// // Copyright (C) 2015 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/payload_generator/delta_diff_utils.h" #include #include #if defined(__clang__) // TODO(*): Remove these pragmas when b/35721782 is fixed. #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wmacro-redefined" #endif #include #if defined(__clang__) #pragma clang diagnostic pop #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "update_engine/common/hash_calculator.h" #include "update_engine/common/subprocess.h" #include "update_engine/common/utils.h" #include "update_engine/payload_consumer/payload_constants.h" #include "update_engine/payload_generator/ab_generator.h" #include "update_engine/payload_generator/block_mapping.h" #include "update_engine/payload_generator/bzip.h" #include "update_engine/payload_generator/deflate_utils.h" #include "update_engine/payload_generator/delta_diff_generator.h" #include "update_engine/payload_generator/extent_ranges.h" #include "update_engine/payload_generator/extent_utils.h" #include "update_engine/payload_generator/merge_sequence_generator.h" #include "update_engine/payload_generator/squashfs_filesystem.h" #include "update_engine/payload_generator/xz.h" #include "update_engine/lz4diff/lz4diff.h" using std::list; using std::map; using std::string; using std::vector; namespace chromeos_update_engine { namespace { // The maximum destination size allowed for bsdiff. In general, bsdiff should // work for arbitrary big files, but the payload generation and payload // application requires a significant amount of RAM. We put a hard-limit of // 200 MiB that should not affect any released board, but will limit the // Chrome binary in ASan builders. const uint64_t kMaxBsdiffDestinationSize = 200 * 1024 * 1024; // bytes // The maximum destination size allowed for puffdiff. In general, puffdiff // should work for arbitrary big files, but the payload application is quite // memory intensive, so we limit these operations to 150 MiB. const uint64_t kMaxPuffdiffDestinationSize = 150 * 1024 * 1024; // bytes // The maximum destination size allowed for zucchini. We are conservative here // as zucchini tends to use more peak memory. const uint64_t kMaxZucchiniDestinationSize = 150 * 1024 * 1024; // bytes const int kBrotliCompressionQuality = 11; // Storing a diff operation has more overhead over replace operation in the // manifest, we need to store an additional src_sha256_hash which is 32 bytes // and not compressible, and also src_extents which could use anywhere from a // few bytes to hundreds of bytes depending on the number of extents. // This function evaluates the overhead tradeoff and determines if it's worth to // use a diff operation with data blob of |diff_size| and |num_src_extents| // extents over an existing |op| with data blob of |old_blob_size|. bool IsDiffOperationBetter(const InstallOperation& op, size_t old_blob_size, size_t diff_size, size_t num_src_extents) { if (!diff_utils::IsAReplaceOperation(op.type())) return diff_size < old_blob_size; // Reference: https://developers.google.com/protocol-buffers/docs/encoding // For |src_sha256_hash| we need 1 byte field number/type, 1 byte size and 32 // bytes data, for |src_extents| we need 1 byte field number/type and 1 byte // size. constexpr size_t kDiffOverhead = 1 + 1 + 32 + 1 + 1; // Each extent has two variable length encoded uint64, here we use a rough // estimate of 6 bytes overhead per extent, since |num_blocks| is usually // very small. constexpr size_t kDiffOverheadPerExtent = 6; return diff_size + kDiffOverhead + num_src_extents * kDiffOverheadPerExtent < old_blob_size; } // Returns the levenshtein distance between string |a| and |b|. // https://en.wikipedia.org/wiki/Levenshtein_distance int LevenshteinDistance(const string& a, const string& b) { vector distances(a.size() + 1); std::iota(distances.begin(), distances.end(), 0); for (size_t i = 1; i <= b.size(); i++) { distances[0] = i; int previous_distance = i - 1; for (size_t j = 1; j <= a.size(); j++) { int new_distance = std::min({distances[j] + 1, distances[j - 1] + 1, previous_distance + (a[j - 1] == b[i - 1] ? 