/* Copyright (c) 2018-2019 The Khronos Group Inc. * Copyright (c) 2018-2019 Valve Corporation * Copyright (c) 2018-2019 LunarG, Inc. * Copyright (C) 2018-2019 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ // Allow use of STL min and max functions in Windows #define NOMINMAX #include "chassis.h" #include "core_validation.h" // This define indicates to build the VMA routines themselves #define VMA_IMPLEMENTATION // This define indicates that we will supply Vulkan function pointers at initialization #define VMA_STATIC_VULKAN_FUNCTIONS 0 #include "gpu_validation.h" #include "shader_validation.h" #include "spirv-tools/libspirv.h" #include "spirv-tools/optimizer.hpp" #include "spirv-tools/instrument.hpp" #include #include #include // This is the number of bindings in the debug descriptor set. static const uint32_t kNumBindingsInSet = 2; static const VkShaderStageFlags kShaderStageAllRayTracing = VK_SHADER_STAGE_ANY_HIT_BIT_NV | VK_SHADER_STAGE_CALLABLE_BIT_NV | VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV | VK_SHADER_STAGE_INTERSECTION_BIT_NV | VK_SHADER_STAGE_MISS_BIT_NV | VK_SHADER_STAGE_RAYGEN_BIT_NV; // Implementation for Descriptor Set Manager class GpuDescriptorSetManager::GpuDescriptorSetManager(CoreChecks *dev_data) { dev_data_ = dev_data; } GpuDescriptorSetManager::~GpuDescriptorSetManager() { for (auto &pool : desc_pool_map_) { DispatchDestroyDescriptorPool(dev_data_->device, pool.first, NULL); } desc_pool_map_.clear(); } VkResult GpuDescriptorSetManager::GetDescriptorSets(uint32_t count, VkDescriptorPool *pool, std::vector *desc_sets) { const uint32_t default_pool_size = kItemsPerChunk; VkResult result = VK_SUCCESS; VkDescriptorPool pool_to_use = VK_NULL_HANDLE; if (0 == count) { return result; } desc_sets->clear(); desc_sets->resize(count); for (auto &pool : desc_pool_map_) { if (pool.second.used + count < pool.second.size) { pool_to_use = pool.first; break; } } if (VK_NULL_HANDLE == pool_to_use) { uint32_t pool_count = default_pool_size; if (count > default_pool_size) { pool_count = count; } const VkDescriptorPoolSize size_counts = { VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, pool_count * kNumBindingsInSet, }; VkDescriptorPoolCreateInfo desc_pool_info = {}; desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; desc_pool_info.pNext = NULL; desc_pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT; desc_pool_info.maxSets = pool_count; desc_pool_info.poolSizeCount = 1; desc_pool_info.pPoolSizes = &size_counts; result = DispatchCreateDescriptorPool(dev_data_->device, &desc_pool_info, NULL, &pool_to_use); assert(result == VK_SUCCESS); if (result != VK_SUCCESS) { return result; } desc_pool_map_[pool_to_use].size = desc_pool_info.maxSets; desc_pool_map_[pool_to_use].used = 0; } std::vector desc_layouts(count, dev_data_->gpu_validation_state->debug_desc_layout); VkDescriptorSetAllocateInfo alloc_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, NULL, pool_to_use, count, desc_layouts.data()}; result = DispatchAllocateDescriptorSets(dev_data_->device, &alloc_info, desc_sets->data()); assert(result == VK_SUCCESS); if (result != VK_SUCCESS) { return result; } *pool = pool_to_use; desc_pool_map_[pool_to_use].used += count; return result; } void GpuDescriptorSetManager::PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set) { auto iter = desc_pool_map_.find(desc_pool); if (iter != desc_pool_map_.end()) { VkResult result = DispatchFreeDescriptorSets(dev_data_->device, desc_pool, 1, &desc_set); assert(result == VK_SUCCESS); if (result != VK_SUCCESS) { return; } desc_pool_map_[desc_pool].used--; if (0 == desc_pool_map_[desc_pool].used) { DispatchDestroyDescriptorPool(dev_data_->device, desc_pool, NULL); desc_pool_map_.erase(desc_pool); } } return; } // Trampolines to make VMA call Dispatch for Vulkan calls static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties *pProperties) { DispatchGetPhysicalDeviceProperties(physicalDevice, pProperties); } static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties *pMemoryProperties) { DispatchGetPhysicalDeviceMemoryProperties(physicalDevice, pMemoryProperties); } static VKAPI_ATTR VkResult VKAPI_CALL gpuVkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo, const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMemory) { return DispatchAllocateMemory(device, pAllocateInfo, pAllocator, pMemory); } static VKAPI_ATTR void VKAPI_CALL gpuVkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks *pAllocator) { DispatchFreeMemory(device, memory, pAllocator); } static VKAPI_ATTR VkResult VKAPI_CALL gpuVkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size, VkMemoryMapFlags flags, void **ppData) { return DispatchMapMemory(device, memory, offset, size, flags, ppData); } static VKAPI_ATTR void VKAPI_CALL gpuVkUnmapMemory(VkDevice device, VkDeviceMemory memory) { DispatchUnmapMemory(device, memory); } static VKAPI_ATTR VkResult VKAPI_CALL gpuVkFlushMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount, const VkMappedMemoryRange *pMemoryRanges) { return DispatchFlushMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges); } static VKAPI_ATTR VkResult VKAPI_CALL gpuVkInvalidateMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount, const VkMappedMemoryRange *pMemoryRanges) { return DispatchInvalidateMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges); } static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory, VkDeviceSize memoryOffset) { return DispatchBindBufferMemory(device, buffer, memory, memoryOffset); } static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory, VkDeviceSize memoryOffset) { return DispatchBindImageMemory(device, image, memory, memoryOffset); } static VKAPI_ATTR void VKAPI_CALL gpuVkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer, VkMemoryRequirements *pMemoryRequirements) { DispatchGetBufferMemoryRequirements(device, buffer, pMemoryRequirements); } static VKAPI_ATTR void VKAPI_CALL gpuVkGetImageMemoryRequirements(VkDevice device, VkImage image, VkMemoryRequirements *pMemoryRequirements) { DispatchGetImageMemoryRequirements(device, image, pMemoryRequirements); } static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer) { return DispatchCreateBuffer(device, pCreateInfo, pAllocator, pBuffer); } static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator) { return DispatchDestroyBuffer(device, buffer, pAllocator); } static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { return DispatchCreateImage(device, pCreateInfo, pAllocator, pImage); } static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks *pAllocator) { DispatchDestroyImage(device, image, pAllocator); } static VKAPI_ATTR void VKAPI_CALL gpuVkCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer, uint32_t regionCount, const VkBufferCopy *pRegions) { DispatchCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, regionCount, pRegions); } VkResult CoreChecks::GpuInitializeVma() { VmaVulkanFunctions functions; VmaAllocatorCreateInfo allocatorInfo = {}; allocatorInfo.device = device; ValidationObject *device_object = GetLayerDataPtr(get_dispatch_key(allocatorInfo.device), layer_data_map); ValidationObject *validation_data = ValidationObject::GetValidationObject(device_object->object_dispatch, LayerObjectTypeCoreValidation); CoreChecks *core_checks = static_cast(validation_data); allocatorInfo.physicalDevice = core_checks->physical_device; functions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)gpuVkGetPhysicalDeviceProperties; functions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)gpuVkGetPhysicalDeviceMemoryProperties; functions.vkAllocateMemory = (PFN_vkAllocateMemory)gpuVkAllocateMemory; functions.vkFreeMemory = (PFN_vkFreeMemory)gpuVkFreeMemory; functions.vkMapMemory = (PFN_vkMapMemory)gpuVkMapMemory; functions.vkUnmapMemory = (PFN_vkUnmapMemory)gpuVkUnmapMemory; functions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)gpuVkFlushMappedMemoryRanges; functions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)gpuVkInvalidateMappedMemoryRanges; functions.vkBindBufferMemory = (PFN_vkBindBufferMemory)gpuVkBindBufferMemory; functions.vkBindImageMemory = (PFN_vkBindImageMemory)gpuVkBindImageMemory; functions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)gpuVkGetBufferMemoryRequirements; functions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)gpuVkGetImageMemoryRequirements; functions.vkCreateBuffer = (PFN_vkCreateBuffer)gpuVkCreateBuffer; functions.vkDestroyBuffer = (PFN_vkDestroyBuffer)gpuVkDestroyBuffer; functions.vkCreateImage = (PFN_vkCreateImage)gpuVkCreateImage; functions.vkDestroyImage = (PFN_vkDestroyImage)gpuVkDestroyImage; functions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)gpuVkCmdCopyBuffer; allocatorInfo.pVulkanFunctions = &functions; return vmaCreateAllocator(&allocatorInfo, &gpu_validation_state->vmaAllocator); } // Convenience function for reporting problems with setting up GPU Validation. void CoreChecks::ReportSetupProblem(VkDebugReportObjectTypeEXT object_type, uint64_t object_handle, const char *const specific_message) { log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, object_type, object_handle, "UNASSIGNED-GPU-Assisted Validation Error. ", "Detail: (%s)", specific_message); } // Turn on necessary device features. void CoreChecks::GpuPreCallRecordCreateDevice(VkPhysicalDevice gpu, safe_VkDeviceCreateInfo *modified_create_info, VkPhysicalDeviceFeatures *supported_features) { if (supported_features->fragmentStoresAndAtomics || supported_features->vertexPipelineStoresAndAtomics) { VkPhysicalDeviceFeatures *features = nullptr; if (modified_create_info->pEnabledFeatures) { // If pEnabledFeatures, VkPhysicalDeviceFeatures2 in pNext chain is not allowed features = const_cast(modified_create_info->pEnabledFeatures); } else { VkPhysicalDeviceFeatures2 *features2 = nullptr; features2 = const_cast(lvl_find_in_chain(modified_create_info->pNext)); if (features2) features = &features2->features; } if (features) { features->fragmentStoresAndAtomics = supported_features->fragmentStoresAndAtomics; features->vertexPipelineStoresAndAtomics = supported_features->vertexPipelineStoresAndAtomics; } else { VkPhysicalDeviceFeatures new_features = {}; new_features.fragmentStoresAndAtomics = supported_features->fragmentStoresAndAtomics; new_features.vertexPipelineStoresAndAtomics = supported_features->vertexPipelineStoresAndAtomics; delete modified_create_info->pEnabledFeatures; modified_create_info->pEnabledFeatures = new VkPhysicalDeviceFeatures(new_features); } } } // Perform initializations that can be done at Create Device time. void CoreChecks::GpuPostCallRecordCreateDevice(const CHECK_ENABLED *enables, const VkDeviceCreateInfo *pCreateInfo) { // Set instance-level enables in device-enable data structure if using legacy settings enabled.gpu_validation = enables->gpu_validation; enabled.gpu_validation_reserve_binding_slot = enables->gpu_validation_reserve_binding_slot; gpu_validation_state = std::unique_ptr(new GpuValidationState); gpu_validation_state->reserve_binding_slot = enables->gpu_validation_reserve_binding_slot; if (phys_dev_props.apiVersion < VK_API_VERSION_1_1) { ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "GPU-Assisted validation requires Vulkan 1.1 or later. GPU-Assisted Validation disabled."); gpu_validation_state->aborted = true; return; } // If api version 1.1 or later, SetDeviceLoaderData will be in the loader auto chain_info = get_chain_info(pCreateInfo, VK_LOADER_DATA_CALLBACK); assert(chain_info->u.pfnSetDeviceLoaderData); gpu_validation_state->vkSetDeviceLoaderData = chain_info->u.pfnSetDeviceLoaderData; // Some devices have extremely high limits here, so set a reasonable max because we have to pad // the pipeline layout with dummy descriptor set layouts. gpu_validation_state->adjusted_max_desc_sets = phys_dev_props.limits.maxBoundDescriptorSets; gpu_validation_state->adjusted_max_desc_sets = std::min(33U, gpu_validation_state->adjusted_max_desc_sets); // We can't do anything if there is only one. // Device probably not a legit Vulkan device, since there should be at least 4. Protect ourselves. if (gpu_validation_state->adjusted_max_desc_sets == 1) { ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Device can bind only a single descriptor set. GPU-Assisted Validation disabled."); gpu_validation_state->aborted = true; return; } gpu_validation_state->desc_set_bind_index = gpu_validation_state->adjusted_max_desc_sets - 1; log_msg(report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "UNASSIGNED-GPU-Assisted Validation. ", "Shaders using descriptor set at index %d. ", gpu_validation_state->desc_set_bind_index); gpu_validation_state->output_buffer_size = sizeof(uint32_t) * (spvtools::kInstMaxOutCnt + 1); VkResult result = GpuInitializeVma(); assert(result == VK_SUCCESS); std::unique_ptr desc_set_manager(new GpuDescriptorSetManager(this)); // The descriptor indexing checks require only the first "output" binding. const VkDescriptorSetLayoutBinding debug_desc_layout_bindings[kNumBindingsInSet] = { { 0, // output VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT | kShaderStageAllRayTracing, NULL, }, { 1, // input VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT | kShaderStageAllRayTracing, NULL, }, }; const VkDescriptorSetLayoutCreateInfo debug_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0, kNumBindingsInSet, debug_desc_layout_bindings}; const VkDescriptorSetLayoutCreateInfo dummy_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0, 0, NULL}; result = DispatchCreateDescriptorSetLayout(device, &debug_desc_layout_info, NULL, &gpu_validation_state->debug_desc_layout); // This is a layout used to "pad" a pipeline layout to fill in any gaps to the selected bind index. VkResult result2 = DispatchCreateDescriptorSetLayout(device, &dummy_desc_layout_info, NULL, &gpu_validation_state->dummy_desc_layout); assert((result == VK_SUCCESS) && (result2 == VK_SUCCESS)); if ((result != VK_SUCCESS) || (result2 != VK_SUCCESS)) { ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unable to create descriptor set layout. GPU-Assisted Validation disabled."); if (result == VK_SUCCESS) { DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->debug_desc_layout, NULL); } if (result2 == VK_SUCCESS) { DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->dummy_desc_layout, NULL); } gpu_validation_state->debug_desc_layout = VK_NULL_HANDLE; gpu_validation_state->dummy_desc_layout = VK_NULL_HANDLE; gpu_validation_state->aborted = true; return; } gpu_validation_state->desc_set_manager = std::move(desc_set_manager); } // Clean up device-related resources void CoreChecks::GpuPreCallRecordDestroyDevice() { for (auto &queue_barrier_command_info_kv : gpu_validation_state->queue_barrier_command_infos) { GpuQueueBarrierCommandInfo &queue_barrier_command_info = queue_barrier_command_info_kv.second; DispatchFreeCommandBuffers(device, queue_barrier_command_info.barrier_command_pool, 1, &queue_barrier_command_info.barrier_command_buffer); queue_barrier_command_info.barrier_command_buffer = VK_NULL_HANDLE; DispatchDestroyCommandPool(device, queue_barrier_command_info.barrier_command_pool, NULL); queue_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE; } gpu_validation_state->queue_barrier_command_infos.clear(); if (gpu_validation_state->debug_desc_layout) { DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->debug_desc_layout, NULL); gpu_validation_state->debug_desc_layout = VK_NULL_HANDLE; } if (gpu_validation_state->dummy_desc_layout) { DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->dummy_desc_layout, NULL); gpu_validation_state->dummy_desc_layout = VK_NULL_HANDLE; } gpu_validation_state->desc_set_manager.reset(); if (gpu_validation_state->vmaAllocator) { vmaDestroyAllocator(gpu_validation_state->vmaAllocator); } } // Modify the pipeline layout to include our debug descriptor set and any needed padding with the dummy descriptor set. bool CoreChecks::GpuPreCallCreatePipelineLayout(const VkPipelineLayoutCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout, std::vector *new_layouts, VkPipelineLayoutCreateInfo *modified_create_info) { if (gpu_validation_state->aborted) { return false; } if (modified_create_info->setLayoutCount >= gpu_validation_state->adjusted_max_desc_sets) { std::ostringstream strm; strm << "Pipeline Layout conflict with validation's descriptor