import numpy as np import cv2 from rknn.api import RKNN def show_outputs(outputs): output = outputs[0].reshape(-1) output_sorted = sorted(output, reverse=True) top5_str = 'mobilenet_v2\n-----TOP 5-----\n' for i in range(5): value = output_sorted[i] index = np.where(output == value) for j in range(len(index)): if (i + j) >= 5: break if value > 0: topi = '{}: {}\n'.format(index[j], value) else: topi = '-1: 0.0\n' top5_str += topi print(top5_str) if __name__ == '__main__': # Create RKNN object rknn = RKNN(verbose=True) # Pre-process config print('--> Config model') rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2BGR=True, target_platform='rk3588') print('done') # Load model (from https://github.com/shicai/MobileNet-Caffe) print('--> Loading model') ret = rknn.load_caffe(model='./../../caffe/mobilenet_v2/mobilenet_v2_deploy.prototxt', blobs='./../../caffe/mobilenet_v2/mobilenet_v2.caffemodel') if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=True, dataset='./dataset.txt') if ret != 0: print('Build model failed!') exit(ret) print('done') # Export rknn model print('--> Export rknn model') ret = rknn.export_rknn('./mobilenet_v2.rknn') if ret != 0: print('Export rknn model failed!') exit(ret) print('done') # Export encrypted RKNN model print('--> Export encrypted rknn model') ret = rknn.export_encrypted_rknn_model('./mobilenet_v2.rknn', None, 3) # load rknn model print('--> Load rknn model') ret = rknn.load_rknn('./mobilenet_v2.rknn') if ret != 0: print('Load rknn model failed!') exit(ret) print('done') # Set inputs img = cv2.imread('./dog_224x224.jpg') print('--> List devices') rknn.list_devices() # Init runtime environment print('--> Init runtime environment') ret = rknn.init_runtime(target='rk3588', perf_debug=True, eval_mem=True) if ret != 0: print('Init runtime environment failed!') exit(ret) print('done') print('--> Get sdk version') sdk_version = rknn.get_sdk_version() print(sdk_version) # eval perf print('--> Eval perf') rknn.eval_perf() # eval perf print('--> Eval memory') rknn.eval_memory() # Inference print('--> Running model') outputs = rknn.inference(inputs=[img]) np.save('./functions_board_test_0.npy', outputs[0]) show_outputs(outputs) print('done') # Accuracy analysis print('--> Accuracy analysis') ret = rknn.accuracy_analysis(inputs=['./dog_224x224.jpg'], output_dir='./snapshot', target='rk3588') if ret != 0: print('Accuracy analysis failed!') exit(ret) print('done') rknn.release()