0 : 1)}); previous_distance = distances[j]; distances[j] = new_distance; } } return distances.back(); } static bool ShouldCreateNewOp(const std::vector& ops, size_t src_block, size_t dst_block, size_t src_offset) { if (ops.empty()) { return true; } const auto& op = ops.back(); if (op.src_offset() != src_offset) { return true; } const auto& src_extent = op.src_extent(); const auto& dst_extent = op.dst_extent(); return src_extent.start_block() + src_extent.num_blocks() != src_block || dst_extent.start_block() + dst_extent.num_blocks() != dst_block; } void AppendXorBlock(std::vector* ops, size_t src_block, size_t dst_block, size_t src_offset) { if (!ops->empty() && ExtentContains(ops->back().dst_extent(), dst_block)) { return; } CHECK_NE(src_block, std::numeric_limits::max()); CHECK_NE(dst_block, std::numeric_limits::max()); if (ShouldCreateNewOp(*ops, src_block, dst_block, src_offset)) { auto& op = ops->emplace_back(); op.mutable_src_extent()->set_start_block(src_block); op.mutable_src_extent()->set_num_blocks(1); op.mutable_dst_extent()->set_start_block(dst_block); op.mutable_dst_extent()->set_num_blocks(1); op.set_src_offset(src_offset); op.set_type(CowMergeOperation::COW_XOR); } else { auto& op = ops->back(); auto& src_extent = *op.mutable_src_extent(); auto& dst_extent = *op.mutable_dst_extent(); src_extent.set_num_blocks(src_extent.num_blocks() + 1); dst_extent.set_num_blocks(dst_extent.num_blocks() + 1); } } } // namespace namespace diff_utils { bool BestDiffGenerator::GenerateBestDiffOperation(AnnotatedOperation* aop, brillo::Blob* data_blob) { std::vector> diff_candidates = { {InstallOperation::SOURCE_BSDIFF, kMaxBsdiffDestinationSize}, {InstallOperation::PUFFDIFF, kMaxPuffdiffDestinationSize}, {InstallOperation::ZUCCHINI, kMaxZucchiniDestinationSize}, }; return GenerateBestDiffOperation(diff_candidates, aop, data_blob); } std::vector BestDiffGenerator::GetUsableCompressorTypes() const { return config_.compressors; } bool BestDiffGenerator::GenerateBestDiffOperation( const std::vector>& diff_candidates, AnnotatedOperation* aop, brillo::Blob* data_blob) { CHECK(aop); CHECK(data_blob); if (!old_block_info_.blocks.empty() && !new_block_info_.blocks.empty() && config_.OperationEnabled(InstallOperation::LZ4DIFF_BSDIFF) && config_.OperationEnabled(InstallOperation::LZ4DIFF_PUFFDIFF)) { brillo::Blob patch; InstallOperation::Type op_type; if (Lz4Diff(old_data_, new_data_, old_block_info_, new_block_info_, &patch, &op_type)) { aop->op.set_type(op_type); // LZ4DIFF is likely significantly better than BSDIFF/PUFFDIFF when // working with EROFS. So no need to even try other diffing algorithms. *data_blob = std::move(patch); return true; } } const uint64_t input_bytes = std::max(utils::BlocksInExtents(src_extents_), utils::BlocksInExtents(dst_extents_)) * kBlockSize; for (auto [op_type, limit] : diff_candidates) { if (!config_.OperationEnabled(op_type)) { continue; } // Disable the specific diff algorithm when the data is too big. if (input_bytes > limit) { LOG(INFO) << op_type << " ignored, file " << aop->name << " too big: " << input_bytes << " bytes"; continue; } // Prefer BROTLI_BSDIFF as it gives smaller patch size. if (op_type == InstallOperation::SOURCE_BSDIFF && config_.OperationEnabled(InstallOperation::BROTLI_BSDIFF)) { op_type = InstallOperation::BROTLI_BSDIFF; } switch (op_type) { case InstallOperation::SOURCE_BSDIFF: case InstallOperation::BROTLI_BSDIFF: TEST_AND_RETURN_FALSE( TryBsdiffAndUpdateOperation(op_type, aop, data_blob)); break; case InstallOperation::PUFFDIFF: TEST_AND_RETURN_FALSE(TryPuffdiffAndUpdateOperation(aop, data_blob)); break; case InstallOperation::ZUCCHINI: TEST_AND_RETURN_FALSE(TryZucchiniAndUpdateOperation(aop, data_blob)); break; default: NOTREACHED(); } } return true; } bool BestDiffGenerator::TryBsdiffAndUpdateOperation( InstallOperation_Type operation_type, AnnotatedOperation* aop, brillo::Blob* data_blob) { base::FilePath patch; TEST_AND_RETURN_FALSE(base::CreateTemporaryFile(&patch)); ScopedPathUnlinker unlinker(patch.value()); std::unique_ptr bsdiff_patch_writer; if (operation_type == InstallOperation::BROTLI_BSDIFF) { bsdiff_patch_writer = bsdiff::CreateBSDF2PatchWriter( patch.value(), GetUsableCompressorTypes(), kBrotliCompressionQuality); } else { bsdiff_patch_writer = bsdiff::CreateBsdiffPatchWriter(patch.value()); } brillo::Blob bsdiff_delta; TEST_AND_RETURN_FALSE(0 == bsdiff::bsdiff(old_data_.data(), old_data_.size(), new_data_.data(), new_data_.size(), bsdiff_patch_writer.get(), nullptr)); TEST_AND_RETURN_FALSE(utils::ReadFile(patch.value(), &bsdiff_delta)); TEST_AND_RETURN_FALSE(!bsdiff_delta.empty()); InstallOperation& operation = aop->op; if (IsDiffOperationBetter(operation, data_blob->size(), bsdiff_delta.size(), src_extents_.size())) { // VABC XOR won't work with compressed files just yet. if (config_.enable_vabc_xor) { StoreExtents(src_extents_, operation.mutable_src_extents()); diff_utils::PopulateXorOps(aop, bsdiff_delta); } operation.set_type(operation_type); *data_blob = std::move(bsdiff_delta); } return true; } bool BestDiffGenerator::TryPuffdiffAndUpdateOperation(AnnotatedOperation* aop, brillo::Blob* data_blob) { // Only Puffdiff if both files have at least one deflate left. if (!old_deflates_.empty() && !new_deflates_.empty()) { brillo::Blob puffdiff_delta; ScopedTempFile temp_file("puffdiff-delta.XXXXXX"); // Perform PuffDiff