// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "harness/compat.h" #include #include #include #include #include "procs.h" const char *binary_fn_code_pattern = "%s\n" /* optional pragma */ "__kernel void test_fn(__global %s%s *x, __global %s%s *y, __global %s%s *dst)\n" "{\n" " int tid = get_global_id(0);\n" "\n" " dst[tid] = %s(x[tid], y[tid]);\n" "}\n"; const char *binary_fn_code_pattern_v3 = "%s\n" /* optional pragma */ "__kernel void test_fn(__global %s *x, __global %s *y, __global %s *dst)\n" "{\n" " int tid = get_global_id(0);\n" "\n" " vstore3(%s(vload3(tid,x), vload3(tid,y) ), tid, dst);\n" "}\n"; const char *binary_fn_code_pattern_v3_scalar = "%s\n" /* optional pragma */ "__kernel void test_fn(__global %s *x, __global %s *y, __global %s *dst)\n" "{\n" " int tid = get_global_id(0);\n" "\n" " vstore3(%s(vload3(tid,x), y[tid] ), tid, dst);\n" "}\n"; int test_binary_fn( cl_device_id device, cl_context context, cl_command_queue queue, int n_elems, const char *fnName, bool vectorSecondParam, binary_verify_float_fn floatVerifyFn, binary_verify_double_fn doubleVerifyFn ) { cl_mem streams[6]; cl_float *input_ptr[2], *output_ptr; cl_double *input_ptr_double[2], *output_ptr_double=NULL; cl_program *program; cl_kernel *kernel; size_t threads[1]; int num_elements; int err; int i, j; MTdata d; program = (cl_program*)malloc(sizeof(cl_program)*kTotalVecCount*2); kernel = (cl_kernel*)malloc(sizeof(cl_kernel)*kTotalVecCount*2); num_elements = n_elems * (1 << (kTotalVecCount-1)); int test_double = 0; if(is_extension_available( device, "cl_khr_fp64" )) { log_info("Testing doubles.\n"); test_double = 1; } for( i = 0; i < 2; i++ ) { input_ptr[i] = (cl_float*)malloc(sizeof(cl_float) * num_elements); if (test_double) input_ptr_double[i] = (cl_double*)malloc(sizeof(cl_double) * num_elements); } output_ptr = (cl_float*)malloc(sizeof(cl_float) * num_elements); if (test_double) output_ptr_double = (cl_double*)malloc(sizeof(cl_double) * num_elements); for( i = 0; i < 3; i++ ) { streams[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(cl_float) * num_elements, NULL, &err); test_error( err, "clCreateBuffer failed"); } if (test_double) for( i = 3; i < 6; i++ ) { streams[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(cl_double) * num_elements, NULL, &err); test_error(err, "clCreateBuffer failed"); } d = init_genrand( gRandomSeed ); for( j = 0; j < num_elements; j++ ) { input_ptr[0][j] = get_random_float(-0x20000000, 0x20000000, d); input_ptr[1][j] = get_random_float(-0x20000000, 0x20000000, d); if (test_double) { input_ptr_double[0][j] = get_random_double(-0x20000000, 0x20000000, d); input_ptr_double[1][j] = get_random_double(-0x20000000, 0x20000000, d); } } free_mtdata(d); d = NULL; for( i = 0; i < 2; i++ ) { err = clEnqueueWriteBuffer( queue, streams[ i ], CL_TRUE, 0, sizeof( cl_float ) * num_elements, input_ptr[ i ], 0, NULL, NULL ); test_error( err, "Unable to write input buffer" ); if (test_double) { err = clEnqueueWriteBuffer( queue, streams[ 3 + i ], CL_TRUE, 0, sizeof( cl_double ) * num_elements, input_ptr_double[ i ], 0, NULL, NULL ); test_error( err, "Unable to write input buffer" ); } } for( i = 0; i < kTotalVecCount; i++ ) { char programSrc[ 10240 ]; char vecSizeNames[][ 3 ] = { "", "2", "4", "8", "16", "3" }; if(i >= kVectorSizeCount) { // do vec3 print if(vectorSecondParam) { sprintf( programSrc,binary_fn_code_pattern_v3, "", "float", "float", "float", fnName ); } else { sprintf( programSrc,binary_fn_code_pattern_v3_scalar, "", "float", "float", "float", fnName ); } } else { // do regular sprintf( programSrc, binary_fn_code_pattern, "", "float", vecSizeNames[ i ], "float", vectorSecondParam ? vecSizeNames[ i ] : "", "float", vecSizeNames[ i ], fnName ); } const char *ptr = programSrc; err = create_single_kernel_helper( context, &program[ i ], &kernel[ i ], 1, &ptr, "test_fn" ); test_error( err, "Unable to create kernel" ); if (test_double) { if(i >= kVectorSizeCount) { if(vectorSecondParam) { sprintf( programSrc, binary_fn_code_pattern_v3, "#pragma OPENCL EXTENSION cl_khr_fp64 : enable", "double", "double", "double", fnName ); } else { sprintf( programSrc, binary_fn_code_pattern_v3_scalar, "#pragma OPENCL EXTENSION cl_khr_fp64 : enable", "double", "double", "double", fnName ); } } else { sprintf( programSrc, binary_fn_code_pattern, "#pragma OPENCL EXTENSION cl_khr_fp64 : enable", "double", vecSizeNames[ i ], "double", vectorSecondParam ? vecSizeNames[ i ] : "", "double", vecSizeNames[ i ], fnName ); } ptr = programSrc; err = create_single_kernel_helper( context, &program[ kTotalVecCount + i ], &kernel[ kTotalVecCount + i ], 1, &ptr, "test_fn" ); test_error( err, "Unable to create kernel" ); } } for( i = 0; i < kTotalVecCount; i++ ) { for( j = 0; j < 3; j++ ) { err = clSetKernelArg( kernel[ i ], j, sizeof( streams[ j ] ), &streams[ j ] ); test_error( err, "Unable to set kernel argument" ); } threads[0] = (size_t)n_elems; err = clEnqueueNDRangeKernel( queue, kernel[i], 1, NULL, threads, NULL, 0, NULL, NULL ); test_error( err, "Unable to execute kernel" ); err = clEnqueueReadBuffer( queue, streams[2], true, 0, sizeof(cl_float)*num_elements, (void *)output_ptr, 0, NULL, NULL ); test_error( err, "Unable to read results" ); if( floatVerifyFn( input_ptr[0], input_ptr[1], output_ptr, n_elems, ((g_arrVecSizes[i])) ) ) { log_error(" float%d%s test failed\n", ((g_arrVecSizes[i])), vectorSecondParam ? "" : ", float"); err = -1; } else { log_info(" float%d%s test passed\n", ((g_arrVecSizes[i])), vectorSecondParam ? "" : ", float"); err = 0; } if (err) break; } if (test_double) { for( i = 0; i < kTotalVecCount; i++ ) { for( j = 0; j < 3; j++ ) { err = clSetKernelArg( kernel[ kTotalVecCount + i ], j, sizeof( streams[ 3 + j ] ), &streams[ 3 + j ] ); test_error( err, "Unable to set kernel argument" ); } threads[0] = (size_t)n_elems; err = clEnqueueNDRangeKernel( queue, kernel[kTotalVecCount + i], 1, NULL, threads, NULL, 0, NULL, NULL ); test_error( err, "Unable to execute kernel" ); err = clEnqueueReadBuffer( queue, streams[5], CL_TRUE, 0, sizeof(cl_double)*num_elements, (void *)output_ptr_double, 0, NULL, NULL ); test_error( err, "Unable to read results" ); if( doubleVerifyFn( input_ptr_double[0], input_ptr_double[1], output_ptr_double, n_elems, ((g_arrVecSizes[i])))) { log_error(" double%d%s test failed\n", ((g_arrVecSizes[i])), vectorSecondParam ? "" : ", double"); err = -1; } else { log_info(" double%d%s test passed\n", ((g_arrVecSizes[i])), vectorSecondParam ? "" : ", double"); err = 0; } if (err) break; } } for( i = 0; i < ((test_double) ? 6 : 3); i++ ) { clReleaseMemObject(streams[i]); } for (i=0; i < ((test_double) ? kTotalVecCount * 2 : kTotalVecCount) ; i++) { clReleaseKernel(kernel[i]); clReleaseProgram(program[i]); } free(input_ptr[0]); free(input_ptr[1]); free(output_ptr); free(program); free(kernel); if (test_double) { free(input_ptr_double[0]); free(input_ptr_double[1]); free(output_ptr_double); } return err; }