// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include // Table of exp2(k / 64) values decremented (as integer) by (k << 17), k = 0..63 extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_64[64]; void xnn_math_f32_sigmoid__wasmsimd_rr2_lut64_p2_div( size_t n, const float* input, float* output) { assert(n % (4 * sizeof(float)) == 0); // Large number such that ulp(magic bias) == exp2(-6) const v128_t vmagic_bias = wasm_f32x4_const_splat(0x1.800000p17f); const v128_t vminus_log2e = wasm_f32x4_const_splat(-0x1.715476p0f); // Mask for the lowest 6 bits const v128_t vindex_mask = wasm_i32x4_const_splat(INT32_C(0x3F)); // Last 13 bits are zeroes const v128_t vln2_hi = wasm_f32x4_const_splat(0x1.630000p-1f); const v128_t vln2_lo = wasm_f32x4_const_splat(-0x1.BD0106p-13f); // Coefficient of polynomial approximation of exp(-t) ~ 1 + t * (1 + t * c2) on [-log(2)/128, log(2)/128] const v128_t vc2 = wasm_f32x4_const_splat(0x1.FFFF0Ap-2f); const v128_t vone = wasm_f32x4_const_splat(1.0f); // The largest z for which sigmoidf(-z) is normalized. // This number is also the largest z for which expf(-z) is normalized. const v128_t vdenorm_cutoff = wasm_f32x4_const_splat(0x1.5D589Ep+6f); for (; n != 0; n -= 4 * sizeof(float)) { const v128_t vx = wasm_v128_load(input); input += 4; // General structure of the algorithm: // // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[-z] if x >= 0. const v128_t vz = wasm_f32x4_abs(vx); // Compute reduced argument n := round(-z / log(2), 6). // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing // the large number back. The trick with adding large number is valid only within certain bounds // (|-z / log(2)| <= 2**16, i.e. |z| <= 0x1.62E43p+15 = 5814540.0), but that is acceptable, because inputs x // outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup // the result for such inputs at the very end of the algorithm. v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vz, vminus_log2e)); // Create a floating-point number s (scale) such that s := 2**n for such inputs that sigmoidf(-z) is normalized, // i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s // in two steps: // 1. Fetch 2**frac(n) from the table using the 6 low bits of n, as integer. Note that the fetched values are in // the [1.0, 2.0) range, i.e. their floating-point exponent is 0. // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(z) is normalized) we have // -126 <= int(n) <= 0, and thus the adjusted exponent is not lower than -126. // // Shift bits 6:14 into 23:31 (position of floating-point exponent). const v128_t ve = wasm_i32x4_shl(vn, 17); // Use bits 0:6 of n, as integer, as an index for table lookup of l := 2**frac(n). const v128_t vidx = wasm_i32x4_shl(wasm_v128_and(vn, vindex_mask), 2); const uint64_t vidx_lo = wasm_i64x2_extract_lane(vidx, 0); const uint64_t vidx_hi = wasm_i64x2_extract_lane(vidx, 1); const float vl0 = *((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + (uint32_t) vidx_lo)); const float vl1 = *((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + (uint32_t) (vidx_lo >> 32))); const float vl2 = *((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + (uint32_t) vidx_hi)); const float vl3 = *((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + (uint32_t) (vidx_hi >> 32))); const v128_t vl = wasm_f32x4_make(vl0, vl1, vl2, vl3); // Adjust exponent of the value l fetched from the table to get the final s value. const v128_t vs = wasm_i32x4_add(vl, ve); // Subtract the large number back to get the final n := round(-z / log(2), 6) as a floating-point number. vn = wasm_f32x4_sub(vn, vmagic_bias); // Compute reduced argument t := (z + n * log(2)). Note that -t = -z - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. v128_t vt = wasm_f32x4_add(vz, wasm_f32x4_mul(vn, vln2_hi)); vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vln2_lo)); // Compute degree-2 polynomial approximation for exp(-t) on [-log(2)/128, log(2)/128]. // P(t) = 1 + t * (-1 + t * c2) = 1 - (t - t * (t * c2)) = 1 - p v128_t vp = wasm_f32x4_mul(vt, vc2); vp = wasm_f32x4_sub(vt, wasm_f32x4_mul(vp, vt)); // Reconstruct the exp(-z) value: // e = s * (1 + t * (-1 + t * c2)) // = s * (1 - p) // = s - s * p const v128_t vy = wasm_f32x4_sub(vs, wasm_f32x4_mul(vs, vp)); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) v128_t vf = wasm_f32x4_div(vy, wasm_f32x4_add(vy, vone)); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = wasm_v128_andnot(vf, wasm_f32x4_gt(vz, vdenorm_cutoff)); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) vf = wasm_v128_bitselect(vf, wasm_f32x4_sub(vone, vf), wasm_i32x4_shr(vx, 31)); wasm_v128_store(output, vf); output += 4; } }