// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "harness/compat.h" #include #include #include #include #include #include "procs.h" static const char *image_to_image_kernel_integer_coord_code = "\n" "__kernel void image_to_image_copy(read_only image2d_t srcimg, write_only image2d_t dstimg, sampler_t sampler)\n" "{\n" " int tid_x = get_global_id(0);\n" " int tid_y = get_global_id(1);\n" " float4 color;\n" "\n" " color = read_imagef(srcimg, sampler, (int2)(tid_x, tid_y));\n" " write_imagef(dstimg, (int2)(tid_x, tid_y), color);\n" "\n" "}\n"; static const char *image_to_image_kernel_float_coord_code = "\n" "__kernel void image_to_image_copy(read_only image2d_t srcimg, write_only image2d_t dstimg, sampler_t sampler)\n" "{\n" " int tid_x = get_global_id(0);\n" " int tid_y = get_global_id(1);\n" " float4 color;\n" "\n" " color = read_imagef(srcimg, sampler, (float2)((float)tid_x, (float)tid_y));\n" " write_imagef(dstimg, (int2)(tid_x, tid_y), color);\n" "\n" "}\n"; static const char *image_sum_kernel_integer_coord_code = "\n" "__kernel void image_sum(read_only image2d_t srcimg0, read_only image2d_t srcimg1, write_only image2d_t dstimg, sampler_t sampler)\n" "{\n" " int tid_x = get_global_id(0);\n" " int tid_y = get_global_id(1);\n" " float4 color0;\n" " float4 color1;\n" "\n" " color0 = read_imagef(srcimg0, sampler, (int2)(tid_x, tid_y));\n" " color1 = read_imagef(srcimg1, sampler, (int2)(tid_x, tid_y));\n" " write_imagef(dstimg, (int2)(tid_x, tid_y), color0 + color1);\n" "\n" "}\n"; static const char *image_sum_kernel_float_coord_code = "\n" "__kernel void image_sum(read_only image2d_t srcimg0, read_only image2d_t srcimg1, write_only image2d_t dstimg, sampler_t sampler)\n" "{\n" " int tid_x = get_global_id(0);\n" " int tid_y = get_global_id(1);\n" " float4 color0;\n" " float4 color1;\n" "\n" " color0 = read_imagef(srcimg0, sampler, (float2)((float)tid_x, (float)tid_y));\n" " color1 = read_imagef(srcimg1, sampler, (float2)((float)tid_x, (float)tid_y));\n" " write_imagef(dstimg,(int2)(tid_x, tid_y), color0 + color1);\n" "\n" "}\n"; static unsigned char * generate_initial_byte_image(int w, int h, int num_elements, unsigned char value) { unsigned char *ptr = (unsigned char*)malloc(w * h * num_elements); int i; for (i = 0; i < w*h*num_elements; i++) ptr[i] = value; return ptr; } static unsigned char * generate_expected_byte_image(unsigned char **input_data, int num_inputs, int w, int h, int num_elements) { unsigned char *ptr = (unsigned char*)malloc(w * h * num_elements); int i; for (i = 0; i < w*h*num_elements; i++) { int j; ptr[i] = 0; for (j = 0; j < num_inputs; j++) { unsigned char *input = *(input_data + j); ptr[i] += input[i]; } } return ptr; } static unsigned char * generate_byte_image(int w, int h, int num_elements, MTdata d) { unsigned char *ptr = (unsigned char*)malloc(w * h * num_elements); int i; for (i = 0; i < w*h*num_elements; i++) ptr[i] = (unsigned char)genrand_int32(d) & 31; return ptr; } static int verify_byte_image(unsigned char *image, unsigned char *outptr, int w, int h, int num_elements) { int i; for (i = 0; i < w*h*num_elements; i++) { if (outptr[i] != image[i]) { return -1; } } return 0; } int test_image_multipass_integer_coord(cl_device_id device, cl_context context, cl_command_queue queue, int num_elements) { int img_width = 512; int img_height = 512; cl_image_format img_format; int num_input_streams = 8; cl_mem *input_streams; cl_mem accum_streams[2]; unsigned char *expected_output; unsigned char *output_ptr; cl_kernel kernel[2]; int err; PASSIVE_REQUIRE_IMAGE_SUPPORT( device ) img_format.image_channel_order = CL_RGBA; img_format.image_channel_data_type = CL_UNORM_INT8; expected_output = (unsigned char*)malloc(sizeof(unsigned char) * 4 * img_width * img_height); output_ptr = (unsigned char*)malloc(sizeof(unsigned char) * 4 * img_width * img_height); // Create