operation. TEST_AND_RETURN_FALSE(puffin::PuffDiff(old_data_, new_data_, old_deflates_, new_deflates_, GetUsableCompressorTypes(), temp_file.path(), &puffdiff_delta)); TEST_AND_RETURN_FALSE(!puffdiff_delta.empty()); InstallOperation& operation = aop->op; if (IsDiffOperationBetter(operation, data_blob->size(), puffdiff_delta.size(), src_extents_.size())) { operation.set_type(InstallOperation::PUFFDIFF); *data_blob = std::move(puffdiff_delta); } } return true; } bool BestDiffGenerator::TryZucchiniAndUpdateOperation(AnnotatedOperation* aop, brillo::Blob* data_blob) { // zip files are ignored for now. We expect puffin to perform better on those. // Investigate whether puffin over zucchini yields better results on those. if (!deflate_utils::IsFileExtensions( aop->name, {".ko", ".so", ".art", ".odex", ".vdex", "", "", /*, ".capex",".jar", ".apk", ".apex"*/})) { return true; } zucchini::ConstBufferView src_bytes(old_data_.data(), old_data_.size()); zucchini::ConstBufferView dst_bytes(new_data_.data(), new_data_.size()); zucchini::EnsemblePatchWriter patch_writer(src_bytes, dst_bytes); auto status = zucchini::GenerateBuffer(src_bytes, dst_bytes, &patch_writer); TEST_AND_RETURN_FALSE(status == zucchini::status::kStatusSuccess); brillo::Blob zucchini_delta(patch_writer.SerializedSize()); patch_writer.SerializeInto({zucchini_delta.data(), zucchini_delta.size()}); // Compress the delta with brotli. // TODO(197361113) support compressing the delta with different algorithms, // similar to the usage in puffin. brillo::Blob compressed_delta; TEST_AND_RETURN_FALSE(puffin::BrotliEncode( zucchini_delta.data(), zucchini_delta.size(), &compressed_delta)); InstallOperation& operation = aop->op; if (IsDiffOperationBetter(operation, data_blob->size(), compressed_delta.size(), src_extents_.size())) { operation.set_type(InstallOperation::ZUCCHINI); *data_blob = std::move(compressed_delta); } return true; } // This class encapsulates a file delta processing thread work. The // processor computes the delta between the source and target files; // and write the compressed delta to the blob. class FileDeltaProcessor : public base::DelegateSimpleThread::Delegate { public: FileDeltaProcessor(const string& old_part, const string& new_part, const PayloadGenerationConfig& config, const File& old_extents, const File& new_extents, const string& name, ssize_t chunk_blocks, BlobFileWriter* blob_file) : old_part_(old_part), new_part_(new_part), config_(config), old_extents_(old_extents), new_extents_(new_extents), new_extents_blocks_(utils::BlocksInExtents(new_extents.extents)), name_(name), chunk_blocks_(chunk_blocks), blob_file_(blob_file) {} bool operator>(const FileDeltaProcessor& other) const { return new_extents_blocks_ > other.new_extents_blocks_; } ~FileDeltaProcessor() override = default; // Overrides DelegateSimpleThread::Delegate. // Calculate the list of operations and write their corresponding deltas to // the blob_file. void Run() override; // Merge each file processor's ops list to aops. bool MergeOperation(vector* aops); private: const string& old_part_; // NOLINT(runtime/member_string_references) const string& new_part_; // NOLINT(runtime/member_string_references) const PayloadGenerationConfig& config_; // The block ranges of the old/new file within the src/tgt image const File old_extents_; const File new_extents_; const size_t new_extents_blocks_; const string name_; // Block limit of one aop. const ssize_t chunk_blocks_; BlobFileWriter* blob_file_; // The list of ops to reach the new file from the old file. vector file_aops_; bool failed_ = false; DISALLOW_COPY_AND_ASSIGN(FileDeltaProcessor); }; void FileDeltaProcessor::Run() { TEST_AND_RETURN(blob_file_ != nullptr); base::TimeTicks start = base::TimeTicks::Now(); if (!DeltaReadFile(&file_aops_, old_part_, new_part_, old_extents_, new_extents_, chunk_blocks_, config_, blob_file_)) { LOG(ERROR) << "Failed to generate delta for " << name_ << " (" << new_extents_blocks_ << " blocks)"; failed_ = true; return; } if (!ABGenerator::FragmentOperations( config_.version, &file_aops_, new_part_, blob_file_)) { LOG(ERROR) << "Failed to fragment operations for " << name_; failed_ = true; return; } LOG(INFO) << "Encoded file " << name_ << " (" << new_extents_blocks_ << " blocks) in " << (base::TimeTicks::Now() - start); } bool FileDeltaProcessor::MergeOperation(vector* aops) { if (failed_) return false; std::move(file_aops_.begin(), file_aops_.end(), std::back_inserter(*aops)); return true; } FilesystemInterface::File GetOldFile( const map& old_files_map, const string& new_file_name) { if (old_files_map.empty()) return {}; auto old_file_iter = old_files_map.find(new_file_name); if (old_file_iter != old_files_map.end()) return old_file_iter->second; // No old file matches the new file