/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "instrumentation.h" #include #include #include #include #include "arch/context.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/atomic.h" #include "base/callee_save_type.h" #include "class_linker.h" #include "debugger.h" #include "dex/dex_file-inl.h" #include "dex/dex_file_types.h" #include "dex/dex_instruction-inl.h" #include "entrypoints/quick/quick_alloc_entrypoints.h" #include "entrypoints/quick/quick_entrypoints.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "gc_root-inl.h" #include "interpreter/interpreter.h" #include "interpreter/interpreter_common.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jvalue-inl.h" #include "jvalue.h" #include "mirror/class-inl.h" #include "mirror/dex_cache.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "nterp_helpers.h" #include "nth_caller_visitor.h" #include "oat_file_manager.h" #include "oat_quick_method_header.h" #include "runtime-inl.h" #include "thread.h" #include "thread_list.h" namespace art { namespace instrumentation { constexpr bool kVerboseInstrumentation = false; void InstrumentationListener::MethodExited( Thread* thread, ArtMethod* method, OptionalFrame frame, MutableHandle& return_value) { DCHECK_EQ(method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetReturnTypePrimitive(), Primitive::kPrimNot); const void* original_ret = return_value.Get(); JValue v; v.SetL(return_value.Get()); MethodExited(thread, method, frame, v); DCHECK(original_ret == v.GetL()) << "Return value changed"; } void InstrumentationListener::FieldWritten(Thread* thread, Handle this_object, ArtMethod* method, uint32_t dex_pc, ArtField* field, Handle field_value) { DCHECK(!field->IsPrimitiveType()); JValue v; v.SetL(field_value.Get()); FieldWritten(thread, this_object, method, dex_pc, field, v); } // Instrumentation works on non-inlined frames by updating returned PCs // of compiled frames. static constexpr StackVisitor::StackWalkKind kInstrumentationStackWalk = StackVisitor::StackWalkKind::kSkipInlinedFrames; class InstallStubsClassVisitor : public ClassVisitor { public: explicit InstallStubsClassVisitor(Instrumentation* instrumentation) : instrumentation_(instrumentation) {} bool operator()(ObjPtr klass) override REQUIRES(Locks::mutator_lock_) { instrumentation_->InstallStubsForClass(klass.Ptr()); return true; // we visit all classes. } private: Instrumentation* const instrumentation_; }; InstrumentationStackPopper::InstrumentationStackPopper(Thread* self) : self_(self), instrumentation_(Runtime::Current()->GetInstrumentation()), pop_until_(0u) {} InstrumentationStackPopper::~InstrumentationStackPopper() { std::map* stack = self_->GetInstrumentationStack(); for (auto i = stack->begin(); i != stack->end() && i->first <= pop_until_;) { i = stack->erase(i); } } bool InstrumentationStackPopper::PopFramesTo(uintptr_t stack_pointer, MutableHandle& exception) { std::map* stack = self_->GetInstrumentationStack(); DCHECK(!self_->IsExceptionPending()); if (!instrumentation_->HasMethodUnwindListeners()) { pop_until_ = stack_pointer; return true; } if (kVerboseInstrumentation) { LOG(INFO) << "Popping frames for exception " << exception->Dump(); } // The instrumentation events expect the exception to be set. self_->SetException(exception.Get()); bool new_exception_thrown = false; auto i = stack->upper_bound(pop_until_); // Now pop all frames until reaching stack_pointer, or a new exception is // thrown. Note that `stack_pointer` doesn't need to be a return PC address // (in fact the exception handling code passes the start of the frame where // the catch handler is). for (; i != stack->end() && i->first <= stack_pointer; i++) { const InstrumentationStackFrame& frame = i->second; ArtMethod* method = frame.method_; // Notify listeners of method unwind. // TODO: improve the dex_pc information here. uint32_t dex_pc = dex::kDexNoIndex; if (kVerboseInstrumentation) { LOG(INFO) << "Popping for unwind " << method->PrettyMethod(); } if (!method->IsRuntimeMethod() && !frame.interpreter_entry_) { instrumentation_->MethodUnwindEvent(self_, frame.this_object_, method, dex_pc); new_exception_thrown = self_->GetException() != exception.Get(); if (new_exception_thrown) { pop_until_ = i->first; break; } } } if (!new_exception_thrown) { pop_until_ = stack_pointer; } exception.Assign(self_->GetException()); self_->ClearException(); if (kVerboseInstrumentation && new_exception_thrown) { LOG(INFO) << "Did partial pop of frames due to new exception"; } return !new_exception_thrown; } Instrumentation::Instrumentation() : current_force_deopt_id_(0), instrumentation_stubs_installed_(false), instrumentation_level_(InstrumentationLevel::kInstrumentNothing), forced_interpret_only_(false), have_method_entry_listeners_(false), have_method_exit_listeners_(false), have_method_unwind_listeners_(false), have_dex_pc_listeners_(false), have_field_read_listeners_(false), have_field_write_listeners_(false), have_exception_thrown_listeners_(false), have_watched_frame_pop_listeners_(false), have_branch_listeners_(false), have_exception_handled_listeners_(false), deoptimized_methods_lock_(new ReaderWriterMutex("deoptimized methods lock", kGenericBottomLock)), quick_alloc_entry_points_instrumentation_counter_(0), alloc_entrypoints_instrumented_(false) { } void Instrumentation::InstallStubsForClass(ObjPtr klass) { if (!klass->IsResolved()) { // We need the class to be resolved to install/uninstall stubs. Otherwise its methods // could not be initialized or linked with regards to class inheritance. } else if (klass->IsErroneousResolved()) { // We can't execute code in a erroneous class: do nothing. } else { for (ArtMethod& method : klass->GetMethods(kRuntimePointerSize)) { InstallStubsForMethod(&method); } } } static bool CanHandleInitializationCheck(const void* code) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); return class_linker->IsQuickResolutionStub(code) || class_linker->IsQuickToInterpreterBridge(code) || class_linker->IsQuickGenericJniStub(code) || (code == GetQuickInstrumentationEntryPoint()); } static bool IsProxyInit(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { // Annoyingly this can be called before we have actually initialized WellKnownClasses so therefore // we also need to check this based on the declaring-class descriptor. The check is valid because // Proxy only has a single constructor. ArtMethod* well_known_proxy_init = jni::DecodeArtMethod( WellKnownClasses::java_lang_reflect_Proxy_init); if (well_known_proxy_init == method) { return true; } if (well_known_proxy_init != nullptr) { return false; } return method->IsConstructor() && !method->IsStatic() && method->GetDeclaringClass()->DescriptorEquals("Ljava/lang/reflect/Proxy;"); } static void UpdateEntryPoints(ArtMethod* method, const void* quick_code) REQUIRES_SHARED(Locks::mutator_lock_) { if (kIsDebugBuild) { if (NeedsClinitCheckBeforeCall(method) && !method->GetDeclaringClass()->IsVisiblyInitialized()) { CHECK(CanHandleInitializationCheck(quick_code)); } jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr && jit->GetCodeCache()->ContainsPc(quick_code)) { // Ensure we always have the thumb entrypoint for JIT on