { .completer_addr = guest_addr, }, }, .completer = { .id = PKVM_ID_GUEST, .guest = { .vcpu = vcpu, .phys = host_addr, }, }, }, }; host_lock_component(); guest_lock_component(vcpu); ret = do_donate(&donation); guest_unlock_component(vcpu); host_unlock_component(); return ret; } int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages) { int ret; struct pkvm_mem_share share = { .tx = { .nr_pages = nr_pages, .initiator = { .id = PKVM_ID_HOST, .addr = hyp_pfn_to_phys(pfn), }, .completer = { .id = PKVM_ID_FFA, }, }, }; host_lock_component(); ret = do_share(&share); host_unlock_component(); return ret; } int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages) { int ret; struct pkvm_mem_share share = { .tx = { .nr_pages = nr_pages, .initiator = { .id = PKVM_ID_HOST, .addr = hyp_pfn_to_phys(pfn), }, .completer = { .id = PKVM_ID_FFA, }, }, }; host_lock_component(); ret = do_unshare(&share); host_unlock_component(); return ret; } static int hyp_zero_page(phys_addr_t phys) { void *addr; addr = hyp_fixmap_map(phys); if (!addr) return -EINVAL; memset(addr, 0, PAGE_SIZE); /* * Prefer kvm_flush_dcache_to_poc() over __clean_dcache_guest_page() * here as the latter may elide the CMO under the assumption that FWB * will be enabled on CPUs that support it. This is incorrect for the * host stage-2 and would otherwise lead to a malicious host potentially * being able to read the content of newly reclaimed guest pages. */ kvm_flush_dcache_to_poc(addr, PAGE_SIZE); return hyp_fixmap_unmap(); } int __pkvm_host_reclaim_page(u64 pfn) { u64 addr = hyp_pfn_to_phys(pfn); struct hyp_page *page; kvm_pte_t pte; int ret; host_lock_component(); ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, NULL); if (ret) goto unlock; if (host_get_page_state(pte) == PKVM_PAGE_OWNED) goto unlock; page = hyp_phys_to_page(addr); if (!(page->flags & HOST_PAGE_PENDING_RECLAIM)) { ret = -EPERM; goto unlock; } if (page->flags & HOST_PAGE_NEED_POISONING) { ret = hyp_zero_page(addr); if (ret) goto unlock; page->flags &= ~HOST_PAGE_NEED_POISONING; psci_mem_protect_dec(); } ret = host_stage2_set_owner_locked(addr, PAGE_SIZE, pkvm_host_id); if (ret) goto unlock; page->flags &= ~HOST_PAGE_PENDING_RECLAIM; unlock: host_unlock_component(); return ret; } /* Replace this with something more structured once day */ #define MMIO_NOTE (('M' << 24 | 'M' << 16 | 'I' << 8 | 'O') << 1) static bool __check_ioguard_page(struct kvm_vcpu *vcpu, u64 ipa) { struct kvm_shadow_vm *vm = vcpu->arch.pkvm.shadow_vm; kvm_pte_t pte; u32 level; int ret; ret = kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, &level); if (ret) return false; /* Must be a PAGE_SIZE mapping with our annotation */ return (BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)) == PAGE_SIZE && pte == MMIO_NOTE); } int __pkvm_install_ioguard_page(struct kvm_vcpu *vcpu, u64 ipa) { struct kvm_shadow_vm *vm; kvm_pte_t pte; u32 level; int ret; vm = vcpu->arch.pkvm.shadow_vm; if (!test_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vm->arch.flags)) return -EINVAL; if (ipa & ~PAGE_MASK) return -EINVAL; guest_lock_component(vcpu); ret = kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, &level); if (ret) goto unlock; if (pte && BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)) == PAGE_SIZE) { /* * Already flagged as MMIO, let's accept it, and fail * otherwise */ if (pte != MMIO_NOTE) ret = -EBUSY; goto unlock; } ret = kvm_pgtable_stage2_annotate(&vm->pgt, ipa, PAGE_SIZE, &vcpu->arch.pkvm_memcache, MMIO_NOTE); unlock: guest_unlock_component(vcpu); return ret; } int __pkvm_remove_ioguard_page(struct kvm_vcpu *vcpu, u64 ipa) { struct kvm_shadow_vm *vm = vcpu->arch.pkvm.shadow_vm; if (!test_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vm->arch.flags)) return -EINVAL; guest_lock_component(vcpu); if (__check_ioguard_page(vcpu, ipa)) { struct kvm_shadow_vm *vm = vcpu->arch.pkvm.shadow_vm; kvm_pgtable_stage2_unmap(&vm->pgt, ALIGN_DOWN(ipa, PAGE_SIZE), PAGE_SIZE); } guest_unlock_component(vcpu); return 0; } bool __pkvm_check_ioguard_page(struct kvm_vcpu *vcpu) { struct kvm_shadow_vm *vm = vcpu->arch.pkvm.shadow_vm; u64 ipa, end; bool ret; if (!kvm_vcpu_dabt_isvalid(vcpu)) return false; if (!test_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vm->arch.flags)) return true; ipa = kvm_vcpu_get_fault_ipa(vcpu); ipa |= kvm_vcpu_get_hfar(vcpu) & FAR_MASK; end = ipa + kvm_vcpu_dabt_get_as(vcpu) - 1; guest_lock_component(vcpu); ret = __check_ioguard_page(vcpu, ipa); if ((end & PAGE_MASK) != (ipa & PAGE_MASK)) ret &= __check_ioguard_page(vcpu, end); guest_unlock_component(vcpu); return ret; }