name. Use a similar file with the // shortest levenshtein distance instead. // This works great if the file has version number in it, but even for // a completely new file, using a similar file can still help. int min_distance = LevenshteinDistance(new_file_name, old_files_map.begin()->first); const FilesystemInterface::File* old_file = &old_files_map.begin()->second; for (const auto& pair : old_files_map) { int distance = LevenshteinDistance(new_file_name, pair.first); if (distance < min_distance) { min_distance = distance; old_file = &pair.second; } } LOG(INFO) << "Using " << old_file->name << " as source for " << new_file_name; return *old_file; } std::vector RemoveDuplicateBlocks(const std::vector& extents) { ExtentRanges extent_set; std::vector ret; for (const auto& extent : extents) { auto vec = FilterExtentRanges({extent}, extent_set); ret.insert(ret.end(), std::make_move_iterator(vec.begin()), std::make_move_iterator(vec.end())); extent_set.AddExtent(extent); } return ret; } bool DeltaReadPartition(vector* aops, const PartitionConfig& old_part, const PartitionConfig& new_part, ssize_t hard_chunk_blocks, size_t soft_chunk_blocks, const PayloadGenerationConfig& config, BlobFileWriter* blob_file) { const auto& version = config.version; ExtentRanges old_visited_blocks; ExtentRanges new_visited_blocks; // If verity is enabled, mark those blocks as visited to skip generating // operations for them. if (version.minor >= kVerityMinorPayloadVersion && !new_part.verity.IsEmpty()) { LOG(INFO) << "Skipping verity hash tree blocks: " << ExtentsToString({new_part.verity.hash_tree_extent}); new_visited_blocks.AddExtent(new_part.verity.hash_tree_extent); LOG(INFO) << "Skipping verity FEC blocks: " << ExtentsToString({new_part.verity.fec_extent}); new_visited_blocks.AddExtent(new_part.verity.fec_extent); } const bool puffdiff_allowed = config.OperationEnabled(InstallOperation::PUFFDIFF); TEST_AND_RETURN_FALSE(new_part.fs_interface); vector new_files; TEST_AND_RETURN_FALSE(deflate_utils::PreprocessPartitionFiles( new_part, &new_files, puffdiff_allowed)); ExtentRanges old_zero_blocks; // Prematurely removing moved blocks will render compression info useless. // Even if a single block inside a 100MB file is filtered out, the entire // 100MB file can't be decompressed. In this case we will fallback to BSDIFF, // which performs much worse than LZ4diff. It's better to let LZ4DIFF perform // decompression, and let underlying BSDIFF to take care of moved blocks. // TODO(b/206729162) Implement block filtering with compression block info const auto no_compressed_files = std::all_of(new_files.begin(), new_files.end(), [](const File& a) { return a.compressed_file_info.blocks.empty(); }); if (!config.OperationEnabled(InstallOperation::LZ4DIFF_BSDIFF) || no_compressed_files) { TEST_AND_RETURN_FALSE(DeltaMovedAndZeroBlocks(aops, old_part.path, new_part.path, old_part.size / kBlockSize, new_part.size / kBlockSize, soft_chunk_blocks, config, blob_file, &old_visited_blocks, &new_visited_blocks, &old_zero_blocks)); } map old_files_map; if (old_part.fs_interface) { vector old_files; TEST_AND_RETURN_FALSE(deflate_utils::PreprocessPartitionFiles( old_part, &old_files, puffdiff_allowed)); for (const FilesystemInterface::File& file : old_files) old_files_map[file.name] = file; } list file_delta_processors; // The processing is very straightforward here, we generate operations for // every file (and pseudo-file such as the metadata) in the new filesystem // based on the file with the same name in the old filesystem, if any. // Files with overlapping data blocks (like hardlinks or filesystems with tail // packing or compression where the blocks store more than one file) are only // generated once in the new image, but are also used only once from the old // image due to some simplifications (see below). for (const FilesystemInterface::File& new_file : new_files) { // Ignore the files in the new filesystem without blocks. Symlinks with // data blocks (for example, symlinks bigger than 60 bytes in ext2) are // handled as normal files. We also ignore blocks that were already // processed by a previous file. vector new_file_extents = FilterExtentRanges(new_file.extents, new_visited_blocks); new_visited_blocks.AddExtents(new_file_extents); if (new_file_extents.empty()) continue; FilesystemInterface::File old_file = GetOldFile(old_files_map, new_file.name); old_visited_blocks.AddExtents(old_file.extents); // TODO(b/177104308) Filtering |new_file_extents| might confuse puffdiff, as // we might filterout extents with deflate streams. PUFFDIFF is written with // that in mind, so it will try to adapt to the filtered extents. // Correctness is intact, but might yield larger patch sizes. From what we // experimented, this has