arm32. if (kRuntimeISA == InstructionSet::kArm) { CHECK_EQ(reinterpret_cast(quick_code) & 1, 1u); } } if (IsProxyInit(method)) { CHECK_NE(quick_code, GetQuickInstrumentationEntryPoint()); } } // If the method is from a boot image, don't dirty it if the entrypoint // doesn't change. if (method->GetEntryPointFromQuickCompiledCode() != quick_code) { method->SetEntryPointFromQuickCompiledCode(quick_code); } } bool Instrumentation::CodeNeedsEntryExitStub(const void* code, ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { // Proxy.init should never have entry/exit stubs. if (IsProxyInit(method)) { return false; } // In some tests runtime isn't setup fully and hence the entry points could // be nullptr. if (code == nullptr) { return true; } // Code running in the interpreter doesn't need entry/exit stubs. if (Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge(code)) { return false; } // When jiting code for debuggable apps we generate the code to call method // entry / exit hooks when required. Hence it is not required to update // to instrumentation entry point for JITed code in debuggable mode. if (!Runtime::Current()->IsJavaDebuggable()) { return true; } // Native functions can have JITed entry points but we don't include support // for calling entry / exit hooks directly from the JITed code for native // functions. So we still have to install entry exit stubs for such cases. if (method->IsNative()) { return true; } jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr && jit->GetCodeCache()->ContainsPc(code)) { return false; } return true; } bool Instrumentation::InterpretOnly(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { if (method->IsNative()) { return false; } return InterpretOnly() || IsDeoptimized(method) || Runtime::Current()->GetRuntimeCallbacks()->IsMethodBeingInspected(method); } static bool CanUseAotCode(ArtMethod* method, const void* quick_code) REQUIRES_SHARED(Locks::mutator_lock_) { if (quick_code == nullptr) { return false; } if (method->IsNative()) { // AOT code for native methods can always be used. return true; } Runtime* runtime = Runtime::Current(); // For simplicity, we never use AOT code for debuggable. if (runtime->IsJavaDebuggable()) { return false; } if (runtime->IsNativeDebuggable()) { DCHECK(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse()); // If we are doing native debugging, ignore application's AOT code, // since we want to JIT it (at first use) with extra stackmaps for native // debugging. We keep however all AOT code from the boot image, // since the JIT-at-first-use is blocking and would result in non-negligible // startup performance impact. return runtime->GetHeap()->IsInBootImageOatFile(quick_code); } return true; } static bool CanUseNterp(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { return interpreter::CanRuntimeUseNterp() && CanMethodUseNterp(method) && method->GetDeclaringClass()->IsVerified(); } static const void* GetOptimizedCodeFor(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!Runtime::Current()->GetInstrumentation()->InterpretOnly(method)); CHECK(method->IsInvokable()) << method->PrettyMethod(); if (method->IsProxyMethod()) { return GetQuickProxyInvokeHandler(); } // In debuggable mode, we can only use AOT code for native methods. ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); const void* aot_code = method->GetOatMethodQuickCode(class_linker->GetImagePointerSize()); if (CanUseAotCode(method, aot_code)) { return aot_code; } // If the method has been precompiled, there can be a JIT version. jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { const void* code = jit->GetCodeCache()->GetSavedEntryPointOfPreCompiledMethod(method); if (code != nullptr) { return code; } } // We need to check if the class has been verified for setting up nterp, as // the verifier could punt the method to the switch interpreter in case we // need to do lock counting. if (CanUseNterp(method)) { return interpreter::GetNterpEntryPoint(); } return method->IsNative() ? GetQuickGenericJniStub() : GetQuickToInterpreterBridge(); } void Instrumentation::InitializeMethodsCode(ArtMethod* method, const void* aot_code) REQUIRES_SHARED(Locks::mutator_lock_) { // Use instrumentation entrypoints if instrumentation is installed. if (UNLIKELY(EntryExitStubsInstalled()) && !IsProxyInit(method)) { if (!method->IsNative() && InterpretOnly(method)) { UpdateEntryPoints(method, GetQuickToInterpreterBridge()); } else { UpdateEntryPoints(method, GetQuickInstrumentationEntryPoint()); } return; } if (UNLIKELY(IsForcedInterpretOnly() || IsDeoptimized(method))) { UpdateEntryPoints( method, method->IsNative() ? GetQuickGenericJniStub() : GetQuickToInterpreterBridge()); return; } // Special case if we need an initialization check. if (NeedsClinitCheckBeforeCall(method) && !method->GetDeclaringClass()->IsVisiblyInitialized()) { // If we have code but the method needs a class initialization check before calling // that code, install the resolution stub that will perform the check. // It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines // after initializing class (see ClassLinker::InitializeClass method). // Note: this mimics the logic in image_writer.cc that installs the resolution // stub only if we have compiled code or we can execute nterp, and the method needs a class // initialization check. if (aot_code != nullptr || method->IsNative() || CanUseNterp(method)) { UpdateEntryPoints(method, GetQuickResolutionStub()); } else { UpdateEntryPoints(method, GetQuickToInterpreterBridge()); } return; } // Use the provided AOT code if possible. if (CanUseAotCode(method, aot_code)) { UpdateEntryPoints(method, aot_code); return; } // We check if the class is verified as we need the slow interpreter for lock verification. // If the class is not verified, This will be updated in // ClassLinker::UpdateClassAfterVerification. if (CanUseNterp(method)) { UpdateEntryPoints(method, interpreter::GetNterpEntryPoint()); return; } // Use default entrypoints. UpdateEntryPoints( method, method->IsNative() ? GetQuickGenericJniStub() : GetQuickToInterpreterBridge()); } void Instrumentation::InstallStubsForMethod(ArtMethod* method) { if (!method->IsInvokable() || method->IsProxyMethod()) { // Do not change stubs for these methods. return; } // Don't stub Proxy.. Note that the Proxy class itself is not a proxy class. // TODO We should remove the need for this since it means we cannot always correctly detect calls // to Proxy. if (IsProxyInit(method)) { return; } // If the instrumentation needs to go through the interpreter, just update the // entrypoint to interpreter. if (InterpretOnly(method)) { UpdateEntryPoints(method, GetQuickToInterpreterBridge()); return; } if (EntryExitStubsInstalled()) { // Install the instrumentation entry point if needed. if (CodeNeedsEntryExitStub(method->GetEntryPointFromQuickCompiledCode(), method)) { UpdateEntryPoints(method, GetQuickInstrumentationEntryPoint()); } return; } // We're being asked to restore the entrypoints after instrumentation. CHECK_EQ(instrumentation_level_, InstrumentationLevel::kInstrumentNothing); // We need to have the resolution stub still if the class is not initialized. if (NeedsClinitCheckBeforeCall(method) && !method->GetDeclaringClass()->IsVisiblyInitialized()) { UpdateEntryPoints(method, GetQuickResolutionStub()); return; } UpdateEntryPoints(method, GetOptimizedCodeFor(method)); } // Places the instrumentation exit pc as the return PC for every quick frame. This also allows // deoptimization of quick frames to interpreter frames. When force_deopt is // true the frames have to be deoptimized. If the frame has a deoptimization // stack slot (all Jited frames), it is set to true to indicate this. For frames // that do not have this slot, the force_deopt_id on the InstrumentationStack is // used to check if the frame needs to be deoptimized. When force_deopt is false // we just instrument the stack for method entry / exit hooks. // Since we may already have done this previously, we need to push new instrumentation frame before // existing instrumentation frames. void InstrumentationInstallStack(Thread* thread, void* arg, bool deopt_all_frames) REQUIRES(Locks::mutator_lock_) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); struct InstallStackVisitor final : public StackVisitor { InstallStackVisitor(Thread* thread_in, Context* context, uintptr_t instrumentation_exit_pc, uint64_t force_deopt_id, bool deopt_all_frames) : StackVisitor(thread_in, context, kInstrumentationStackWalk), instrumentation_stack_(thread_in->GetInstrumentationStack()), instrumentation_exit_pc_(instrumentation_exit_pc), reached_existing_instrumentation_frames_(false), force_deopt_id_(force_deopt_id), deopt_all_frames_(deopt_all_frames) {} bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* m = GetMethod(); if (m == nullptr) { if (kVerboseInstrumentation) { LOG(INFO) << " Skipping upcall. Frame " << GetFrameId(); } return true; // Ignore upcalls. } if (GetCurrentQuickFrame() == nullptr) { if (kVerboseInstrumentation) { LOG(INFO) << "Pushing shadow frame method " << m->PrettyMethod(); } stack_methods_.push_back(m); return true; // Continue. } uintptr_t return_pc = GetReturnPc(); if (kVerboseInstrumentation) { LOG(INFO) << " Installing exit stub in " << DescribeLocation(); } if (return_pc == instrumentation_exit_pc_) { auto it = instrumentation_stack_->find(GetReturnPcAddr()); CHECK(it != instrumentation_stack_->end()); const InstrumentationStackFrame& frame = it->second; if (m->IsRuntimeMethod()) { if (frame.interpreter_entry_) { return true; } } // We've reached a frame which has already been installed with instrumentation exit stub. // We should have already installed instrumentation or be interpreter on previous frames. reached_existing_instrumentation_frames_ = true; // Trampolines get replaced with their actual method in the stack, // so don't do the check below for runtime methods. if (!frame.method_->IsRuntimeMethod()) { CHECK_EQ(m->GetNonObsoleteMethod(), frame.method_->GetNonObsoleteMethod()) << "Expected " << ArtMethod::PrettyMethod(m) << ", Found " << ArtMethod::PrettyMethod(frame.method_); } return_pc = frame.return_pc_; if (kVerboseInstrumentation) { LOG(INFO) << "Ignoring already instrumented " << frame.Dump(); } } else { // If it is a JITed frame then just set the deopt bit if required // otherwise continue const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader(); if (method_header != nullptr && method_header->HasShouldDeoptimizeFlag()) { if (deopt_all_frames_) { SetShouldDeoptimizeFlag(DeoptimizeFlagValue::kDebug); } return true; } CHECK_NE(return_pc, 0U); if (UNLIKELY(reached_existing_instrumentation_frames_ && !m->IsRuntimeMethod())) { // We already saw an existing instrumentation frame so this should be a runtime-method // inserted by the interpreter or runtime. std::string thread_name; GetThread()->GetThreadName(thread_name); LOG(FATAL) << "While walking " << thread_name << " found unexpected non-runtime method" << " without instrumentation exit return or interpreter frame." << " method is " << GetMethod()->PrettyMethod() << " return_pc is " << std::hex << return_pc; UNREACHABLE(); } if (m->IsRuntimeMethod()) { size_t frame_size = GetCurrentQuickFrameInfo().FrameSizeInBytes(); ArtMethod** caller_frame = reinterpret_cast( reinterpret_cast(GetCurrentQuickFrame()) + frame_size); if (*caller_frame != nullptr && (*caller_frame)->IsNative()) { // Do not install instrumentation exit on return to JNI stubs. return true; } } InstrumentationStackFrame instrumentation_frame( m->IsRuntimeMethod() ? nullptr : GetThisObject().Ptr(), m, return_pc, false, force_deopt_id_); if (kVerboseInstrumentation) { LOG(INFO) << "Pushing frame " << instrumentation_frame.Dump(); } if (!m->IsRuntimeMethod()) { // Runtime methods don't need to run method entry callbacks. stack_methods_.push_back(m); } instrumentation_stack_->insert({GetReturnPcAddr(), instrumentation_frame}); SetReturnPc(instrumentation_exit_pc_); } return true; // Continue. } std::map* const instrumentation_stack_; std::vector stack_methods_; const uintptr_t instrumentation_exit_pc_; bool reached_existing_instrumentation_frames_; uint64_t force_deopt_id_; bool deopt_all_frames_; }; if (kVerboseInstrumentation) { std::string thread_name; thread->GetThreadName(thread_name); LOG(INFO) << "Installing exit stubs in " << thread_name; } Instrumentation* instrumentation = reinterpret_cast(arg); std::unique_ptr context(Context::Create()); uintptr_t instrumentation_exit_pc = reinterpret_cast(GetQuickInstrumentationExitPc()); InstallStackVisitor visitor(thread, context.get(), instrumentation_exit_pc, instrumentation->current_force_deopt_id_, deopt_all_frames); visitor.WalkStack(true); if (instrumentation->ShouldNotifyMethodEnterExitEvents()) { // Create method enter events for all methods currently on the thread's stack. We only do this // if we haven't already processed the method enter events. for (auto smi = visitor.stack_methods_.rbegin(); smi != visitor.stack_methods_.rend(); smi++) { instrumentation->MethodEnterEvent(thread, *smi); } } thread->VerifyStack(); } void Instrumentation::InstrumentThreadStack(Thread* thread, bool force_deopt) { instrumentation_stubs_installed_ = true; InstrumentationInstallStack(thread, this, force_deopt); } // Removes the instrumentation exit pc as the return PC for every quick frame. static void InstrumentationRestoreStack(Thread* thread, void* arg) REQUIRES(Locks::mutator_lock_) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); struct RestoreStackVisitor final : public StackVisitor { RestoreStackVisitor(Thread* thread_in, uintptr_t instrumentation_exit_pc, Instrumentation* instrumentation) : StackVisitor(thread_in, nullptr, kInstrumentationStackWalk), thread_(thread_in), instrumentation_exit_pc_(instrumentation_exit_pc), instrumentation_(instrumentation), instrumentation_stack_(thread_in->GetInstrumentationStack()), frames_removed_(0) {} bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { if (instrumentation_stack_->size() == 0) { return false; // Stop. } ArtMethod* m = GetMethod(); if (GetCurrentQuickFrame() == nullptr) { if (kVerboseInstrumentation) { LOG(INFO) << " Ignoring a shadow frame. Frame " << GetFrameId() << " Method=" << ArtMethod::PrettyMethod(m); } return true; // Ignore shadow frames. } if (m == nullptr) { if (kVerboseInstrumentation) { LOG(INFO) << " Skipping upcall. Frame " << GetFrameId(); } return true; // Ignore upcalls. } auto it = instrumentation_stack_->find(GetReturnPcAddr()); if (it != instrumentation_stack_->end()) { const InstrumentationStackFrame& instrumentation_frame = it->second; if (kVerboseInstrumentation) { LOG(INFO) << " Removing exit stub in " << DescribeLocation(); } if (instrumentation_frame.interpreter_entry_) { CHECK(m == Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs)); } else { CHECK_EQ(m->GetNonObsoleteMethod(), instrumentation_frame.method_->GetNonObsoleteMethod()) << ArtMethod::PrettyMethod(m) << " and " << instrumentation_frame.method_->GetNonObsoleteMethod()->PrettyMethod(); } SetReturnPc(instrumentation_frame.return_pc_); if (instrumentation_->ShouldNotifyMethodEnterExitEvents() && !m->IsRuntimeMethod()) { // Create the method exit events. As the methods didn't really exit the result is 0. // We only do this if no debugger is attached to prevent from posting events twice. JValue val; instrumentation_->MethodExitEvent(thread_, m, OptionalFrame{}, val); } frames_removed_++; } else { if (kVerboseInstrumentation) { LOG(INFO) << " No exit stub in " << DescribeLocation(); } } return true; // Continue. } Thread* const thread_; const uintptr_t instrumentation_exit_pc_; Instrumentation* const instrumentation_; std::map* const instrumentation_stack_; size_t frames_removed_; }; if (kVerboseInstrumentation) { std::string thread_name; thread->GetThreadName(thread_name); LOG(INFO) << "Removing exit stubs in " << thread_name; } std::map* stack = thread->GetInstrumentationStack(); if (stack->size() > 0) { Instrumentation* instrumentation = reinterpret_cast(arg); uintptr_t instrumentation_exit_pc = reinterpret_cast(GetQuickInstrumentationExitPc()); RestoreStackVisitor visitor(thread, instrumentation_exit_pc, instrumentation); visitor.WalkStack(true); CHECK_EQ(visitor.frames_removed_, stack->size()); stack->clear(); } } void Instrumentation::DeoptimizeAllThreadFrames() { Thread* self = Thread::Current(); MutexLock mu(self, *Locks::thread_list_lock_); ThreadList* tl = Runtime::Current()->GetThreadList(); tl->ForEach([&](Thread* t) { Locks::mutator_lock_->AssertExclusiveHeld(self); InstrumentThreadStack(t, /* deopt_all_frames= */ true); }); current_force_deopt_id_++; } static bool HasEvent(Instrumentation::InstrumentationEvent expected, uint32_t events) { return (events & expected) != 0; } static void PotentiallyAddListenerTo(Instrumentation::InstrumentationEvent event, uint32_t events, std::list& list, InstrumentationListener* listener, bool* has_listener) REQUIRES(Locks::mutator_lock_, !Locks::thread_list_lock_, !Locks::classlinker_classes_lock_) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); if (!HasEvent(event, events)) { return; } // If there is a free slot in the list, we insert the listener in that slot. // Otherwise we add it to the end of the list. auto it = std::find(list.begin(), list.end(), nullptr); if (it != list.end()) { *it = listener; } else { list.push_back(listener); } *has_listener = true; } void Instrumentation::AddListener(InstrumentationListener* listener, uint32_t events) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); PotentiallyAddListenerTo(kMethodEntered, events, method_entry_listeners_, listener, &have_method_entry_listeners_); PotentiallyAddListenerTo(kMethodExited, events, method_exit_listeners_, listener, &have_method_exit_listeners_); PotentiallyAddListenerTo(kMethodUnwind, events, method_unwind_listeners_, listener, &have_method_unwind_listeners_); PotentiallyAddListenerTo(kBranch, events, branch_listeners_, listener, &have_branch_listeners_); PotentiallyAddListenerTo(kDexPcMoved, events, dex_pc_listeners_, listener, &have_dex_pc_listeners_); PotentiallyAddListenerTo(kFieldRead, events, field_read_listeners_, listener, &have_field_read_listeners_); PotentiallyAddListenerTo(kFieldWritten, events, field_write_listeners_, listener, &have_field_write_listeners_); PotentiallyAddListenerTo(kExceptionThrown, events, exception_thrown_listeners_, listener, &have_exception_thrown_listeners_); PotentiallyAddListenerTo(kWatchedFramePop, events, watched_frame_pop_listeners_, listener, &have_watched_frame_pop_listeners_); PotentiallyAddListenerTo(kExceptionHandled, events, exception_handled_listeners_, listener, &have_exception_handled_listeners_); } static void PotentiallyRemoveListenerFrom(Instrumentation::InstrumentationEvent event, uint32_t events, std::list& list, InstrumentationListener* listener, bool* has_listener) REQUIRES(Locks::mutator_lock_, !Locks::thread_list_lock_, !Locks::classlinker_classes_lock_) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); if (!HasEvent(event, events)) { return; } auto it = std::find(list.begin(), list.end(), listener); if (it != list.end()) { // Just update the entry, do not remove from the list. Removing entries in the list // is unsafe when mutators are iterating over it. *it = nullptr; } // Check if the list contains any non-null listener, and update 'has_listener'. for (InstrumentationListener* l : list) { if (l != nullptr) { *has_listener = true; return; } } *has_listener = false; } void Instrumentation::RemoveListener(InstrumentationListener* listener, uint32_t events) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); PotentiallyRemoveListenerFrom(kMethodEntered, events, method_entry_listeners_, listener, &have_method_entry_listeners_); PotentiallyRemoveListenerFrom(kMethodExited, events, method_exit_listeners_, listener, &have_method_exit_listeners_); PotentiallyRemoveListenerFrom(kMethodUnwind, events, method_unwind_listeners_, listener, &have_method_unwind_listeners_); PotentiallyRemoveListenerFrom(kBranch, events, branch_listeners_, listener, &have_branch_listeners_); PotentiallyRemoveListenerFrom(kDexPcMoved, events, dex_pc_listeners_, listener, &have_dex_pc_listeners_); PotentiallyRemoveListenerFrom(kFieldRead, events, field_read_listeners_, listener, &have_field_read_listeners_); PotentiallyRemoveListenerFrom(kFieldWritten, events, field_write_listeners_, listener, &have_field_write_listeners_); PotentiallyRemoveListenerFrom(kExceptionThrown, events, exception_thrown_listeners_, listener, &have_exception_thrown_listeners_); PotentiallyRemoveListenerFrom(kWatchedFramePop, events, watched_frame_pop_listeners_, listener, &have_watched_frame_pop_listeners_); PotentiallyRemoveListenerFrom(kExceptionHandled, events, exception_handled_listeners_, listener, &have_exception_handled_listeners_); } Instrumentation::InstrumentationLevel Instrumentation::GetCurrentInstrumentationLevel() const { return instrumentation_level_; } bool Instrumentation::RequiresInstrumentationInstallation(InstrumentationLevel new_level) const { // We need to reinstall instrumentation if we go to a different level. return GetCurrentInstrumentationLevel() != new_level; } void Instrumentation::ConfigureStubs(const char* key, InstrumentationLevel desired_level) { // Store the instrumentation level for this key or remove it. if (desired_level == InstrumentationLevel::kInstrumentNothing) { // The client no longer needs instrumentation. requested_instrumentation_levels_.erase(key); } else { // The client needs instrumentation. requested_instrumentation_levels_.Overwrite(key, desired_level); } UpdateStubs(); } void Instrumentation::UpdateInstrumentationLevel(InstrumentationLevel requested_level) { instrumentation_level_ = requested_level; } void Instrumentation::MaybeRestoreInstrumentationStack() { // Restore stack only if there is no method currently deoptimized. if (!IsDeoptimizedMethodsEmpty()) { return; } Thread* self = Thread::Current(); MutexLock mu(self, *Locks::thread_list_lock_); bool no_remaining_deopts = true; // Check that there are no other forced deoptimizations. Do it here so we only need to lock // thread_list_lock once. // The compiler gets confused on the thread annotations, so use // NO_THREAD_SAFETY_ANALYSIS. Note that we hold the mutator lock // exclusively at this point. Locks::mutator_lock_->AssertExclusiveHeld(self); Runtime::Current()->GetThreadList()->ForEach([&](Thread* t) NO_THREAD_SAFETY_ANALYSIS { no_remaining_deopts = no_remaining_deopts && !t->IsForceInterpreter() && !t->HasDebuggerShadowFrames() && std::all_of(t->GetInstrumentationStack()->cbegin(), t->GetInstrumentationStack()->cend(), [&](const auto& frame) REQUIRES_SHARED(Locks::mutator_lock_) { return frame.second.force_deopt_id_ == current_force_deopt_id_; }); }); if (no_remaining_deopts) { Runtime::Current()->GetThreadList()->ForEach(InstrumentationRestoreStack, this); // Only do this after restoring, as walking the stack when restoring will see // the instrumentation exit pc. instrumentation_stubs_installed_ = false; } } void Instrumentation::UpdateStubs() { // Look for the highest required instrumentation level. InstrumentationLevel requested_level = InstrumentationLevel::kInstrumentNothing; for (const auto& v : requested_instrumentation_levels_) { requested_level = std::max(requested_level, v.second); } if (!RequiresInstrumentationInstallation(requested_level)) { // We're already set. return; } Thread* const self = Thread::Current(); Runtime* runtime = Runtime::Current(); Locks::mutator_lock_->AssertExclusiveHeld(self); Locks::thread_list_lock_->AssertNotHeld(self); UpdateInstrumentationLevel(requested_level); if (requested_level > InstrumentationLevel::kInstrumentNothing) { InstallStubsClassVisitor visitor(this); runtime->GetClassLinker()->VisitClasses(&visitor); instrumentation_stubs_installed_ = true; MutexLock mu(self, *Locks::thread_list_lock_); for (Thread* thread : Runtime::Current()->GetThreadList()->GetList()) { InstrumentThreadStack(thread, /* deopt_all_frames= */ false); } } else { InstallStubsClassVisitor visitor(this); runtime->GetClassLinker()->VisitClasses(&visitor); MaybeRestoreInstrumentationStack(); } } static void ResetQuickAllocEntryPointsForThread(Thread* thread, void* arg ATTRIBUTE_UNUSED) { thread->ResetQuickAllocEntryPointsForThread(); } void Instrumentation::SetEntrypointsInstrumented(bool instrumented) { Thread* self = Thread::Current(); Runtime* runtime = Runtime::Current(); Locks::mutator_lock_->AssertNotHeld(self); Locks::instrument_entrypoints_lock_->AssertHeld(self); if (runtime->IsStarted()) { ScopedSuspendAll ssa(__FUNCTION__); MutexLock mu(self, *Locks::runtime_shutdown_lock_); SetQuickAllocEntryPointsInstrumented(instrumented); ResetQuickAllocEntryPoints(); alloc_entrypoints_instrumented_ = instrumented; } else { MutexLock mu(self, *Locks::runtime_shutdown_lock_); SetQuickAllocEntryPointsInstrumented(instrumented); // Note: ResetQuickAllocEntryPoints only works when the runtime is started. Manually run the // update for just this thread. // Note: self may be null. One of those paths is setting instrumentation in the Heap // constructor for gcstress mode. if (self != nullptr) { ResetQuickAllocEntryPointsForThread(self, nullptr); } alloc_entrypoints_instrumented_ = instrumented; } } void Instrumentation::InstrumentQuickAllocEntryPoints() { MutexLock mu(Thread::Current(), *Locks::instrument_entrypoints_lock_); InstrumentQuickAllocEntryPointsLocked(); } void Instrumentation::UninstrumentQuickAllocEntryPoints() { MutexLock mu(Thread::Current(), *Locks::instrument_entrypoints_lock_); UninstrumentQuickAllocEntryPointsLocked(); } void Instrumentation::InstrumentQuickAllocEntryPointsLocked() { Locks::instrument_entrypoints_lock_->AssertHeld(Thread::Current()); if (quick_alloc_entry_points_instrumentation_counter_ == 0) { SetEntrypointsInstrumented(true); } ++quick_alloc_entry_points_instrumentation_counter_; } void Instrumentation::UninstrumentQuickAllocEntryPointsLocked() { Locks::instrument_entrypoints_lock_->AssertHeld(Thread::Current()); CHECK_GT(quick_alloc_entry_points_instrumentation_counter_, 0U); --quick_alloc_entry_points_instrumentation_counter_; if (quick_alloc_entry_points_instrumentation_counter_ == 0) { SetEntrypointsInstrumented(false); } } void Instrumentation::ResetQuickAllocEntryPoints() { Runtime* runtime = Runtime::Current(); if (runtime->IsStarted()) { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); runtime->GetThreadList()->ForEach(ResetQuickAllocEntryPointsForThread, nullptr); } } std::string Instrumentation::EntryPointString(const void* code) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); jit::Jit* jit = Runtime::Current()->GetJit(); if (class_linker->IsQuickToInterpreterBridge(code)) { return "interpreter"; } else if (class_linker->IsQuickResolutionStub(code)) { return "resolution"; } else if (code == GetQuickInstrumentationEntryPoint()) { return "instrumentation"; } else if (jit != nullptr && jit->GetCodeCache()->ContainsPc(code)) { return "jit"; } else if (code == GetInvokeObsoleteMethodStub()) { return "obsolete"; } else if (code == interpreter::GetNterpEntryPoint()) { return "nterp"; } else if (class_linker->IsQuickGenericJniStub(code)) { return "generic jni"; } else if (Runtime::Current()->GetOatFileManager().ContainsPc(code)) { return "oat"; } return "unknown"; } void Instrumentation::UpdateMethodsCodeImpl(ArtMethod* method, const void* new_code) { if (!AreExitStubsInstalled()) { // Fast path: no instrumentation. DCHECK(!IsDeoptimized(method)); UpdateEntryPoints(method, new_code); return; } ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); if (class_linker->IsQuickToInterpreterBridge(new_code)) { // It's always OK to update to the interpreter. UpdateEntryPoints(method, new_code); return; } if (IsDeoptimized(method)) { DCHECK(class_linker->IsQuickToInterpreterBridge(method->GetEntryPointFromQuickCompiledCode())) << EntryPointString(method->GetEntryPointFromQuickCompiledCode()); // Don't update, stay deoptimized. return; } if (EntryExitStubsInstalled() && CodeNeedsEntryExitStub(new_code, method)) { DCHECK(method->GetEntryPointFromQuickCompiledCode() == GetQuickInstrumentationEntryPoint() || class_linker->IsQuickToInterpreterBridge(method->GetEntryPointFromQuickCompiledCode())) << EntryPointString(method->GetEntryPointFromQuickCompiledCode()) << " " << method->PrettyMethod(); // If the code we want to update the method with still needs entry/exit stub, just skip. return; } // At this point, we can update as asked. UpdateEntryPoints(method, new_code); } void Instrumentation::UpdateNativeMethodsCodeToJitCode(ArtMethod* method, const void* new_code) { // We don't do any read