/* * Copyright (C) 2019 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.collect; import com.google.caliper.BeforeExperiment; import com.google.caliper.Benchmark; import com.google.caliper.Param; import com.google.common.math.IntMath; import java.math.RoundingMode; /** Benchmark of implementations of {@link ImmutableSet#hashFloodingDetected(Object[])}. */ public class ImmutableSetHashFloodingDetectionBenchmark { private static final int TEST_CASES = 0x100; @Param({"10", "100", "1000", "10000"}) int size; @Param Impl impl; private static final Object[][] tables = new Object[TEST_CASES][]; @BeforeExperiment public void setUp() { int tableSize = ImmutableSet.chooseTableSize(size); int mask = tableSize - 1; for (int i = 0; i < TEST_CASES; i++) { tables[i] = new Object[tableSize]; for (int j = 0; j < size; j++) { Object o = new Object(); for (int k = o.hashCode(); ; k++) { int index = k & mask; if (tables[i][index] == null) { tables[i][index] = o; break; } } } } } enum Impl { EXHAUSTIVE { int maxRunBeforeFallback(int tableSize) { return 12 * IntMath.log2(tableSize, RoundingMode.UNNECESSARY); } @Override boolean hashFloodingDetected(Object[] hashTable) { int maxRunBeforeFallback = maxRunBeforeFallback(hashTable.length); // Test for a run wrapping around the end of the table, then check for runs in the middle. int endOfStartRun; for (endOfStartRun = 0; endOfStartRun < hashTable.length; ) { if (hashTable[endOfStartRun] == null) { break; } endOfStartRun++; if (endOfStartRun > maxRunBeforeFallback) { return true; } } int startOfEndRun; for (startOfEndRun = hashTable.length - 1; startOfEndRun > endOfStartRun; startOfEndRun--) { if (hashTable[startOfEndRun] == null) { break; } if (endOfStartRun + (hashTable.length - 1 - startOfEndRun) > maxRunBeforeFallback) { return true; } } for (int i = endOfStartRun + 1; i < startOfEndRun; i++) { for (int runLength = 0; i < startOfEndRun && hashTable[i] != null; i++) { runLength++; if (runLength > maxRunBeforeFallback) { return true; } } } return false; } }, SEPARATE_RANGES { int maxRunBeforeFallback(int tableSize) { return 13 * IntMath.log2(tableSize, RoundingMode.UNNECESSARY); } @Override boolean hashFloodingDetected(Object[] hashTable) { int maxRunBeforeFallback = maxRunBeforeFallback(hashTable.length); // Test for a run wrapping around the end of the table, then check for runs in the middle. int endOfStartRun; for (endOfStartRun = 0; endOfStartRun < hashTable.length; ) { if (hashTable[endOfStartRun] == null) { break; } endOfStartRun++; if (endOfStartRun > maxRunBeforeFallback) { return true; } } int startOfEndRun; for (startOfEndRun = hashTable.length - 1; startOfEndRun > endOfStartRun; startOfEndRun--) { if (hashTable[startOfEndRun] == null) { break; } if (endOfStartRun + (hashTable.length - 1 - startOfEndRun) > maxRunBeforeFallback) { return true; } } // If this part returns true, there is definitely a run of size maxRunBeforeFallback/2. // If this part returns false, there are definitely no runs of size >= maxRunBeforeFallback. int testBlockSize = maxRunBeforeFallback / 2; for (int i = endOfStartRun + 1; i + testBlockSize <= startOfEndRun; i += testBlockSize) { boolean runGood = false; for (int j = 0; j < testBlockSize; j++) { if (hashTable[i + j] == null) { runGood = true; break; } } if (!runGood) { return true; } } return false; } }, SKIPPING { int maxRunBeforeFallback(int tableSize) { return 13 * IntMath.log2(tableSize, RoundingMode.UNNECESSARY); } @Override boolean hashFloodingDetected(Object[] hashTable) { int maxRunBeforeFallback = maxRunBeforeFallback(hashTable.length); int mask = hashTable.length - 1; // Invariant: all elements at indices in [knownRunStart, knownRunEnd) are nonnull. // If knownRunStart == knownRunEnd, this is vacuously true. // When knownRunEnd exceeds hashTable.length, it "wraps", detecting runs around the end // of the table. int knownRunStart = 0; int knownRunEnd = 0; outerLoop: while (knownRunStart < hashTable.length) { if (knownRunStart == knownRunEnd && hashTable[knownRunStart] == null) { if (hashTable[(knownRunStart + maxRunBeforeFallback - 1) & mask] == null) { // There are only maxRunBeforeFallback - 1 elements between here and there, // so even if they were all nonnull, we wouldn't detect a hash flood. Therefore, // we can skip them all. knownRunStart += maxRunBeforeFallback; } else { knownRunStart++; // the only case in which maxRunEnd doesn't increase by mRBF // happens about f * (1-f) for f = DESIRED_LOAD_FACTOR, so around 21% of the time } knownRunEnd = knownRunStart; } else { for (int j = knownRunStart + maxRunBeforeFallback - 1; j >= knownRunEnd; j--) { if (hashTable[j & mask] == null) { knownRunEnd = knownRunStart + maxRunBeforeFallback; knownRunStart = j + 1; continue outerLoop; } } return true; } } return false; } }; abstract boolean hashFloodingDetected(Object[] array); } @Benchmark public int detect(int reps) { int count = 0; for (int i = 0; i < reps; i++) { if (impl.hashFloodingDetected(tables[i & 0xFF])) { count++; } } return count; } }