little impact on OTA size. Meanwhile, XOR ops // depend on this. So filter out duplicate blocks from new file. // TODO(b/194237829) |old_file.extents| is used instead of the de-duped // |old_file_extents|. This is because zucchini diffing algorithm works // better when given the full source file. // Current logic: // 1. src extent is completely unfiltered. It may contain // duplicate blocks across files, within files, it may contain zero blocks, // etc. // 2. dst extent is completely filtered, no duplicate blocks or zero blocks // whatsoever. auto filtered_new_file = new_file; filtered_new_file.extents = RemoveDuplicateBlocks(new_file_extents); file_delta_processors.emplace_back(old_part.path, new_part.path, config, std::move(old_file), std::move(filtered_new_file), new_file.name, // operation name hard_chunk_blocks, blob_file); } // Process all the blocks not included in any file. We provided all the unused // blocks in the old partition as available data. vector new_unvisited = { ExtentForRange(0, new_part.size / kBlockSize)}; new_unvisited = FilterExtentRanges(new_unvisited, new_visited_blocks); if (!new_unvisited.empty()) { vector old_unvisited; if (old_part.fs_interface) { old_unvisited.push_back(ExtentForRange(0, old_part.size / kBlockSize)); old_unvisited = FilterExtentRanges(old_unvisited, old_visited_blocks); } LOG(INFO) << "Scanning " << utils::BlocksInExtents(new_unvisited) << " unwritten blocks using chunk size of " << soft_chunk_blocks << " blocks."; // We use the soft_chunk_blocks limit for the as we don't // really know the structure of this data and we should not expect it to // have redundancy between partitions. File old_file; old_file.extents = old_unvisited; File new_file; new_file.extents = RemoveDuplicateBlocks(new_unvisited); file_delta_processors.emplace_back(old_part.path, new_part.path, config, old_file, new_file, "", // operation name soft_chunk_blocks, blob_file); } size_t max_threads = GetMaxThreads(); // Sort the files in descending order based on number of new blocks to make // sure we start the largest ones first. if (file_delta_processors.size() > max_threads) { file_delta_processors.sort(std::greater()); } base::DelegateSimpleThreadPool thread_pool("incremental-update-generator", max_threads); thread_pool.Start(); for (auto& processor : file_delta_processors) { thread_pool.AddWork(&processor); } thread_pool.JoinAll(); for (auto& processor : file_delta_processors) { TEST_AND_RETURN_FALSE(processor.MergeOperation(aops)); } return true; } bool DeltaMovedAndZeroBlocks(vector* aops, const string& old_part, const string& new_part, size_t old_num_blocks, size_t new_num_blocks, ssize_t chunk_blocks, const PayloadGenerationConfig& config, BlobFileWriter* blob_file, ExtentRanges* old_visited_blocks, ExtentRanges* new_visited_blocks, ExtentRanges* old_zero_blocks) { vector old_block_ids; vector new_block_ids; TEST_AND_RETURN_FALSE(MapPartitionBlocks(old_part, new_part, old_num_blocks * kBlockSize, new_num_blocks * kBlockSize, kBlockSize, &old_block_ids, &new_block_ids)); // A mapping from the block_id to the list of block numbers with that block id // in the old partition. This is used to lookup where in the old partition // is a block from the new partition. map> old_blocks_map; for (uint64_t block = old_num_blocks; block-- > 0;) { if (old_block_ids[block] != 0 && !old_visited_blocks->ContainsBlock(block)) old_blocks_map[old_block_ids[block]].push_back(block); // Mark all zeroed blocks in the old image as "used" since it doesn't make // any sense to spend I/O to read zeros from the source partition and more // importantly, these could sometimes be blocks discarded in the SSD which // would read non-zero values. if (old_block_ids[block] == 0) old_zero_blocks->AddBlock(block); } old_visited_blocks->AddRanges(*old_zero_blocks); // The collection of blocks in the new partition with just zeros. This is a // common case for free-space that's also problematic for bsdiff, so we want // to optimize it using REPLACE_BZ operations. The blob for a REPLACE_BZ of // just zeros is so small that it doesn't make sense to spend the I/O reading // zeros from the old partition. vector new_zeros; vector old_identical_blocks; vector new_identical_blocks; for (uint64_t block = 0; block < new_num_blocks; block++) { // Only produce operations for blocks that were not yet visited. if (new_visited_blocks->ContainsBlock(block)) continue; if (new_block_ids[block] == 0) { AppendBlockToExtents(&new_zeros, block); continue; } auto old_blocks_map_it = old_blocks_map.find(new_block_ids[block]); // Check if the block exists in the old partition at all. if (old_blocks_map_it == old_blocks_map.end() || old_blocks_map_it->second.empty()) continue; AppendBlockToExtents(&old_identical_blocks, old_blocks_map_it->second.back()); AppendBlockToExtents(&new_identical_blocks, block); } if (chunk_blocks == -1) chunk_blocks = new_num_blocks; // Produce operations for the zero blocks split per output extent. size_t num_ops = aops->size(); new_visited_blocks->AddExtents(new_zeros); for (const Extent& extent : new_zeros) { if (config.OperationEnabled(InstallOperation::ZERO)) { for (uint64_t offset = 0; offset < extent.num_blocks(); offset += chunk_blocks) { uint64_t num_blocks = std::min(static_cast(extent.num_blocks()) - offset, static_cast(chunk_blocks)); InstallOperation operation; operation.set_type(InstallOperation::ZERO); *(operation.add_dst_extents()) = ExtentForRange(extent.start_block() + offset, num_blocks); aops->push_back({.name = "", .op = operation}); } } else { File old_file; File new_file; new_file.name = ""; new_file.extents = {extent}; TEST_AND_RETURN_FALSE(DeltaReadFile(aops, "", new_part, old_file, // old_extents new_file, // new_extents chunk_blocks, config, blob_file)); } } LOG(INFO) << "Produced " << (aops->size() - num_ops) << " operations for " << utils::BlocksInExtents(new_zeros) << " zeroed blocks"; // Produce MOVE/SOURCE_COPY operations for the moved blocks. num_ops = aops->size(); uint64_t used_blocks = 0; old_visited_blocks->AddExtents(old_identical_blocks); new_visited_blocks->AddExtents(new_identical_blocks); for (const Extent& extent : new_identical_blocks) { // We split the operation at the extent boundary or when bigger than // chunk_blocks. for (uint64_t op_block_offset = 0; op_block_offset < extent.num_blocks(); op_block_offset += chunk_blocks) { aops->emplace_back(); AnnotatedOperation* aop = &aops->back(); aop->name = ""; aop->op.set_type(InstallOperation::SOURCE_COPY); uint64_t chunk_num_blocks = std::min(static_cast(extent.num_blocks()) - op_block_offset, static_cast(chunk_blocks)); // The current operation represents the move/copy operation for the // sublist starting at |used_blocks| of length |chunk_num_blocks| where // the src and dst are from |old_identical_blocks| and // |new_identical_blocks| respectively. StoreExtents( ExtentsSublist(old_identical_blocks, used_blocks, chunk_num_blocks), aop->op.mutable_src_extents()); Extent* op_dst_extent = aop->op.add_dst_extents(); op_dst_extent->set_start_block(extent.start_block() + op_block_offset); op_dst_extent->set_num_blocks(chunk_num_blocks); CHECK( vector{*op_dst_extent} == // NOLINT(whitespace/braces) ExtentsSublist(new_identical_blocks, used_blocks, chunk_num_blocks)); used_blocks += chunk_num_blocks; } } LOG(INFO) << "Produced " << (aops->size() - num_ops) << " operations for " << used_blocks << " identical blocks moved"; return true; } bool DeltaReadFile(std::vector* aops, const std::string& old_part, const std::string& new_part, const File& old_file, const File& new_file, ssize_t chunk_blocks, const PayloadGenerationConfig& config, BlobFileWriter* blob_file) { const auto& old_extents = old_file.extents; const auto& new_extents = new_file.extents; const auto& name = new_file.name; brillo::Blob data; uint64_t total_blocks = utils::BlocksInExtents(new_extents); if (chunk_blocks == 0) { LOG(ERROR) << "Invalid number of chunk_blocks. Cannot be 0."; return false; } if (chunk_blocks == -1) chunk_blocks = total_blocks; for (uint64_t block_offset = 0; block_offset < total_blocks; block_offset += chunk_blocks) { // Split the old/new file in the same chunks. Note that this could drop // some information from the old file used for the new chunk. If the old // file is smaller (or even empty when there's no old file) the chunk will // also be empty. vector old_extents_chunk = ExtentsSublist(old_extents, block_offset, chunk_blocks); vector new_extents_chunk = ExtentsSublist(new_extents, block_offset, chunk_blocks); NormalizeExtents(&old_extents_chunk); NormalizeExtents(&new_extents_chunk); // Now, insert into the list of operations. AnnotatedOperation aop; aop.name = new_file.name; TEST_AND_RETURN_FALSE(ReadExtentsToDiff(old_part, new_part, old_extents_chunk, new_extents_chunk, old_file, new_file, config, &data, &aop)); // Check if the operation writes nothing. if (aop.op.dst_extents_size() == 0) { LOG(ERROR) << "Empty non-MOVE operation"; return false; } if (static_cast(chunk_blocks) < total_blocks) { aop.name = base::StringPrintf( "%s:%" PRIu64, name.c_str(), block_offset / chunk_blocks); } // Write the data TEST_AND_RETURN_FALSE(aop.SetOperationBlob(data, blob_file)); aops->emplace_back(aop); } return true; } bool GenerateBestFullOperation(const brillo::Blob& new_data, const PayloadVersion& version, brillo::Blob* out_blob, InstallOperation::Type* out_type) { if (new_data.empty()) return false; if (version.OperationAllowed(InstallOperation::ZERO) && std::all_of( new_data.begin(), new_data.end(), [](uint8_t