set at slot " << gpu_validation_state->desc_set_bind_index << ". " << "Application has too many descriptor sets in the pipeline layout to continue with gpu validation. " << "Validation is not modifying the pipeline layout. " << "Instrumented shaders are replaced with non-instrumented shaders."; ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), strm.str().c_str()); } else { // Modify the pipeline layout by: // 1. Copying the caller's descriptor set desc_layouts // 2. Fill in dummy descriptor layouts up to the max binding // 3. Fill in with the debug descriptor layout at the max binding slot new_layouts->reserve(gpu_validation_state->adjusted_max_desc_sets); new_layouts->insert(new_layouts->end(), &pCreateInfo->pSetLayouts[0], &pCreateInfo->pSetLayouts[pCreateInfo->setLayoutCount]); for (uint32_t i = pCreateInfo->setLayoutCount; i < gpu_validation_state->adjusted_max_desc_sets - 1; ++i) { new_layouts->push_back(gpu_validation_state->dummy_desc_layout); } new_layouts->push_back(gpu_validation_state->debug_desc_layout); modified_create_info->pSetLayouts = new_layouts->data(); modified_create_info->setLayoutCount = gpu_validation_state->adjusted_max_desc_sets; } return true; } // Clean up GPU validation after the CreatePipelineLayout call is made void CoreChecks::GpuPostCallCreatePipelineLayout(VkResult result) { // Clean up GPU validation if (result != VK_SUCCESS) { ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unable to create pipeline layout. Device could become unstable."); gpu_validation_state->aborted = true; } } // Free the device memory and descriptor set associated with a command buffer. void CoreChecks::GpuResetCommandBuffer(const VkCommandBuffer commandBuffer) { if (gpu_validation_state->aborted) { return; } auto gpu_buffer_list = gpu_validation_state->GetGpuBufferInfo(commandBuffer); for (auto buffer_info : gpu_buffer_list) { vmaDestroyBuffer(gpu_validation_state->vmaAllocator, buffer_info.output_mem_block.buffer, buffer_info.output_mem_block.allocation); if (buffer_info.input_mem_block.buffer) { vmaDestroyBuffer(gpu_validation_state->vmaAllocator, buffer_info.input_mem_block.buffer, buffer_info.input_mem_block.allocation); } if (buffer_info.desc_set != VK_NULL_HANDLE) { gpu_validation_state->desc_set_manager->PutBackDescriptorSet(buffer_info.desc_pool, buffer_info.desc_set); } } gpu_validation_state->command_buffer_map.erase(commandBuffer); } // Just gives a warning about a possible deadlock. void CoreChecks::GpuPreCallValidateCmdWaitEvents(VkPipelineStageFlags sourceStageMask) { if (sourceStageMask & VK_PIPELINE_STAGE_HOST_BIT) { ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "CmdWaitEvents recorded with VK_PIPELINE_STAGE_HOST_BIT set. " "GPU_Assisted validation waits on queue completion. " "This wait could block the host's signaling of this event, resulting in deadlock."); } } std::vector CoreChecks::GpuPreCallRecordCreateGraphicsPipelines( VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector> &pipe_state) { std::vector new_pipeline_create_infos; GpuPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, pipe_state, &new_pipeline_create_infos, VK_PIPELINE_BIND_POINT_GRAPHICS); return new_pipeline_create_infos; } std::vector CoreChecks::GpuPreCallRecordCreateComputePipelines( VkPipelineCache pipelineCache, uint32_t count, const VkComputePipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector> &pipe_state) { std::vector new_pipeline_create_infos; GpuPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, pipe_state, &new_pipeline_create_infos, VK_PIPELINE_BIND_POINT_COMPUTE); return new_pipeline_create_infos; } std::vector CoreChecks::GpuPreCallRecordCreateRayTracingPipelinesNV( VkPipelineCache pipelineCache, uint32_t count, const VkRayTracingPipelineCreateInfoNV *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector> &pipe_state) { std::vector new_pipeline_create_infos; GpuPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, pipe_state, &new_pipeline_create_infos, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV); return new_pipeline_create_infos; } template struct CreatePipelineTraits {}; template <> struct CreatePipelineTraits { using SafeType = safe_VkGraphicsPipelineCreateInfo; static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->graphicsPipelineCI; } static uint32_t GetStageCount(const VkGraphicsPipelineCreateInfo &createInfo) { return createInfo.stageCount; } static VkShaderModule GetShaderModule(const VkGraphicsPipelineCreateInfo &createInfo, uint32_t stage) { return createInfo.pStages[stage].module; } static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) { createInfo->pStages[stage].module = shader_module; } }; template <> struct CreatePipelineTraits { using SafeType = safe_VkComputePipelineCreateInfo; static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->computePipelineCI; } static uint32_t GetStageCount(const VkComputePipelineCreateInfo &createInfo) { return 1; } static VkShaderModule GetShaderModule(const VkComputePipelineCreateInfo &createInfo, uint32_t stage) { return createInfo.stage.module; } static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) { assert(stage == 0); createInfo->stage.module = shader_module; } }; template <> struct CreatePipelineTraits { using SafeType = safe_VkRayTracingPipelineCreateInfoNV; static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->raytracingPipelineCI; } static uint32_t GetStageCount(const VkRayTracingPipelineCreateInfoNV &createInfo) { return createInfo.stageCount; } static VkShaderModule GetShaderModule(const VkRayTracingPipelineCreateInfoNV &createInfo, uint32_t stage) { return createInfo.pStages[stage].module; } static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) { createInfo->pStages[stage].module = shader_module; } }; // Examine the pipelines to see if they use the debug descriptor set binding index. // If any do, create new non-instrumented shader modules and use them to replace the instrumented // shaders in the pipeline. Return the (possibly) modified create infos to the caller. template void CoreChecks::GpuPreCallRecordPipelineCreations(uint32_t count, const CreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector> &pipe_state, std::vector *new_pipeline_create_infos, const VkPipelineBindPoint bind_point) { using Accessor = CreatePipelineTraits; if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE && bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) { return; } // Walk through all the pipelines, make a copy of each and flag each pipeline that contains a shader that uses the debug // descriptor set index. for (uint32_t pipeline = 0; pipeline < count; ++pipeline) { uint32_t stageCount = Accessor::GetStageCount(pCreateInfos[pipeline]); new_pipeline_create_infos->push_back(Accessor::GetPipelineCI(pipe_state[pipeline].get())); bool replace_shaders = false; if (pipe_state[pipeline]->active_slots.find(gpu_validation_state->desc_set_bind_index) != pipe_state[pipeline]->active_slots.end()) { replace_shaders = true; } // If the app requests all available sets, the pipeline layout was not modified at pipeline layout creation and the already // instrumented shaders need to be replaced with uninstrumented shaders if (pipe_state[pipeline]->pipeline_layout.set_layouts.size() >= gpu_validation_state->adjusted_max_desc_sets) { replace_shaders = true; } if (replace_shaders) { for (uint32_t stage = 0; stage < stageCount; ++stage) { const SHADER_MODULE_STATE *shader = GetShaderModuleState(Accessor::GetShaderModule(pCreateInfos[pipeline], stage)); VkShaderModuleCreateInfo create_info = {}; VkShaderModule shader_module; create_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; create_info.pCode = shader->words.data(); create_info.codeSize = shader->words.size() * sizeof(uint32_t); VkResult result = DispatchCreateShaderModule(device, &create_info, pAllocator, &shader_module); if (result == VK_SUCCESS) { Accessor::SetShaderModule(new_pipeline_create_infos[pipeline].data(), shader_module, stage); } else { uint64_t moduleHandle = HandleToUint64(Accessor::GetShaderModule(pCreateInfos[pipeline], stage)); ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, moduleHandle, "Unable to replace