the accum images with initial data. { unsigned char *initial_data; cl_mem_flags flags; initial_data = generate_initial_byte_image(img_width, img_height, 4, 0xF0); flags = CL_MEM_READ_WRITE; accum_streams[0] = create_image_2d(context, flags, &img_format, img_width, img_height, 0, NULL, NULL); if (!accum_streams[0]) { log_error("create_image_2d failed\n"); free(expected_output); free(output_ptr); return -1; } size_t origin[3] = {0, 0, 0}, region[3] = {img_width, img_height, 1}; err = clEnqueueWriteImage(queue, accum_streams[0], CL_TRUE, origin, region, 0, 0, initial_data, 0, NULL, NULL); if (err) { log_error("clWriteImage failed: %d\n", err); free(expected_output); free(output_ptr); return -1; } accum_streams[1] = create_image_2d(context, flags, &img_format, img_width, img_height, 0, NULL, NULL); if (!accum_streams[1]) { log_error("create_image_2d failed\n"); free(expected_output); free(output_ptr); return -1; } err = clEnqueueWriteImage(queue, accum_streams[1], CL_TRUE, origin, region, 0, 0, initial_data, 0, NULL, NULL); if (err) { log_error("clWriteImage failed: %d\n", err); free(expected_output); free(output_ptr); return -1; } free(initial_data); } // Set up the input data. { cl_mem_flags flags; unsigned char **input_data = (unsigned char **)malloc(sizeof(unsigned char*) * num_input_streams); MTdata d; input_streams = (cl_mem*)malloc(sizeof(cl_mem) * num_input_streams); flags = CL_MEM_READ_WRITE; int i; d = init_genrand( gRandomSeed ); for ( i = 0; i < num_input_streams; i++) { input_data[i] = generate_byte_image(img_width, img_height, 4, d); input_streams[i] = create_image_2d(context, flags, &img_format, img_width, img_height, 0, NULL, NULL); if (!input_streams[i]) { log_error("create_image_2d failed\n"); free_mtdata(d); free(expected_output); free(output_ptr); return -1; } size_t origin[3] = {0, 0, 0}, region[3] = {img_width, img_height, 1}; err = clEnqueueWriteImage(queue, input_streams[i], CL_TRUE, origin, region, 0, 0, input_data[i], 0, NULL, NULL); if (err) { log_error("clWriteImage failed: %d\n", err); free_mtdata(d); free(expected_output); free(output_ptr); free(input_streams); return -1; } } free_mtdata(d); d = NULL; expected_output = generate_expected_byte_image(input_data, num_input_streams, img_width, img_height, 4); for ( i = 0; i < num_input_streams; i++) { free(input_data[i]); } free( input_data ); } // Set up the kernels. { cl_program program[4]; err = create_single_kernel_helper(context, &program[0], &kernel[0], 1, &image_to_image_kernel_integer_coord_code, "image_to_image_copy"); if (err) { log_error("Failed to create kernel 0: %d\n", err); return -1; } err = create_single_kernel_helper(context, &program[1], &kernel[1], 1, &image_sum_kernel_integer_coord_code, "image_sum"); if (err) { log_error("Failed to create kernel 1: %d\n", err); return -1; } clReleaseProgram(program[0]); clReleaseProgram(program[1]); } cl_sampler sampler = clCreateSampler(context, CL_FALSE, CL_ADDRESS_CLAMP_TO_EDGE, CL_FILTER_NEAREST, &err); test_error(err, "clCreateSampler failed"); { size_t threads[3] = {0, 0, 0}; threads[0] = (size_t)img_width; threads[1] = (size_t)img_height; int i; { cl_mem accum_input; cl_mem accum_output; err = clSetKernelArg(kernel[0], 0, sizeof input_streams[0], &input_streams[0]); err |= clSetKernelArg(kernel[0], 1, sizeof accum_streams[0], &accum_streams[0]); err |= clSetKernelArg(kernel[0], 2, sizeof sampler, &sampler); if (err != CL_SUCCESS) { log_error("clSetKernelArgs failed\n"); return -1; } err = clEnqueueNDRangeKernel( queue, kernel[0], 2, NULL, threads, NULL, 0, NULL, NULL ); if (err != CL_SUCCESS) { log_error("clEnqueueNDRangeKernel failed\n"); return -1; } for (i = 1; i < num_input_streams; i++) { accum_input = accum_streams[(i-1)%2]; accum_output = accum_streams[i%2]; err = clSetKernelArg(kernel[1], 0, sizeof accum_input, &accum_input); err |= clSetKernelArg(kernel[1], 