x) { return x == 0; })) { // The read buffer is all zeros, so produce a ZERO operation. No need to // check other types of operations in this case. *out_blob = brillo::Blob(); *out_type = InstallOperation::ZERO; return true; } bool out_blob_set = false; // Try compressing |new_data| with xz first. if (version.OperationAllowed(InstallOperation::REPLACE_XZ)) { brillo::Blob new_data_xz; if (XzCompress(new_data, &new_data_xz) && !new_data_xz.empty()) { *out_type = InstallOperation::REPLACE_XZ; *out_blob = std::move(new_data_xz); out_blob_set = true; } } // Try compressing it with bzip2. if (version.OperationAllowed(InstallOperation::REPLACE_BZ)) { brillo::Blob new_data_bz; // TODO(deymo): Implement some heuristic to determine if it is worth trying // to compress the blob with bzip2 if we already have a good REPLACE_XZ. if (BzipCompress(new_data, &new_data_bz) && !new_data_bz.empty() && (!out_blob_set || out_blob->size() > new_data_bz.size())) { // A REPLACE_BZ is better or nothing else was set. *out_type = InstallOperation::REPLACE_BZ; *out_blob = std::move(new_data_bz); out_blob_set = true; } } // If nothing else worked or it was badly compressed we try a REPLACE. if (!out_blob_set || out_blob->size() >= new_data.size()) { *out_type = InstallOperation::REPLACE; // This needs to make a copy of the data in the case bzip or xz didn't // compress well, which is not the common case so the performance hit is // low. *out_blob = new_data; } return true; } // Decide which blocks are similar from bsdiff patch. // Blocks included in out_op->xor_map will be converted to COW_XOR during OTA // installation bool PopulateXorOps(AnnotatedOperation* aop, const uint8_t* data, size_t size) { bsdiff::BsdiffPatchReader patch_reader; TEST_AND_RETURN_FALSE(patch_reader.Init(data, size)); ControlEntry entry; size_t new_off = 0; int64_t old_off = 0; auto& xor_ops = aop->xor_ops; size_t total_xor_blocks = 0; const auto new_file_size = utils::BlocksInExtents(aop->op.dst_extents()) * kBlockSize; while (new_off < new_file_size) { if (!patch_reader.ParseControlEntry(&entry)) { LOG(ERROR) << "Exhausted bsdiff patch data before reaching end of new file. " "Current position: " << new_off << " new file size: " << new_file_size; return false; } if (old_off >= 0) { auto dst_off_aligned = utils::RoundUp(new_off, kBlockSize); const auto skip = dst_off_aligned - new_off; auto src_off = old_off + skip; const size_t chunk_size = entry.diff_size - std::min(skip, entry.diff_size); const auto xor_blocks = (chunk_size + kBlockSize / 2) / kBlockSize; total_xor_blocks += xor_blocks; // Append chunk_size/kBlockSize number of XOR blocks, subject to rounding // rules: if decimal part of that division is >= 0.5, round up. for (size_t i = 0; i < xor_blocks; i++) { AppendXorBlock( &xor_ops, GetNthBlock(aop->op.src_extents(), src_off / kBlockSize), GetNthBlock(aop->op.dst_extents(), dst_off_aligned / kBlockSize), src_off % kBlockSize); src_off += kBlockSize; dst_off_aligned += kBlockSize; } } old_off += entry.diff_size + entry.offset_increment; new_off += entry.diff_size + entry.extra_size; } for (auto& op : xor_ops) { CHECK_EQ(op.src_extent().num_blocks(), op.dst_extent().num_blocks()); // If |src_offset| is greater than 0, then we are reading 1 // extra block at the end of src_extent. This dependency must // be honored during merge sequence generation, or we can end // up with a corrupted device after merge. if (op.src_offset() > 0) { op.mutable_src_extent()->set_num_blocks(op.dst_extent().num_blocks() + 1); } } if (xor_ops.size() > 0) { // TODO(177104308) Filter out duplicate blocks in XOR op LOG(INFO) << "Added " << total_xor_blocks << " XOR blocks, " << total_xor_blocks * 100.0f / new_off * kBlockSize << "% of blocks in this InstallOp are XOR"; } return true; } bool ReadExtentsToDiff(const string& old_part, const string& new_part, const vector& src_extents, const vector& dst_extents, const File& old_file, const File& new_file, const PayloadGenerationConfig& config, brillo::Blob* out_data, AnnotatedOperation* out_op) { const auto& version = config.version; AnnotatedOperation& aop = *out_op; InstallOperation& operation = aop.op; // We read blocks from old_extents and write blocks to new_extents. const uint64_t blocks_to_read = utils::BlocksInExtents(src_extents); const uint64_t blocks_to_write = utils::BlocksInExtents(dst_extents); // All operations have dst_extents. StoreExtents(dst_extents, operation.mutable_dst_extents()); // Read in bytes from new data. brillo::Blob new_data; TEST_AND_RETURN_FALSE(utils::ReadExtents(new_part, dst_extents, &new_data, kBlockSize * blocks_to_write, kBlockSize)); TEST_AND_RETURN_FALSE(!new_data.empty()); // Data blob that will be written to delta file. brillo::Blob