instrumented shader with non-instrumented one. " "Device could become unstable."); } } } } } void CoreChecks::GpuPostCallRecordCreateGraphicsPipelines(const uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { GpuPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_GRAPHICS); } void CoreChecks::GpuPostCallRecordCreateComputePipelines(const uint32_t count, const VkComputePipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { GpuPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_COMPUTE); } void CoreChecks::GpuPostCallRecordCreateRayTracingPipelinesNV(const uint32_t count, const VkRayTracingPipelineCreateInfoNV *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { GpuPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV); } // For every pipeline: // - For every shader in a pipeline: // - If the shader had to be replaced in PreCallRecord (because the pipeline is using the debug desc set index): // - Destroy it since it has been bound into the pipeline by now. This is our only chance to delete it. // - Track the shader in the shader_map // - Save the shader binary if it contains debug code template void CoreChecks::GpuPostCallRecordPipelineCreations(const uint32_t count, const CreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, const VkPipelineBindPoint bind_point) { using Accessor = CreatePipelineTraits; if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE && bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) { return; } for (uint32_t pipeline = 0; pipeline < count; ++pipeline) { auto pipeline_state = ValidationStateTracker::GetPipelineState(pPipelines[pipeline]); if (nullptr == pipeline_state) continue; uint32_t stageCount = 0; if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) { stageCount = pipeline_state->graphicsPipelineCI.stageCount; } else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) { stageCount = 1; } else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) { stageCount = pipeline_state->raytracingPipelineCI.stageCount; } else { assert(false); } for (uint32_t stage = 0; stage < stageCount; ++stage) { if (pipeline_state->active_slots.find(gpu_validation_state->desc_set_bind_index) != pipeline_state->active_slots.end()) { DispatchDestroyShaderModule(device, Accessor::GetShaderModule(pCreateInfos[pipeline], stage), pAllocator); } const SHADER_MODULE_STATE *shader_state = nullptr; if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) { shader_state = GetShaderModuleState(pipeline_state->graphicsPipelineCI.pStages[stage].module); } else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) { assert(stage == 0); shader_state = GetShaderModuleState(pipeline_state->computePipelineCI.stage.module); } else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) { shader_state = GetShaderModuleState(pipeline_state->raytracingPipelineCI.pStages[stage].module); } else { assert(false); } std::vector code; // Save the shader binary if debug info is present. // The core_validation ShaderModule tracker saves the binary too, but discards it when the ShaderModule // is destroyed. Applications may destroy ShaderModules after they are placed in a pipeline and before // the pipeline is used, so we have to keep another copy. if (shader_state && shader_state->has_valid_spirv) { // really checking for presense of SPIR-V code. for (auto insn : *shader_state) { if (insn.opcode() == spv::OpLine) { code = shader_state->words; break; } } } gpu_validation_state->shader_map[shader_state->gpu_validation_shader_id].pipeline = pipeline_state->pipeline; // Be careful to use the originally bound (instrumented) shader here, even if PreCallRecord had to back it // out with a non-instrumented shader. The non-instrumented shader (found in pCreateInfo) was destroyed above. VkShaderModule shader_module = VK_NULL_HANDLE; if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) { shader_module = pipeline_state->graphicsPipelineCI.pStages[stage].module; } else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) { assert(stage == 0); shader_module = pipeline_state->computePipelineCI.stage.module; } else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) { shader_module = pipeline_state->raytracingPipelineCI.pStages[stage].module; } else { assert(false); } gpu_validation_state->shader_map[shader_state->gpu_validation_shader_id].shader_module = shader_module; gpu_validation_state->shader_map[shader_state->gpu_validation_shader_id].pgm = std::move(code); } } } // Remove all the shader trackers associated with this destroyed pipeline. void CoreChecks::GpuPreCallRecordDestroyPipeline(const VkPipeline pipeline) { for (auto it = gpu_validation_state->shader_map.begin(); it != gpu_validation_state->shader_map.end();) { if (it->second.pipeline == pipeline) { it = gpu_validation_state->shader_map.erase(it); } else { ++it; } } } // Call the SPIR-V Optimizer to run the instrumentation pass on the shader. bool CoreChecks::GpuInstrumentShader(const VkShaderModuleCreateInfo *pCreateInfo, std::vector &new_pgm, uint32_t *unique_shader_id) { if (gpu_validation_state->aborted) return false; if (pCreateInfo->pCode[0] != spv::MagicNumber) return false; // Load original shader SPIR-V uint32_t num_words = static_cast(pCreateInfo->codeSize / 4); new_pgm.clear(); new_pgm.reserve(num_words); new_pgm.insert(new_pgm.end(), &pCreateInfo->pCode[0], &pCreateInfo->pCode[num_words]); // Call the optimizer to instrument the shader. // Use the unique_shader_module_id as a shader ID so we can look up its handle later in the shader_map. // If descriptor indexing is enabled, enable length checks and updated descriptor checks const bool descriptor_indexing = device_extensions.vk_ext_descriptor_indexing; using namespace spvtools; spv_target_env target_env = SPV_ENV_VULKAN_1_1; Optimizer optimizer(target_env); optimizer.RegisterPass(CreateInstBindlessCheckPass(gpu_validation_state->desc_set_bind_index, gpu_validation_state->unique_shader_module_id, descriptor_indexing, descriptor_indexing)); optimizer.RegisterPass(CreateAggressiveDCEPass()); bool pass = optimizer.Run(new_pgm.data(), new_pgm.size(), &new_pgm); if (!pass) { ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, VK_NULL_HANDLE, "Failure to instrument shader. Proceeding with non-instrumented shader."); } *unique_shader_id = gpu_validation_state->unique_shader_module_id++; return pass; } // Create the instrumented shader data to provide to the driver. bool CoreChecks::GpuPreCallCreateShaderModule(const VkShaderModuleCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule, uint32_t *unique_shader_id, VkShaderModuleCreateInfo *instrumented_create_info, std::vector *instrumented_pgm) { bool pass = GpuInstrumentShader(pCreateInfo, *instrumented_pgm, unique_shader_id); if (pass) { instrumented_create_info->pCode = instrumented_pgm->data(); instrumented_create_info->codeSize = instrumented_pgm->size() * sizeof(unsigned int); } return pass; } // Generate the stage-specific part of the message. static void GenerateStageMessage(const uint32_t *debug_record, std::string &msg) { using namespace spvtools; std::ostringstream strm; switch (debug_record[kInstCommonOutStageIdx]) { case spv::ExecutionModelVertex: { strm << "Stage = Vertex. Vertex Index = " << debug_record[kInstVertOutVertexIndex] << " Instance Index = " << debug_record[kInstVertOutInstanceIndex] << ". "; } break; case spv::ExecutionModelTessellationControl: { strm << "Stage = Tessellation Control. Invocation ID = " << debug_record[kInstTessCtlOutInvocationId] << ". "; } break; case spv::ExecutionModelTessellationEvaluation: { strm << "Stage = Tessellation Eval. Invocation ID = " << debug_record[kInstTessCtlOutInvocationId] << ". "; } break; case spv::ExecutionModelGeometry: { strm << "Stage = Geometry. Primitive ID = " << debug_record[kInstGeomOutPrimitiveId] << " Invocation ID = " << debug_record[kInstGeomOutInvocationId] << ". "; } break; case spv::ExecutionModelFragment: { strm << "Stage = Fragment. Fragment coord (x,y) = (" << *reinterpret_cast(&debug_record[kInstFragOutFragCoordX]) << ", " << *reinterpret_cast(&debug_record[kInstFragOutFragCoordY]) << "). "; } break; case spv::ExecutionModelGLCompute: { strm << "Stage = Compute. Global invocation ID = " << debug_record[kInstCompOutGlobalInvocationIdX] << ". "; } break; case spv::ExecutionModelRayGenerationNV: { strm << "Stage = Ray Generation. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", " << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). "; } break; case spv::ExecutionModelIntersectionNV: { strm << "Stage = Intersection. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", " << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). "; } break; case spv::ExecutionModelAnyHitNV: { strm << "Stage = Any Hit. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", " << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). "; } break; case spv::ExecutionModelClosestHitNV: { strm << "Stage = Closest Hit. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", " << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). "; } break; case spv::ExecutionModelMissNV: { strm << "Stage = Miss. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", " << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). "; } break; case spv::ExecutionModelCallableNV: { strm << "Stage = Callable. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", " << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). "; } break; default: { strm << "Internal Error (unexpected stage = " << debug_record[kInstCommonOutStageIdx] << "). "; assert(false); } break; } msg = strm.str(); } // Generate the part of the message describing the violation. static void GenerateValidationMessage(const uint32_t *debug_record, std::string &msg, std::string &vuid_msg) { using namespace spvtools; std::ostringstream strm; switch (debug_record[kInstValidationOutError]) { case 0: { strm << "Index of " << debug_record[kInstBindlessBoundsOutDescIndex] << " used to index descriptor array of length " << debug_record[kInstBindlessBoundsOutDescBound] << ". "; vuid_msg = "UNASSIGNED-Descriptor index out of bounds"; } break; case 1: { strm << "Descriptor index " << debug_record[kInstBindlessBoundsOutDescIndex] << " is uninitialized. "; vuid_msg = "UNASSIGNED-Descriptor uninitialized"; } break; default: { strm << "Internal Error (unexpected error type = " << debug_record[kInstValidationOutError] << "). "; vuid_msg = "UNASSIGNED-Internal Error"; assert(false); } break; } msg = strm.str(); } static std::string LookupDebugUtilsName(const debug_report_data *report_data, const uint64_t object) { auto object_label = report_data->DebugReportGetUtilsObjectName(object); if (object_label != "") { object_label = "(" + object_label + ")"; } return object_label; } // Generate message from the common portion of the debug report record. static void GenerateCommonMessage(const debug_report_data *report_data, const CMD_BUFFER_STATE *cb_node, const uint32_t *debug_record, const VkShaderModule shader_module_handle, const VkPipeline pipeline_handle, const VkPipelineBindPoint pipeline_bind_point, const uint32_t operation_index, std::string &msg) { using namespace spvtools; std::ostringstream strm; if (shader_module_handle == VK_NULL_HANDLE) { strm << std::hex << std::showbase << "Internal Error: Unable to locate information for shader used in command buffer " << LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "(" << HandleToUint64(cb_node->commandBuffer) << "). "; assert(true); } else { strm << std::hex << std::showbase << "Command buffer " << LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "(" << HandleToUint64(cb_node->commandBuffer) << "). "; if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) { strm << "Draw "; } else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) { strm << "Compute "; } else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) { strm << "Ray Trace "; } else { assert(false); strm << "Unknown Pipeline Operation "; } strm << "Index " << operation_index << ". " << "Pipeline " << LookupDebugUtilsName(report_data, HandleToUint64(pipeline_handle)) << "(" << HandleToUint64(pipeline_handle) << "). " << "Shader Module " << LookupDebugUtilsName(report_data, HandleToUint64(shader_module_handle)) << "(" << HandleToUint64(shader_module_handle) << "). "; } strm << std::dec << std::noshowbase; strm << "Shader Instruction Index = " << debug_record[kInstCommonOutInstructionIdx] << ". "; msg = strm.str(); } // Read the contents of the SPIR-V OpSource instruction and any following continuation instructions. // Split the single string into a vector of strings, one for each line, for easier processing. static void ReadOpSource(const SHADER_MODULE_STATE &shader, const uint32_t reported_file_id, std::vector &opsource_lines) { for (auto insn : shader) { if ((insn.opcode() == spv::OpSource) && (insn.len() >= 5) && (insn.word(3) == reported_file_id)) { std::istringstream in_stream; std::string cur_line; in_stream.str((char *)&insn.word(4)); while (std::getline(in_stream, cur_line)) { opsource_lines.push_back(cur_line); } while ((++insn).opcode() == spv::OpSourceContinued) { in_stream.str((char *)&insn.word(1)); while (std::getline(in_stream, cur_line)) { opsource_lines.push_back(cur_line); } } break; } } } // The task here is to search the OpSource content to find the #line directive with the // line number that is closest to, but still prior to the reported error line number and // still within the reported filename. // From this known position in the OpSource content we can add the difference between // the #line line number and the reported error line number to determine the location // in the OpSource content of the reported error line. // // Considerations: // - Look only at #line directives that specify the reported_filename since // the reported error line number refers to its location in the reported filename. // - If a #line directive does not have a filename, the file is the reported filename, or // the filename found in a prior #line directive. (This is C-preprocessor behavior) // - It is possible (e.g., inlining) for blocks of code to get shuffled out of their // original order and the #line directives are used to keep the numbering correct. This // is why we need to examine the entire contents of the source, instead of leaving early // when finding a #line line number larger than the reported error line number. // // GCC 4.8 has a problem with std::regex that is fixed in GCC 4.9. Provide fallback code for 4.8 #define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) #if defined(__GNUC__) && GCC_VERSION < 40900 static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) { // # line "" or // #line "" std::vector tokens; std::stringstream stream(string); std::string temp; uint32_t line_index = 0; while (stream >> temp) tokens.push_back(temp); auto size = tokens.size(); if (size > 1) { if (tokens[0] == "#" && tokens[1] == "line") { line_index = 2; } else if (tokens[0] == "#line") { line_index = 1; } } if (0 == line_index) return false; *linenumber = std::stoul(tokens[line_index]); uint32_t filename_index = line_index + 1; // Remove enclosing double quotes around filename if (size > filename_index) filename = tokens[filename_index].substr(1, tokens[filename_index].size() - 2); return true; } #else static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) { static const std::regex line_regex( // matches #line directives "^" // beginning of line "\\s*" // optional whitespace "#" // required text "\\s*" // optional whitespace "line" // required text "\\s+" // required whitespace "([0-9]+)" // required first capture - line number "(\\s+)?" // optional second capture - whitespace "(\".+\")?" // optional third capture - quoted filename with at least one char inside ".