import os import urllib import traceback import time import sys import numpy as np import cv2 from rknn.api import RKNN ONNX_MODEL = 'resnet50v2.onnx' RKNN_MODEL = 'resnet50v2.rknn' def show_outputs(outputs): output = outputs[0][0] output_sorted = sorted(output, reverse=True) top5_str = 'resnet50v2\n-----TOP 5-----\n' for i in range(5): value = output_sorted[i] index = np.where(output == value) for j in range(len(index)): if (i + j) >= 5: break if value > 0: topi = '{}: {}\n'.format(index[j], value) else: topi = '-1: 0.0\n' top5_str += topi print(top5_str) def readable_speed(speed): speed_bytes = float(speed) speed_kbytes = speed_bytes / 1024 if speed_kbytes > 1024: speed_mbytes = speed_kbytes / 1024 if speed_mbytes > 1024: speed_gbytes = speed_mbytes / 1024 return "{:.2f} GB/s".format(speed_gbytes) else: return "{:.2f} MB/s".format(speed_mbytes) else: return "{:.2f} KB/s".format(speed_kbytes) def show_progress(blocknum, blocksize, totalsize): speed = (blocknum * blocksize) / (time.time() - start_time) speed_str = " Speed: {}".format(readable_speed(speed)) recv_size = blocknum * blocksize f = sys.stdout progress = (recv_size / totalsize) progress_str = "{:.2f}%".format(progress * 100) n = round(progress * 50) s = ('#' * n).ljust(50, '-') f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str) f.flush() f.write('\r\n') if __name__ == '__main__': # Create RKNN object rknn = RKNN(verbose=True) # If resnet50v2 does not exist, download it. # Download address: # https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx if not os.path.exists(ONNX_MODEL): print('--> Download {}'.format(ONNX_MODEL)) url = 'https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx' download_file = ONNX_MODEL try: start_time = time.time() urllib.request.urlretrieve(url, download_file, show_progress) except: print('Download {} failed.'.format(download_file)) print(traceback.format_exc()) exit(-1) print('done') # pre-process config print('--> config model') rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.82, 58.82, 58.82], target_platform='rk3566') print('done') # Load model print('--> Loading model') ret = rknn.load_onnx(model=ONNX_MODEL) if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=True, dataset='./dataset.txt') if ret != 0: print('Build model failed!') exit(ret) print('done') # Export rknn model print('--> Export rknn model') ret = rknn.export_rknn(RKNN_MODEL) if ret != 0: print('Export rknn model failed!') exit(ret) print('done') # Set inputs img = cv2.imread('./dog_224x224.jpg') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Init runtime environment print('--> Init runtime environment') ret = rknn.init_runtime() if ret != 0: print('Init runtime environment failed!') exit(ret) print('done') # Inference print('--> Running model') outputs = rknn.inference(inputs=[img]) np.save('./onnx_resnet50v2_0.npy', outputs[0]) x = outputs[0] output = np.exp(x)/np.sum(np.exp(x)) outputs = [output] show_outputs(outputs) print('done') rknn.release()