data_blob; // Try generating a full operation for the given new data, regardless of the // old_data. InstallOperation::Type op_type; TEST_AND_RETURN_FALSE( GenerateBestFullOperation(new_data, version, &data_blob, &op_type)); operation.set_type(op_type); if (blocks_to_read > 0) { brillo::Blob old_data; // Read old data. TEST_AND_RETURN_FALSE(utils::ReadExtents(old_part, src_extents, &old_data, kBlockSize * blocks_to_read, kBlockSize)); if (old_data == new_data) { // No change in data. operation.set_type(InstallOperation::SOURCE_COPY); data_blob = brillo::Blob(); } else if (IsDiffOperationBetter( operation, data_blob.size(), 0, src_extents.size())) { // No point in trying diff if zero blob size diff operation is // still worse than replace. BestDiffGenerator best_diff_generator(old_data, new_data, src_extents, dst_extents, old_file, new_file, config); if (!best_diff_generator.GenerateBestDiffOperation(&aop, &data_blob)) { LOG(INFO) << "Failed to generate diff for " << new_file.name; return false; } } } // WARNING: We always set legacy |src_length| and |dst_length| fields for // BSDIFF. For SOURCE_BSDIFF we only set them for minor version 3 and // lower. This is needed because we used to use these two parameters in the // SOURCE_BSDIFF for minor version 3 and lower, but we do not need them // anymore in higher minor versions. This means if we stop adding these // parameters for those minor versions, the delta payloads will be invalid. if (operation.type() == InstallOperation::SOURCE_BSDIFF && version.minor <= kOpSrcHashMinorPayloadVersion) { operation.set_src_length(blocks_to_read * kBlockSize); operation.set_dst_length(blocks_to_write * kBlockSize); } // Embed extents in the operation. Replace (all variants), zero and discard // operations should not have source extents. if (!IsNoSourceOperation(operation.type())) { if (operation.src_extents_size() == 0) { StoreExtents(src_extents, operation.mutable_src_extents()); } } else { operation.clear_src_extents(); } *out_data = std::move(data_blob); *out_op = aop; return true; } bool IsAReplaceOperation(InstallOperation::Type op_type) { return (op_type == InstallOperation::REPLACE || op_type == InstallOperation::REPLACE_BZ || op_type == InstallOperation::REPLACE_XZ); } bool IsNoSourceOperation(InstallOperation::Type op_type) { return (IsAReplaceOperation(op_type) || op_type == InstallOperation::ZERO || op_type == InstallOperation::DISCARD); } bool InitializePartitionInfo(const PartitionConfig& part, PartitionInfo* info) { info->set_size(part.size); HashCalculator hasher; TEST_AND_RETURN_FALSE(hasher.UpdateFile(part.path, part.size) == static_cast(part.size)); TEST_AND_RETURN_FALSE(hasher.Finalize()); const brillo::Blob& hash = hasher.raw_hash(); info->set_hash(hash.data(), hash.size()); LOG(INFO) << part.path << ": size=" << part.size << " hash=" << HexEncode(hash); return true; } bool CompareAopsByDestination(AnnotatedOperation first_aop, AnnotatedOperation second_aop) { // We want empty operations to be at the end of the payload. if (!first_aop.op.dst_extents().size() || !second_aop.op.dst_extents().size()) return ((!first_aop.op.dst_extents().size()) < (!second_aop.op.dst_extents().size())); uint32_t first_dst_start = first_aop.op.dst_extents(0).start_block(); uint32_t second_dst_start = second_aop.op.dst_extents(0).start_block(); return first_dst_start < second_dst_start; } bool IsExtFilesystem(const string& device) { brillo::Blob header; // See include/linux/ext2_fs.h for more details on the structure. We obtain // ext2 constants from ext2fs/ext2fs.h header but we don't link with the // library. if (!utils::ReadFileChunk( device, 0, SUPERBLOCK_OFFSET + SUPERBLOCK_SIZE, &header) || header.size() < SUPERBLOCK_OFFSET + SUPERBLOCK_SIZE) return false; const uint8_t* superblock = header.data() + SUPERBLOCK_OFFSET; // ext3_fs.h: ext3_super_block.s_blocks_count uint32_t block_count = *reinterpret_cast(superblock + 1 * sizeof(int32_t)); // ext3_fs.h: ext3_super_block.s_log_block_size uint32_t log_block_size = *reinterpret_cast(superblock + 6 * sizeof(int32_t)); // ext3_fs.h: ext3_super_block.s_magic uint16_t magic = *reinterpret_cast(superblock + 14 * sizeof(int32_t)); block_count = le32toh(block_count); log_block_size = le32toh(log_block_size) + EXT2_MIN_BLOCK_LOG_SIZE; magic = le16toh(magic); if (magic != EXT2_SUPER_MAGIC) return false; // Validation check the parameters. TEST_AND_RETURN_FALSE(log_block_size >= EXT2_MIN_BLOCK_LOG_SIZE && log_block_size <= EXT2_MAX_BLOCK_LOG_SIZE); TEST_AND_RETURN_FALSE(block_count > 0); return true; } // Return the number of CPUs on the machine, and 4 threads in minimum. size_t GetMaxThreads() { return std::max(sysconf(_SC_NPROCESSORS_ONLN), 4L); } } // namespace diff_utils } // namespace chromeos_update_engine