*"); // rest of line (needed when using std::regex_match since the entire line is tested) std::smatch captures; bool found_line = std::regex_match(string, captures, line_regex); if (!found_line) return false; // filename is optional and considered found only if the whitespace and the filename are captured if (captures[2].matched && captures[3].matched) { // Remove enclosing double quotes. The regex guarantees the quotes and at least one char. filename = captures[3].str().substr(1, captures[3].str().size() - 2); } *linenumber = std::stoul(captures[1]); return true; } #endif // GCC_VERSION // Extract the filename, line number, and column number from the correct OpLine and build a message string from it. // Scan the source (from OpSource) to find the line of source at the reported line number and place it in another message string. static void GenerateSourceMessages(const std::vector &pgm, const uint32_t *debug_record, std::string &filename_msg, std::string &source_msg) { using namespace spvtools; std::ostringstream filename_stream; std::ostringstream source_stream; SHADER_MODULE_STATE shader; shader.words = pgm; // Find the OpLine just before the failing instruction indicated by the debug info. // SPIR-V can only be iterated in the forward direction due to its opcode/length encoding. uint32_t instruction_index = 0; uint32_t reported_file_id = 0; uint32_t reported_line_number = 0; uint32_t reported_column_number = 0; if (shader.words.size() > 0) { for (auto insn : shader) { if (insn.opcode() == spv::OpLine) { reported_file_id = insn.word(1); reported_line_number = insn.word(2); reported_column_number = insn.word(3); } if (instruction_index == debug_record[kInstCommonOutInstructionIdx]) { break; } instruction_index++; } } // Create message with file information obtained from the OpString pointed to by the discovered OpLine. std::string reported_filename; if (reported_file_id == 0) { filename_stream << "Unable to find SPIR-V OpLine for source information. Build shader with debug info to get source information."; } else { bool found_opstring = false; for (auto insn : shader) { if ((insn.opcode() == spv::OpString) && (insn.len() >= 3) && (insn.word(1) == reported_file_id)) { found_opstring = true; reported_filename = (char *)&insn.word(2); if (reported_filename.empty()) { filename_stream << "Shader validation error occurred at line " << reported_line_number; } else { filename_stream << "Shader validation error occurred in file: " << reported_filename << " at line " << reported_line_number; } if (reported_column_number > 0) { filename_stream << ", column " << reported_column_number; } filename_stream << "."; break; } } if (!found_opstring) { filename_stream << "Unable to find SPIR-V OpString for file id " << reported_file_id << " from OpLine instruction."; } } filename_msg = filename_stream.str(); // Create message to display source code line containing error. if ((reported_file_id != 0)) { // Read the source code and split it up into separate lines. std::vector opsource_lines; ReadOpSource(shader, reported_file_id, opsource_lines); // Find the line in the OpSource content that corresponds to the reported error file and line. if (!opsource_lines.empty()) { uint32_t saved_line_number = 0; std::string current_filename = reported_filename; // current "preprocessor" filename state. std::vector::size_type saved_opsource_offset = 0; bool found_best_line = false; for (auto it = opsource_lines.begin(); it != opsource_lines.end(); ++it) { uint32_t parsed_line_number; std::string parsed_filename; bool found_line = GetLineAndFilename(*it, &parsed_line_number, parsed_filename); if (!found_line) continue; bool found_filename = parsed_filename.size() > 0; if (found_filename) { current_filename = parsed_filename; } if ((!found_filename) || (current_filename == reported_filename)) { // Update the candidate best line directive, if the current one is prior and closer to the reported line if (reported_line_number >= parsed_line_number) { if (!found_best_line || (reported_line_number - parsed_line_number <= reported_line_number - saved_line_number)) { saved_line_number = parsed_line_number; saved_opsource_offset = std::distance(opsource_lines.begin(), it); found_best_line = true; } } } } if (found_best_line) { assert(reported_line_number >= saved_line_number); std::vector::size_type opsource_index = (reported_line_number - saved_line_number) + 1 + saved_opsource_offset; if (opsource_index < opsource_lines.size()) { source_stream << "\n" << reported_line_number << ": " << opsource_lines[opsource_index].c_str(); } else { source_stream << "Internal error: calculated source line of " << opsource_index << " for source size of " << opsource_lines.size() << " lines."; } } else { source_stream << "Unable to find suitable #line directive in SPIR-V OpSource."; } } else { source_stream << "Unable to find SPIR-V OpSource."; } } source_msg = source_stream.str(); } // Pull together all the information from the debug record to build the error message strings, // and then assemble them into a single message string. // Retrieve the shader program referenced by the unique shader ID provided in the debug record. // We had to keep a copy of the shader program with the same lifecycle as the pipeline to make // sure it is available when the pipeline is submitted. (The ShaderModule tracking object also // keeps a copy, but it can be destroyed after the pipeline is created and before it is submitted.) // void CoreChecks::AnalyzeAndReportError(CMD_BUFFER_STATE *cb_node, VkQueue queue, VkPipelineBindPoint pipeline_bind_point, uint32_t operation_index, uint32_t *const debug_output_buffer) { using namespace spvtools; const uint32_t total_words = debug_output_buffer[0]; // A zero here means that the shader instrumentation didn't write anything. // If you have nothing to say, don't say it here. if (0 == total_words) { return; } // The first word in the debug output buffer is the number of words that would have // been written by the shader instrumentation, if there was enough room in the buffer we provided. // The number of words actually written by the shaders is determined by the size of the buffer // we provide via the descriptor. So, we process only the number of words that can fit in the // buffer. // Each "report" written by the shader instrumentation is considered a "record". This function // is hard-coded to process only one record because it expects the buffer to be large enough to // hold only one record. If there is a desire to process more than one record, this function needs // to be modified to loop over records and the buffer size increased. std::string validation_message; std::string stage_message; std::string common_message; std::string filename_message; std::string source_message; std::string vuid_msg; VkShaderModule shader_module_handle = VK_NULL_HANDLE; VkPipeline pipeline_handle = VK_NULL_HANDLE; std::vector pgm; // The first record starts at this offset after the total_words. const uint32_t *debug_record = &debug_output_buffer[kDebugOutputDataOffset]; // Lookup the VkShaderModule handle and SPIR-V code used to create the shader, using the unique shader ID value returned // by the instrumented shader. auto it = gpu_validation_state->shader_map.find(debug_record[kInstCommonOutShaderId]); if (it != gpu_validation_state->shader_map.end()) { shader_module_handle = it->second.shader_module; pipeline_handle = it->second.pipeline; pgm = it->second.pgm; } GenerateValidationMessage(debug_record, validation_message, vuid_msg); GenerateStageMessage(debug_record, stage_message); GenerateCommonMessage(report_data, cb_node, debug_record, shader_module_handle, pipeline_handle, pipeline_bind_point, operation_index, common_message); GenerateSourceMessages(pgm, debug_record, filename_message, source_message); log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, HandleToUint64(queue), vuid_msg.c_str(), "%s %s %s %s%s", validation_message.c_str(), common_message.c_str(), stage_message.c_str(), filename_message.c_str(), source_message.c_str()); // The debug record at word kInstCommonOutSize is the number of words in the record // written by the shader. Clear the entire record plus the total_words word at the start. const uint32_t words_to_clear = 1 + std::min(debug_record[kInstCommonOutSize], (uint32_t)kInstMaxOutCnt); memset(debug_output_buffer, 0, sizeof(uint32_t) * words_to_clear); } // For the given command buffer, map its debug data buffers and read their contents for analysis. void CoreChecks::ProcessInstrumentationBuffer(VkQueue queue, CMD_BUFFER_STATE *cb_node) { auto gpu_buffer_list = gpu_validation_state->GetGpuBufferInfo(cb_node->commandBuffer); if (cb_node && (cb_node->hasDrawCmd || cb_node->hasTraceRaysCmd || cb_node->hasDispatchCmd) && gpu_buffer_list.size() > 0) { VkResult