barrier on `method`'s declaring class in this code, as the JIT might // enter here on a soon-to-be deleted ArtMethod. Updating the entrypoint is OK though, as // the ArtMethod is still in memory. if (EntryExitStubsInstalled()) { // If stubs are installed don't update. return; } UpdateEntryPoints(method, new_code); } void Instrumentation::UpdateMethodsCode(ArtMethod* method, const void* new_code) { DCHECK(method->GetDeclaringClass()->IsResolved()); UpdateMethodsCodeImpl(method, new_code); } bool Instrumentation::AddDeoptimizedMethod(ArtMethod* method) { if (IsDeoptimizedMethod(method)) { // Already in the map. Return. return false; } // Not found. Add it. deoptimized_methods_.insert(method); return true; } bool Instrumentation::IsDeoptimizedMethod(ArtMethod* method) { return deoptimized_methods_.find(method) != deoptimized_methods_.end(); } ArtMethod* Instrumentation::BeginDeoptimizedMethod() { if (deoptimized_methods_.empty()) { // Empty. return nullptr; } return *deoptimized_methods_.begin(); } bool Instrumentation::RemoveDeoptimizedMethod(ArtMethod* method) { auto it = deoptimized_methods_.find(method); if (it == deoptimized_methods_.end()) { return false; } deoptimized_methods_.erase(it); return true; } bool Instrumentation::IsDeoptimizedMethodsEmptyLocked() const { return deoptimized_methods_.empty(); } void Instrumentation::Deoptimize(ArtMethod* method) { CHECK(!method->IsNative()); CHECK(!method->IsProxyMethod()); CHECK(method->IsInvokable()); Thread* self = Thread::Current(); { WriterMutexLock mu(self, *GetDeoptimizedMethodsLock()); bool has_not_been_deoptimized = AddDeoptimizedMethod(method); CHECK(has_not_been_deoptimized) << "Method " << ArtMethod::PrettyMethod(method) << " is already deoptimized"; } if (!InterpreterStubsInstalled()) { UpdateEntryPoints(method, GetQuickToInterpreterBridge()); // Install instrumentation exit stub and instrumentation frames. We may already have installed // these previously so it will only cover the newly created frames. instrumentation_stubs_installed_ = true; MutexLock mu(self, *Locks::thread_list_lock_); for (Thread* thread : Runtime::Current()->GetThreadList()->GetList()) { // This isn't a strong deopt. We deopt this method if it is still in the // deopt methods list. If by the time we hit this frame we no longer need // a deopt it is safe to continue. So we don't mark the frame. InstrumentThreadStack(thread, /* deopt_all_frames= */ false); } } } void Instrumentation::Undeoptimize(ArtMethod* method) { CHECK(!method->IsNative()); CHECK(!method->IsProxyMethod()); CHECK(method->IsInvokable()); Thread* self = Thread::Current(); { WriterMutexLock mu(self, *GetDeoptimizedMethodsLock()); bool found_and_erased = RemoveDeoptimizedMethod(method); CHECK(found_and_erased) << "Method " << ArtMethod::PrettyMethod(method) << " is not deoptimized"; } // If interpreter stubs are still needed nothing to do. if (InterpreterStubsInstalled()) { return; } // We are not using interpreter stubs for deoptimization. Restore the code of the method. // We still retain interpreter bridge if we need it for other reasons. if (InterpretOnly(method)) { UpdateEntryPoints(method, GetQuickToInterpreterBridge()); } else if (NeedsClinitCheckBeforeCall(method) && !method->GetDeclaringClass()->IsVisiblyInitialized()) { UpdateEntryPoints(method, GetQuickResolutionStub()); } else { UpdateEntryPoints(method, GetMaybeInstrumentedCodeForInvoke(method)); } // If there is no deoptimized method left, we can restore the stack of each thread. if (!EntryExitStubsInstalled()) { MaybeRestoreInstrumentationStack(); } } bool Instrumentation::IsDeoptimizedMethodsEmpty() const { ReaderMutexLock mu(Thread::Current(), *GetDeoptimizedMethodsLock()); return deoptimized_methods_.empty(); } bool Instrumentation::IsDeoptimized(ArtMethod* method) { DCHECK(method != nullptr); ReaderMutexLock mu(Thread::Current(), *GetDeoptimizedMethodsLock()); return IsDeoptimizedMethod(method); } void Instrumentation::DisableDeoptimization(const char* key) { // Remove any instrumentation support added for deoptimization. ConfigureStubs(key, InstrumentationLevel::kInstrumentNothing); // Undeoptimized selected methods. while (true) { ArtMethod* method; { ReaderMutexLock mu(Thread::Current(), *GetDeoptimizedMethodsLock()); if (IsDeoptimizedMethodsEmptyLocked()) { break; } method = BeginDeoptimizedMethod(); CHECK(method != nullptr); } Undeoptimize(method); } } // Indicates if instrumentation should notify method enter/exit events to the listeners. bool Instrumentation::ShouldNotifyMethodEnterExitEvents() const { if (!HasMethodEntryListeners() && !HasMethodExitListeners()) { return false; } return !InterpreterStubsInstalled(); } void Instrumentation::DeoptimizeEverything(const char* key) { ConfigureStubs(key, InstrumentationLevel::kInstrumentWithInterpreter); } void Instrumentation::UndeoptimizeEverything(const char* key) { CHECK(InterpreterStubsInstalled()); ConfigureStubs(key, InstrumentationLevel::kInstrumentNothing); } void Instrumentation::EnableMethodTracing(const char* key, bool needs_interpreter) { InstrumentationLevel level; if (needs_interpreter) { level = InstrumentationLevel::kInstrumentWithInterpreter; } else { level = InstrumentationLevel::kInstrumentWithInstrumentationStubs; } ConfigureStubs(key, level); } void Instrumentation::DisableMethodTracing(const char* key) { ConfigureStubs(key, InstrumentationLevel::kInstrumentNothing); } const void* Instrumentation::GetCodeForInvoke(ArtMethod* method) { // This is called by instrumentation and resolution trampolines // and that should never be getting proxy methods. DCHECK(!method->IsProxyMethod()) << method->PrettyMethod(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); const void* code = method->GetEntryPointFromQuickCompiledCodePtrSize(kRuntimePointerSize); // If we don't have the instrumentation, the resolution stub, or the // interpreter as entrypoint, just return the current entrypoint, assuming // it's the most optimized. if (code != GetQuickInstrumentationEntryPoint() && !class_linker->IsQuickResolutionStub(code) && !class_linker->IsQuickToInterpreterBridge(code)) { return code; } if (InterpretOnly(method)) { // If we're forced into interpreter just use it. return GetQuickToInterpreterBridge(); } return GetOptimizedCodeFor(method); } const void* Instrumentation::GetMaybeInstrumentedCodeForInvoke(ArtMethod* method) { // This is called by resolution trampolines and that should never be getting proxy methods. DCHECK(!method->IsProxyMethod()) << method->PrettyMethod(); const void* code = GetCodeForInvoke(method); if (EntryExitStubsInstalled() && CodeNeedsEntryExitStub(code, method)) { return GetQuickInstrumentationEntryPoint(); } return code; } void Instrumentation::MethodEnterEventImpl(Thread* thread, ArtMethod* method) const { DCHECK(!method->IsRuntimeMethod()); if (HasMethodEntryListeners()) { for (InstrumentationListener* listener : method_entry_listeners_) { if (listener != nullptr) { listener->MethodEntered(thread, method); } } } } template <> void Instrumentation::MethodExitEventImpl(Thread* thread, ArtMethod* method, OptionalFrame frame, MutableHandle& return_value) const { if (HasMethodExitListeners()) { for (InstrumentationListener* listener : method_exit_listeners_) { if (listener != nullptr) { listener->MethodExited(thread, method, frame, return_value); } } } } template<> void Instrumentation::MethodExitEventImpl(Thread* thread, ArtMethod* method, OptionalFrame frame, JValue& return_value) const { if (HasMethodExitListeners()) { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); if (method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetReturnTypePrimitive() != Primitive::kPrimNot) { for (InstrumentationListener* listener : method_exit_listeners_) { if (listener != nullptr) { listener->MethodExited(thread, method, frame, return_value); } } } else { MutableHandle ret(hs.NewHandle(return_value.GetL())); MethodExitEventImpl(thread, method, frame, ret); return_value.SetL(ret.Get()); } } } void Instrumentation::MethodUnwindEvent(Thread* thread, ObjPtr this_object, ArtMethod* method, uint32_t dex_pc) const { if (HasMethodUnwindListeners()) { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle thiz(hs.NewHandle(this_object)); for (InstrumentationListener* listener : method_unwind_listeners_) { if (listener != nullptr) { listener->MethodUnwind(thread, thiz, method, dex_pc); } } } } void Instrumentation::DexPcMovedEventImpl(Thread* thread, ObjPtr this_object, ArtMethod* method, uint32_t dex_pc) const { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle thiz(hs.NewHandle(this_object)); for (InstrumentationListener* listener : dex_pc_listeners_) { if (listener != nullptr) { listener->DexPcMoved(thread, thiz, method, dex_pc); } } } void Instrumentation::BranchImpl(Thread* thread, ArtMethod* method, uint32_t dex_pc, int32_t offset) const { for (InstrumentationListener* listener : branch_listeners_) { if (listener != nullptr) { listener->Branch(thread, method, dex_pc, offset); } } } void Instrumentation::WatchedFramePopImpl(Thread* thread, const ShadowFrame& frame) const { for (InstrumentationListener* listener : watched_frame_pop_listeners_) { if (listener != nullptr) { listener->WatchedFramePop(thread, frame); } } } void Instrumentation::FieldReadEventImpl(Thread* thread, ObjPtr this_object, ArtMethod* method, uint32_t dex_pc, ArtField* field) const { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle thiz(hs.NewHandle(this_object)); for (InstrumentationListener* listener : field_read_listeners_) { if (listener != nullptr) { listener->FieldRead(thread, thiz, method, dex_pc, field); } } } void Instrumentation::FieldWriteEventImpl(Thread* thread, ObjPtr this_object, ArtMethod* method, uint32_t dex_pc, ArtField* field, const JValue& field_value) const { Thread* self = Thread::Current(); StackHandleScope<2> hs(self); Handle thiz(hs.NewHandle(this_object)); if (field->IsPrimitiveType()) { for (InstrumentationListener* listener : field_write_listeners_) { if (listener != nullptr) { listener->FieldWritten(thread, thiz, method, dex_pc, field, field_value); } } } else { Handle val(hs.NewHandle(field_value.GetL())); for (InstrumentationListener* listener : field_write_listeners_) { if (listener != nullptr) { listener->FieldWritten(thread, thiz, method, dex_pc, field, val); } } } } void Instrumentation::ExceptionThrownEvent(Thread* thread, ObjPtr exception_object) const { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle h_exception(hs.NewHandle(exception_object)); if (HasExceptionThrownListeners()) { DCHECK_EQ(thread->GetException(), h_exception.Get()); thread->ClearException(); for (InstrumentationListener* listener : exception_thrown_listeners_) { if (listener != nullptr) { listener->ExceptionThrown(thread, h_exception); } } // See b/65049545 for discussion about this behavior. thread->AssertNoPendingException(); thread->SetException(h_exception.Get()); } } void Instrumentation::ExceptionHandledEvent(Thread* thread, ObjPtr exception_object) const { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle h_exception(hs.NewHandle(exception_object)); if (HasExceptionHandledListeners()) { // We should have cleared the exception so that callers can detect a new one. DCHECK(thread->GetException() == nullptr); for (InstrumentationListener* listener : exception_handled_listeners_) { if (listener != nullptr) { listener->ExceptionHandled(thread, h_exception); } } } } void Instrumentation::PushInstrumentationStackFrame(Thread* self, ObjPtr this_object, ArtMethod* method, uintptr_t stack_ptr, uintptr_t lr, bool interpreter_entry) { DCHECK(!self->IsExceptionPending()); std::map* stack = self->GetInstrumentationStack(); if (kVerboseInstrumentation) { LOG(INFO) << "Entering " << ArtMethod::PrettyMethod(method) << " from PC " << reinterpret_cast(lr); } // We send the enter event before pushing the instrumentation frame to make cleanup easier. If the // event causes an exception we can simply send the unwind event and return. StackHandleScope<1> hs(self); Handle h_this(hs.NewHandle(this_object)); if (!interpreter_entry) { MethodEnterEvent(self, method); if (self->IsExceptionPending()) { MethodUnwindEvent(self, h_this.Get(), method, 0); return; } } // We have a callee-save frame meaning this value is guaranteed to never be 0. DCHECK(!self->IsExceptionPending()); instrumentation::InstrumentationStackFrame instrumentation_frame( h_this.Get(), method, lr, interpreter_entry, current_force_deopt_id_); stack->insert({stack_ptr, instrumentation_frame}); } DeoptimizationMethodType Instrumentation::GetDeoptimizationMethodType(ArtMethod* method) { if (method->IsRuntimeMethod()) { // Certain methods have strict requirement on whether the dex instruction // should be re-executed upon deoptimization. if (method == Runtime::Current()->GetCalleeSaveMethod( CalleeSaveType::kSaveEverythingForClinit)) { return DeoptimizationMethodType::kKeepDexPc; } if (method == Runtime::Current()->GetCalleeSaveMethod( CalleeSaveType::kSaveEverythingForSuspendCheck)) { return DeoptimizationMethodType::kKeepDexPc; } } return DeoptimizationMethodType::kDefault; } // Try to get the shorty of a runtime method if it's an invocation stub. static char GetRuntimeMethodShorty(Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_) { char shorty = 'V'; StackVisitor::WalkStack( [&shorty](const art::StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* m = stack_visitor->GetMethod(); if (m == nullptr || m->IsRuntimeMethod()) { return true; } // The first Java method. if (m->IsNative()) { // Use JNI method's shorty for the jni stub. shorty = m->GetShorty()[0]; } else if (m->IsProxyMethod()) { // Proxy method just invokes its proxied method via // art_quick_proxy_invoke_handler. shorty = m->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty()[0]; } else { const Instruction& instr = m->DexInstructions().InstructionAt(stack_visitor->GetDexPc()); if (instr.IsInvoke()) { uint16_t method_index = static_cast(instr.VRegB()); const DexFile* dex_file = m->GetDexFile(); if (interpreter::IsStringInit(dex_file, method_index)) { // Invoking string init constructor is turned into invoking // StringFactory.newStringFromChars() which returns a string. shorty = 'L'; } else { shorty = dex_file->GetMethodShorty(method_index)[0]; } } else { // It could be that a non-invoke opcode invokes a stub, which in turn // invokes