1, sizeof input_streams[i], &input_streams[i]); err |= clSetKernelArg(kernel[1], 2, sizeof accum_output, &accum_output); err |= clSetKernelArg(kernel[1], 3, sizeof sampler, &sampler); if (err != CL_SUCCESS) { log_error("clSetKernelArgs failed\n"); return -1; } err = clEnqueueNDRangeKernel( queue, kernel[1], 2, NULL, threads, NULL, 0, NULL, NULL ); if (err != CL_SUCCESS) { log_error("clEnqueueNDRangeKernel failed\n"); return -1; } } // Copy the last accum into the other one. accum_input = accum_streams[(i-1)%2]; accum_output = accum_streams[i%2]; err = clSetKernelArg(kernel[0], 0, sizeof accum_input, &accum_input); err |= clSetKernelArg(kernel[0], 1, sizeof accum_output, &accum_output); if (err != CL_SUCCESS) { log_error("clSetKernelArgs failed\n"); return -1; } err = clEnqueueNDRangeKernel( queue, kernel[0], 2, NULL, threads, NULL, 0, NULL, NULL ); if (err != CL_SUCCESS) { log_error("clEnqueueNDRangeKernel failed\n"); return -1; } size_t origin[3] = {0, 0, 0}, region[3] = {img_width, img_height, 1}; err = clEnqueueReadImage(queue, accum_output, CL_TRUE, origin, region, 0, 0, (void *)output_ptr, 0, NULL, NULL); if (err != CL_SUCCESS) { log_error("clReadImage failed\n"); return -1; } err = verify_byte_image(expected_output, output_ptr, img_width, img_height, 4); if (err) { log_error("IMAGE_MULTIPASS test failed.\n"); } else { log_info("IMAGE_MULTIPASS test passed\n"); } } clReleaseSampler(sampler); } // cleanup clReleaseMemObject(accum_streams[0]); clReleaseMemObject(accum_streams[1]); { int i; for (i = 0; i < num_input_streams; i++) { clReleaseMemObject(input_streams[i]); } } free(input_streams); clReleaseKernel(kernel[0]); clReleaseKernel(kernel[1]); free(expected_output); free(output_ptr); return err; } int test_image_multipass_float_coord(cl_device_id device, cl_context context, cl_command_queue queue, int num_elements) { int img_width = 512; int img_height = 512; cl_image_format img_format; int num_input_streams = 8; cl_mem *input_streams; cl_mem accum_streams[2]; unsigned char *expected_output; unsigned char *output_ptr; cl_kernel kernel[2]; int err; PASSIVE_REQUIRE_IMAGE_SUPPORT( device ) img_format.image_channel_order = CL_RGBA; img_format.image_channel_data_type = CL_UNORM_INT8; output_ptr = (unsigned char*)malloc(sizeof(unsigned char) * 4 * img_width * img_height); // Create the accum images with initial data. { unsigned char *initial_data; cl_mem_flags flags; initial_data = generate_initial_byte_image(img_width, img_height, 4, 0xF0); flags = CL_MEM_READ_WRITE; accum_streams[0] = create_image_2d(context, flags, &img_format, img_width, img_height, 0, NULL, NULL); if (!accum_streams[0]) { log_error("create_image_2d failed\n"); return -1; } size_t origin[3] = {0, 0, 0}, region[3] = {img_width, img_height, 1}; err = clEnqueueWriteImage(queue, accum_streams[0], CL_TRUE, origin, region, 0, 0, initial_data, 0, NULL, NULL); if (err) { log_error("clWriteImage failed: %d\n", err); return -1; } accum_streams[1] = create_image_2d(context, flags, &img_format, img_width, img_height, 0, NULL, NULL); if (!accum_streams[1]) { log_error("create_image_2d failed\n"); return -1; } err = clEnqueueWriteImage(queue, accum_streams[1], CL_TRUE, origin, region, 0, 0, initial_data, 0, NULL, NULL); if (err) { log_error("clWriteImage failed: %d\n", err); return -1; } free(initial_data); } // Set up the input data. { cl_mem_flags flags; unsigned char **input_data = (unsigned char **)malloc(sizeof(unsigned char*) * num_input_streams); MTdata d; input_streams = (cl_mem*)malloc(sizeof(cl_mem) * num_input_streams); flags = CL_MEM_READ_WRITE; int i; d = init_genrand( gRandomSeed ); for ( i = 0; i < num_input_streams; i++) { input_data[i] = generate_byte_image(img_width, img_height, 4, d); input_streams[i] = create_image_2d(context, flags, &img_format, img_width, img_height, 0, NULL, NULL); if (!input_streams[i]) { log_error("create_image_2d failed\n"); free(input_data); free(input_streams); return -1; } size_t origin[3] = {0, 0, 0}, region[3] = {img_width, img_height, 1}; err = clEnqueueWriteImage(queue, input_streams[i], CL_TRUE, origin, region, 0, 0, input_data[i], 0, NULL, NULL); if (err) { log_error("clWriteImage failed: %d\n", err); free(input_data); free(input_streams); return -1; } } free_mtdata(d); d = NULL; expected_output = generate_expected_byte_image(input_data, num_input_streams, img_width, img_height, 4); for ( i = 0; i < num_input_streams; i++) { free(input_data[i]); } free(input_data); } // Set up the kernels. { cl_program program[2]; err = create_single_kernel_helper(context, &program[0], &kernel[0], 1, &image_to_image_kernel_float_coord_code, "image_to_image_copy"); if (err) { log_error("Failed to create kernel 2: %d\n", err); return -1; } err = create_single_kernel_helper(context, &program[1], &kernel[1], 1, &image_sum_kernel_float_coord_code, "image_sum"); if (err) { log_error("Failed to create kernel 3: %d\n", err); return -1; } clReleaseProgram(program[0]); clReleaseProgram(program[1]); } cl_sampler sampler = clCreateSampler(context, CL_FALSE, CL_ADDRESS_CLAMP_TO_EDGE, CL_FILTER_NEAREST, &err); test_error(err, "clCreateSampler failed"); { size_t threads[3] = {0, 0, 0}; threads[0] = (size_t)img_width; threads[1] = (size_t)img_height; int i; { cl_mem accum_input; cl_mem accum_output; err = clSetKernelArg(kernel[0], 0, sizeof input_streams[0], &input_streams[0]); err |= clSetKernelArg(kernel[0], 1, sizeof accum_streams[0], &accum_streams[0]); err |= clSetKernelArg(kernel[0], 2, sizeof sampler, &sampler); if (err != CL_SUCCESS) { log_error("clSetKernelArgs failed\n"); return -1; } err = clEnqueueNDRangeKernel( queue, kernel[0], 2, NULL, threads, NULL, 0, NULL, NULL ); if (err != CL_SUCCESS) { log_error("clEnqueueNDRangeKernel failed\n"); return -1; } for (i = 1; i < num_input_streams; i++) { accum_input = accum_streams[(i-1)%2]; accum_output = accum_streams[i%2]; err = clSetKernelArg(kernel[1], 0, sizeof accum_input, &accum_input); err |= clSetKernelArg(kernel[1], 1, sizeof input_streams[i], &input_streams[i]); err |= clSetKernelArg(kernel[1], 2, sizeof accum_output, &accum_output); err |= clSetKernelArg(kernel[1], 3, sizeof sampler, &sampler); if (err != CL_SUCCESS) { log_error("clSetKernelArgs failed\n"); return -1; } err = clEnqueueNDRangeKernel( queue, kernel[1], 2, NULL, threads, NULL, 0, NULL, NULL ); if (err != CL_SUCCESS) { log_error("clEnqueueNDRangeKernel failed\n"); return -1; } } // Copy the last accum into the other one. accum_input = accum_streams[(i-1)%2]; accum_output = accum_streams[i%2]; err = clSetKernelArg(kernel[0], 0, sizeof accum_input, &accum_input); err |= clSetKernelArg(kernel[0], 1, sizeof accum_output, &accum_output); if (err != CL_SUCCESS) { log_error("clSetKernelArgs failed\n"); return -1; } err = clEnqueueNDRangeKernel( queue, kernel[0], 2, NULL, threads, NULL, 0, NULL, NULL ); if (err != CL_SUCCESS) { log_error("clEnqueueNDRangeKernel failed\n"); return -1; } size_t origin[3] = {0, 0, 0}, region[3] = {img_width, img_height, 1}; err = clEnqueueReadImage(queue, accum_output, CL_TRUE, origin, region, 0, 0, (void *)output_ptr, 0, NULL, NULL); if (err != CL_SUCCESS) { log_error("clReadImage failed\n"); return -1; } err = verify_byte_image(expected_output, output_ptr, img_width, img_height, 4); if (err) { log_error("IMAGE_MULTIPASS test failed.\n"); } else { log_info("IMAGE_MULTIPASS test passed\n"); } } } // cleanup clReleaseSampler(sampler); clReleaseMemObject(accum_streams[0]); clReleaseMemObject(accum_streams[1]); { int i; for (i = 0; i < num_input_streams; i++) { clReleaseMemObject(input_streams[i]); } } clReleaseKernel(kernel[0]); clReleaseKernel(kernel[1]); free(expected_output); free(output_ptr); free(input_streams); return err; }