result; char *pData; uint32_t draw_index = 0; uint32_t compute_index = 0; uint32_t ray_trace_index = 0; for (auto &buffer_info : gpu_buffer_list) { result = vmaMapMemory(gpu_validation_state->vmaAllocator, buffer_info.output_mem_block.allocation, (void **)&pData); // Analyze debug output buffer if (result == VK_SUCCESS) { uint32_t operation_index = 0; if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) { operation_index = draw_index; } else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) { operation_index = compute_index; } else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) { operation_index = ray_trace_index; } else { assert(false); } AnalyzeAndReportError(cb_node, queue, buffer_info.pipeline_bind_point, operation_index, (uint32_t *)pData); vmaUnmapMemory(gpu_validation_state->vmaAllocator, buffer_info.output_mem_block.allocation); } if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) { draw_index++; } else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) { compute_index++; } else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) { ray_trace_index++; } else { assert(false); } } } } // For the given command buffer, map its debug data buffers and update the status of any update after bind descriptors void CoreChecks::UpdateInstrumentationBuffer(CMD_BUFFER_STATE *cb_node) { auto gpu_buffer_list = gpu_validation_state->GetGpuBufferInfo(cb_node->commandBuffer); uint32_t *pData; for (auto &buffer_info : gpu_buffer_list) { if (buffer_info.input_mem_block.update_at_submit.size() > 0) { VkResult result = vmaMapMemory(gpu_validation_state->vmaAllocator, buffer_info.input_mem_block.allocation, (void **)&pData); if (result == VK_SUCCESS) { for (auto update : buffer_info.input_mem_block.update_at_submit) { if (update.second->updated) pData[update.first] = 1; } vmaUnmapMemory(gpu_validation_state->vmaAllocator, buffer_info.input_mem_block.allocation); } } } } // Submit a memory barrier on graphics queues. // Lazy-create and record the needed command buffer. void CoreChecks::SubmitBarrier(VkQueue queue) { auto queue_barrier_command_info_it = gpu_validation_state->queue_barrier_command_infos.emplace(queue, GpuQueueBarrierCommandInfo{}); if (queue_barrier_command_info_it.second) { GpuQueueBarrierCommandInfo &quere_barrier_command_info = queue_barrier_command_info_it.first->second; uint32_t queue_family_index = 0; auto queue_state_it = queueMap.find(queue); if (queue_state_it != queueMap.end()) { queue_family_index = queue_state_it->second.queueFamilyIndex; } VkResult result = VK_SUCCESS; VkCommandPoolCreateInfo pool_create_info = {}; pool_create_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; pool_create_info.queueFamilyIndex = queue_family_index; result = DispatchCreateCommandPool(device, &pool_create_info, nullptr, &quere_barrier_command_info.barrier_command_pool); if (result != VK_SUCCESS) { ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unable to create command pool for barrier CB."); quere_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE; return; } VkCommandBufferAllocateInfo buffer_alloc_info = {}; buffer_alloc_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; buffer_alloc_info.commandPool = quere_barrier_command_info.barrier_command_pool; buffer_alloc_info.commandBufferCount = 1; buffer_alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; result = DispatchAllocateCommandBuffers(device, &buffer_alloc_info, &quere_barrier_command_info.barrier_command_buffer); if (result != VK_SUCCESS) { ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unable to create barrier command buffer."); DispatchDestroyCommandPool(device, quere_barrier_command_info.barrier_command_pool, nullptr); quere_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE; quere_barrier_command_info.barrier_command_buffer = VK_NULL_HANDLE; return; } // Hook up command buffer dispatch gpu_validation_state->vkSetDeviceLoaderData(device, quere_barrier_command_info.barrier_command_buffer); // Record a global memory barrier to force availability of device memory operations to the host domain. VkCommandBufferBeginInfo command_buffer_begin_info = {}; command_buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; result = DispatchBeginCommandBuffer(quere_barrier_command_info.barrier_command_buffer, &command_buffer_begin_info); if (result == VK_SUCCESS) { VkMemoryBarrier memory_barrier = {}; memory_barrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER; memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT; memory_barrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT; DispatchCmdPipelineBarrier(quere_barrier_command_info.barrier_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0, 1, &memory_barrier, 0, nullptr, 0, nullptr); DispatchEndCommandBuffer(quere_barrier_command_info.barrier_command_buffer); } } GpuQueueBarrierCommandInfo &quere_barrier_command_info = queue_barrier_command_info_it.first->second; if (quere_barrier_command_info.barrier_command_buffer != VK_NULL_HANDLE) { VkSubmitInfo submit_info = {}; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.commandBufferCount = 1; submit_info.pCommandBuffers = &quere_barrier_command_info.barrier_command_buffer; DispatchQueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE); } } void CoreChecks::GpuPreCallRecordQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) { for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) { const VkSubmitInfo *submit = &pSubmits[submit_idx]; for (uint32_t i = 0; i < submit->commandBufferCount; i++) { auto cb_node = GetCBState(submit->pCommandBuffers[i]); UpdateInstrumentationBuffer(cb_node); for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) { UpdateInstrumentationBuffer(secondaryCmdBuffer); } } } } // Issue a memory barrier to make GPU-written data available to host. // Wait for the queue to complete execution. // Check the debug buffers for all the command buffers that were submitted. void CoreChecks::GpuPostCallQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) { if (gpu_validation_state->aborted) return; SubmitBarrier(queue); DispatchQueueWaitIdle(queue); for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) { const VkSubmitInfo *submit = &pSubmits[submit_idx]; for (uint32_t i = 0; i < submit->commandBufferCount; i++) { auto cb_node = GetCBState(submit->pCommandBuffers[i]); ProcessInstrumentationBuffer(queue, cb_node); for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) { ProcessInstrumentationBuffer(queue, secondaryCmdBuffer); } } } } void CoreChecks::GpuAllocateValidationResources(const VkCommandBuffer cmd_buffer, const VkPipelineBindPoint bind_point) { if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE && bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) { return; } VkResult result; if (!(enabled.gpu_validation)) return; if (gpu_validation_state->aborted) return; std::vector desc_sets; VkDescriptorPool desc_pool = VK_NULL_HANDLE; result = gpu_validation_state->desc_set_manager->GetDescriptorSets(1, &desc_pool, &desc_sets); assert(result == VK_SUCCESS); if (result != VK_SUCCESS) { ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unable to allocate descriptor sets. Device could become unstable."); gpu_validation_state->aborted = true; return; } VkDescriptorBufferInfo output_desc_buffer_info = {}; output_desc_buffer_info.range = gpu_validation_state->output_buffer_size; auto cb_node = GetCBState(cmd_buffer); if (!cb_node) { ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unrecognized command buffer"); gpu_validation_state->aborted = true; return; } // Allocate memory for the output block that the gpu will use to return any error information GpuDeviceMemoryBlock output_block = {}; VkBufferCreateInfo bufferInfo = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO}; bufferInfo.size = gpu_validation_state->output_buffer_size; bufferInfo.