Java code. In such cases, we should never expect a return // value from the stub. } } // Stop stack walking since we've seen a Java frame. return false; }, thread, /* context= */ nullptr, art::StackVisitor::StackWalkKind::kIncludeInlinedFrames); return shorty; } JValue Instrumentation::GetReturnValue( Thread* self, ArtMethod* method, bool* is_ref, uint64_t* gpr_result, uint64_t* fpr_result) { uint32_t length; const PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); char return_shorty; // Runtime method does not call into MethodExitEvent() so there should not be // suspension point below. ScopedAssertNoThreadSuspension ants(__FUNCTION__, method->IsRuntimeMethod()); if (method->IsRuntimeMethod()) { Runtime* runtime = Runtime::Current(); if (method != runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit) && method != runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck)) { // If the caller is at an invocation point and the runtime method is not // for clinit, we need to pass return results to the caller. // We need the correct shorty to decide whether we need to pass the return // result for deoptimization below. return_shorty = GetRuntimeMethodShorty(self); } else { // Some runtime methods such as allocations, unresolved field getters, etc. // have return value. We don't need to set return_value since MethodExitEvent() // below isn't called for runtime methods. Deoptimization doesn't need the // value either since the dex instruction will be re-executed by the // interpreter, except these two cases: // (1) For an invoke, which is handled above to get the correct shorty. // (2) For MONITOR_ENTER/EXIT, which cannot be re-executed since it's not // idempotent. However there is no return value for it anyway. return_shorty = 'V'; } } else { return_shorty = method->GetInterfaceMethodIfProxy(pointer_size)->GetShorty(&length)[0]; } *is_ref = return_shorty == '[' || return_shorty == 'L'; JValue return_value; if (return_shorty == 'V') { return_value.SetJ(0); } else if (return_shorty == 'F' || return_shorty == 'D') { return_value.SetJ(*fpr_result); } else { return_value.SetJ(*gpr_result); } return return_value; } bool Instrumentation::ShouldDeoptimizeMethod(Thread* self, const NthCallerVisitor& visitor) { bool should_deoptimize_frame = false; const OatQuickMethodHeader* header = visitor.GetCurrentOatQuickMethodHeader(); if (header != nullptr && header->HasShouldDeoptimizeFlag()) { uint8_t should_deopt_flag = visitor.GetShouldDeoptimizeFlag(); // DeoptimizeFlag could be set for debugging or for CHA invalidations. // Deoptimize here only if it was requested for debugging. CHA // invalidations are handled in the JITed code. if ((should_deopt_flag & static_cast(DeoptimizeFlagValue::kDebug)) != 0) { should_deoptimize_frame = true; } } return (visitor.caller != nullptr) && (InterpreterStubsInstalled() || IsDeoptimized(visitor.caller) || self->IsForceInterpreter() || // NB Since structurally obsolete compiled methods might have the offsets of // methods/fields compiled in we need to go back to interpreter whenever we hit // them. visitor.caller->GetDeclaringClass()->IsObsoleteObject() || Dbg::IsForcedInterpreterNeededForUpcall(self, visitor.caller) || should_deoptimize_frame); } TwoWordReturn Instrumentation::PopInstrumentationStackFrame(Thread* self, uintptr_t* return_pc_addr, uint64_t* gpr_result, uint64_t* fpr_result) { DCHECK(gpr_result != nullptr); DCHECK(fpr_result != nullptr); // Do the pop. std::map* stack = self->GetInstrumentationStack(); CHECK_GT(stack->size(), 0U); auto it = stack->find(reinterpret_cast(return_pc_addr)); CHECK(it != stack->end()); InstrumentationStackFrame instrumentation_frame = it->second; stack->erase(it); // Set return PC and check the consistency of the stack. // We don't cache the return pc value in a local as it may change after // sending a method exit event. *return_pc_addr = instrumentation_frame.return_pc_; self->VerifyStack(); ArtMethod* method = instrumentation_frame.method_; bool is_ref; JValue return_value = GetReturnValue(self, method, &is_ref, gpr_result, fpr_result); StackHandleScope<1> hs(self); MutableHandle res(hs.NewHandle(nullptr)); if (is_ref) { // Take a handle to the return value so we won't lose it if we suspend. // FIXME: The `is_ref` is often guessed wrong, so even object aligment // assertion would fail for some tests. See b/204766614 . // DCHECK_ALIGNED(return_value.GetL(), kObjectAlignment); res.Assign(return_value.GetL()); } if (!method->IsRuntimeMethod() && !instrumentation_frame.interpreter_entry_) { // Note that sending the event may change the contents of *return_pc_addr. MethodExitEvent(self, instrumentation_frame.method_, OptionalFrame{}, return_value); } // Deoptimize if the caller needs to continue execution in the interpreter. Do nothing if we get // back to an upcall. NthCallerVisitor visitor(self, 1, true); visitor.WalkStack(true); // Check if we forced all threads to deoptimize in the time between this frame being created and // now. bool should_deoptimize_frame = instrumentation_frame.force_deopt_id_ != current_force_deopt_id_; bool deoptimize = ShouldDeoptimizeMethod(self, visitor) || should_deoptimize_frame; if (is_ref) { // Restore the return value if it's a reference since it might have moved. *reinterpret_cast(gpr_result) = res.Get(); } if (deoptimize && Runtime::Current()->IsAsyncDeoptimizeable(*return_pc_addr)) { if (kVerboseInstrumentation) { LOG(INFO) << "Deoptimizing " << visitor.caller->PrettyMethod() << " by returning from " << method->PrettyMethod() << " with result " << std::hex << return_value.GetJ() << std::dec << " in " << *self; } DeoptimizationMethodType deopt_method_type = GetDeoptimizationMethodType(method); self->PushDeoptimizationContext(return_value, is_ref, /* exception= */ nullptr, /* from_code= */ false, deopt_method_type); return GetTwoWordSuccessValue(*return_pc_addr, reinterpret_cast(GetQuickDeoptimizationEntryPoint())); } else { if (deoptimize && !Runtime::Current()->IsAsyncDeoptimizeable(*return_pc_addr)) { VLOG(deopt) << "Got a deoptimization request on un-deoptimizable " << method->PrettyMethod() << " at PC " << reinterpret_cast(*return_pc_addr); } if (kVerboseInstrumentation) { LOG(INFO) << "Returning from " << method->PrettyMethod() << " to PC " << reinterpret_cast(*return_pc_addr); } return GetTwoWordSuccessValue(0, *return_pc_addr); } } uintptr_t Instrumentation::PopFramesForDeoptimization(Thread* self, uintptr_t pop_until) const { std::map* stack = self->GetInstrumentationStack(); // Pop all instrumentation frames below `pop_until`. uintptr_t return_pc = 0u; for (auto i = stack->begin(); i != stack->end() && i->first <= pop_until;) { auto e = i; ++i; if (kVerboseInstrumentation) { LOG(INFO) << "Popping for deoptimization " << e->second.method_->PrettyMethod(); } return_pc = e->second.return_pc_; stack->erase(e); } return return_pc; } std::string InstrumentationStackFrame::Dump() const { std::ostringstream os; os << ArtMethod::PrettyMethod(method_) << ":" << reinterpret_cast(return_pc_) << " this=" << reinterpret_cast(this_object_) << " force_deopt_id=" << force_deopt_id_; return os.str(); } } // namespace instrumentation } // namespace art