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT; VmaAllocationCreateInfo allocInfo = {}; allocInfo.usage = VMA_MEMORY_USAGE_GPU_TO_CPU; result = vmaCreateBuffer(gpu_validation_state->vmaAllocator, &bufferInfo, &allocInfo, &output_block.buffer, &output_block.allocation, nullptr); if (result != VK_SUCCESS) { ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unable to allocate device memory. Device could become unstable."); gpu_validation_state->aborted = true; return; } // Clear the output block to zeros so that only error information from the gpu will be present uint32_t *pData; result = vmaMapMemory(gpu_validation_state->vmaAllocator, output_block.allocation, (void **)&pData); if (result == VK_SUCCESS) { memset(pData, 0, gpu_validation_state->output_buffer_size); vmaUnmapMemory(gpu_validation_state->vmaAllocator, output_block.allocation); } GpuDeviceMemoryBlock input_block = {}; VkWriteDescriptorSet desc_writes[2] = {}; uint32_t desc_count = 1; auto const &state = cb_node->lastBound[bind_point]; uint32_t number_of_sets = (uint32_t)state.per_set.size(); // Figure out how much memory we need for the input block based on how many sets and bindings there are // and how big each of the bindings is if (number_of_sets > 0 && device_extensions.vk_ext_descriptor_indexing) { uint32_t descriptor_count = 0; // Number of descriptors, including all array elements uint32_t binding_count = 0; // Number of bindings based on the max binding number used for (auto s : state.per_set) { auto desc = s.bound_descriptor_set; auto bindings = desc->GetLayout()->GetSortedBindingSet(); if (bindings.size() > 0) { binding_count += desc->GetLayout()->GetMaxBinding() + 1; for (auto binding : bindings) { // Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform // blocks if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) { descriptor_count++; log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, VK_NULL_HANDLE, "UNASSIGNED-GPU-Assisted Validation Warning", "VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT descriptors will not be validated by GPU assisted " "validation"); } else if (binding == desc->GetLayout()->GetMaxBinding() && desc->IsVariableDescriptorCount(binding)) { descriptor_count += desc->GetVariableDescriptorCount(); } else { descriptor_count += desc->GetDescriptorCountFromBinding(binding); } } } } // Note that the size of the input buffer is dependent on the maximum binding number, which // can be very large. This is because for (set = s, binding = b, index = i), the validation // code is going to dereference Input[ i + Input[ b + Input[ s + Input[ Input[0] ] ] ] ] to // see if descriptors have been written. In gpu_validation.md, we note this and advise // using densely packed bindings as a best practice when using gpu-av with descriptor indexing uint32_t words_needed = 1 + (number_of_sets * 2) + (binding_count * 2) + descriptor_count; allocInfo.usage = VMA_MEMORY_USAGE_CPU_TO_GPU; bufferInfo.size = words_needed * 4; result = vmaCreateBuffer(gpu_validation_state->vmaAllocator, &bufferInfo, &allocInfo, &input_block.buffer, &input_block.allocation, nullptr); if (result != VK_SUCCESS) { ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unable to allocate device memory. Device could become unstable."); gpu_validation_state->aborted = true; return; } // Populate input buffer first with the sizes of every descriptor in every set, then with whether // each element of each descriptor has been written or not. See gpu_validation.md for a more thourough // outline of the input buffer format result = vmaMapMemory(gpu_validation_state->vmaAllocator, input_block.allocation, (void **)&pData); memset(pData, 0, static_cast(bufferInfo.size)); // Pointer to a sets array that points into the sizes array uint32_t *sets_to_sizes = pData + 1; // Pointer to the sizes array that contains the array size of the descriptor at each binding uint32_t *sizes = sets_to_sizes + number_of_sets; // Pointer to another sets array that points into the bindings array that points into the written array uint32_t *sets_to_bindings = sizes + binding_count; // Pointer to the bindings array that points at the start of the writes in the writes array for each binding uint32_t *bindings_to_written = sets_to_bindings + number_of_sets; // Index of the next entry in the written array to be updated uint32_t written_index = 1 + (number_of_sets * 2) + (binding_count * 2); uint32_t bindCounter = number_of_sets + 1; // Index of the start of the sets_to_bindings array pData[0] = number_of_sets + binding_count + 1; for (auto s : state.per_set) { auto desc = s.bound_descriptor_set; auto layout = desc->GetLayout(); auto bindings = layout->GetSortedBindingSet(); if (bindings.size() > 0) { // For each set, fill in index of its bindings sizes in the sizes array *sets_to_sizes++ = bindCounter; // For each set, fill in the index of its bindings in the bindings_to_written array *sets_to_bindings++ = bindCounter + number_of_sets + binding_count; for (auto binding : bindings) { // For each binding, fill in its size in the sizes array // Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform // blocks if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) { sizes[binding] = 1; } else if (binding == layout->GetMaxBinding() && desc->IsVariableDescriptorCount(binding)) { sizes[binding] = desc->GetVariableDescriptorCount(); } else { sizes[binding] = desc->GetDescriptorCountFromBinding(binding); } // Fill in the starting index for this binding in the written array in the bindings_to_written array bindings_to_written[binding] = written_index; // Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform // blocks if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) { pData[written_index++] = 1; continue; } auto index_range = desc->GetGlobalIndexRangeFromBinding(binding, true); // For each array element in the binding, update the written array with whether it has been written for (uint32_t i = index_range.start; i < index_range.end; ++i) { auto *descriptor = desc->GetDescriptorFromGlobalIndex(i); if (descriptor->updated) { pData[written_index] = 1; } else if (desc->IsUpdateAfterBind(binding)) { // If it hasn't been written now and it's update after bind, put it in a list to check at QueueSubmit input_block.update_at_submit[written_index] = descriptor; } written_index++; } } auto last = desc->GetLayout()->GetMaxBinding(); bindings_to_written += last + 1; bindCounter += last + 1; sizes += last + 1; } else { *sets_to_sizes++ = 0; *sets_to_bindings++ = 0; } } vmaUnmapMemory(gpu_validation_state->vmaAllocator, input_block.allocation); VkDescriptorBufferInfo input_desc_buffer_info = {}; input_desc_buffer_info.range = (words_needed * 4); input_desc_buffer_info.buffer = input_block.buffer; input_desc_buffer_info.offset = 0; desc_writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; desc_writes[1].dstBinding = 1; desc_writes[1].descriptorCount = 1; desc_writes[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; desc_writes[1].pBufferInfo = &input_desc_buffer_info; desc_writes[1].dstSet = desc_sets[0]; desc_count = 2; } // Write the descriptor output_desc_buffer_info.buffer = output_block.buffer; output_desc_buffer_info.offset = 0; desc_writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; desc_writes[0].descriptorCount = 1; desc_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; desc_writes[0].pBufferInfo = &output_desc_buffer_info; desc_writes[0].dstSet = desc_sets[0]; DispatchUpdateDescriptorSets(device, desc_count, desc_writes, 0, NULL); auto iter = cb_node->lastBound.find(bind_point); // find() allows read-only access to cb_state if (iter != cb_node->lastBound.end()) { auto pipeline_state = iter->second.pipeline_state; if (pipeline_state && (pipeline_state->pipeline_layout.set_layouts.size() <= gpu_validation_state->desc_set_bind_index)) { DispatchCmdBindDescriptorSets(cmd_buffer, bind_point, pipeline_state->pipeline_layout.layout, gpu_validation_state->desc_set_bind_index, 1, desc_sets.data(), 0, nullptr); } // Record buffer and memory info in CB state tracking gpu_validation_state->GetGpuBufferInfo(cmd_buffer) .emplace_back(output_block, input_block, desc_sets[0], desc_pool, bind_point); } else { ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unable to find pipeline state"); vmaDestroyBuffer(gpu_validation_state->vmaAllocator, input_block.buffer, input_block.allocation); vmaDestroyBuffer(gpu_validation_state->vmaAllocator, output_block.buffer, output_block.allocation); gpu_validation_state->aborted = true; return; } }