// Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include class VCvtMicrokernelTester { public: inline VCvtMicrokernelTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline VCvtMicrokernelTester& scale(float scale) { assert(scale > 0.0f); assert(std::isnormal(scale)); this->scale_ = scale; return *this; } inline float scale() const { return this->scale_; } inline VCvtMicrokernelTester& zero_point(int16_t zero_point) { this->zero_point_ = zero_point; return *this; } inline int16_t zero_point() const { return this->zero_point_; } inline VCvtMicrokernelTester& qmin(int16_t qmin) { this->qmin_ = qmin; return *this; } inline int16_t qmin() const { return this->qmin_; } inline VCvtMicrokernelTester& qmax(int16_t qmax) { this->qmax_ = qmax; return *this; } inline int16_t qmax() const { return this->qmax_; } inline VCvtMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test(xnn_f16_f32_vcvt_ukernel_function vcvt, xnn_init_f16_f32_cvt_params_fn init_params = nullptr) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto distribution = std::uniform_real_distribution(-100.0f, 100.0f); auto f32rng = std::bind(distribution, std::ref(rng)); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::vector input(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector output(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f16rng)); std::fill(output.begin(), output.end(), nanf("")); union xnn_f16_f32_cvt_params params; if (init_params) { init_params(¶ms); } // Call optimized micro-kernel. vcvt(batch_size() * sizeof(uint16_t), input.data(), output.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(fp32_to_bits(output[i]), fp32_to_bits(fp16_ieee_to_fp32_value(input[i]))) << "at " << i << " / " << batch_size() << ", x[" << i << "] = 0x" << std::hex << std::setw(4) << std::setfill('0') << input[i]; } } } void Test(xnn_f32_f16_vcvt_ukernel_function vcvt, xnn_init_f32_f16_cvt_params_fn init_params = nullptr) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto distribution = std::uniform_real_distribution(-100.0f, 100.0f); auto f32rng = std::bind(distribution, std::ref(rng)); std::vector input(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector output(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), UINT16_C(0x7E)); union xnn_f32_f16_cvt_params params; if (init_params) { init_params(¶ms); } // Call optimized micro-kernel. vcvt(batch_size() * sizeof(float), input.data(), output.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(output[i], fp16_ieee_from_fp32_value(input[i])) << "at " << i << " / " << batch_size() << ", x[" << i << "] = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(input[i]) << " (" << input[i] << ")"; } } } void Test(xnn_f32_qs8_vcvt_ukernel_function vcvt, xnn_init_f32_qs8_cvt_params_fn init_params) const { ASSERT_GE(qmin(), std::numeric_limits::min()); ASSERT_LE(qmax(), std::numeric_limits::max()); ASSERT_LT(qmin(), qmax()); ASSERT_GE(zero_point(), std::numeric_limits::min()); ASSERT_LE(zero_point(), std::numeric_limits::max()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto distribution = std::uniform_real_distribution(-1.0f, 1.0f); auto f32rng = std::bind(distribution, std::ref(rng)); std::vector input(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector output(batch_size()); std::vector output_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), INT8_C(0xA5)); union xnn_f32_qs8_cvt_params params; if (init_params) { init_params(¶ms, scale(), zero_point(), qmin(), qmax()); } // Call optimized micro-kernel. vcvt(batch_size() * sizeof(float), input.data(), output.data(), ¶ms); // Compute reference results for (size_t i = 0; i < batch_size(); i++) { float scaled_input = input[i] * scale(); scaled_input = std::min(scaled_input, float(qmax() - zero_point())); scaled_input = std::max(scaled_input, float(qmin() - zero_point())); output_ref[i] = int8_t(std::lrintf(scaled_input) + long(zero_point())); } // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(int32_t(output[i]), int32_t(output_ref[i])) << "at " << i << " / " << batch_size() << ", x[" << i << "] = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(input[i]) << " (" << input[i] << ")"; } } } void Test(xnn_f32_qu8_vcvt_ukernel_function vcvt, xnn_init_f32_qu8_cvt_params_fn init_params) const { ASSERT_GE(qmin(), std::numeric_limits::min()); ASSERT_LE(qmax(), std::numeric_limits::max()); ASSERT_LT(qmin(), qmax()); ASSERT_GE(zero_point(), std::numeric_limits::min()); ASSERT_LE(zero_point(), std::numeric_limits::max()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto distribution = std::uniform_real_distribution(-1.0f, 1.0f); auto f32rng = std::bind(distribution, std::ref(rng)); std::vector input(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector output(batch_size()); std::vector output_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), UINT8_C(0xA5)); union xnn_f32_qu8_cvt_params params; init_params(¶ms, scale(), zero_point(), qmin(), qmax()); // Call optimized micro-kernel. vcvt(batch_size() * sizeof(float), input.data(), output.data(), ¶ms); // Compute reference results for (size_t i = 0; i < batch_size(); i++) { float scaled_input = input[i] * scale(); scaled_input = std::min(scaled_input, float(qmax() - zero_point())); scaled_input = std::max(scaled_input, float(qmin() - zero_point())); output_ref[i] = uint8_t(std::lrintf(scaled_input) + long(zero_point())); } // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(int32_t(output[i]), int32_t(output_ref[i])) << "at " << i << " / " << batch_size() << ", x[" << i << "] = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(input[i]) << " (" << input[i] << ")"; } } } void Test(xnn_qs8_f32_vcvt_ukernel_function vcvt, xnn_init_qs8_f32_cvt_params_fn init_params) const { ASSERT_GE(zero_point(), std::numeric_limits::min()); ASSERT_LE(zero_point(), std::numeric_limits::max()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto distribution = std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()); auto i8rng = std::bind(distribution, std::ref(rng)); std::vector input(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t)); std::vector output(batch_size()); std::vector output_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(i8rng)); std::fill(output.begin(), output.end(), std::nanf("")); union xnn_qs8_f32_cvt_params params; init_params(¶ms, scale(), zero_point()); // Call optimized micro-kernel. vcvt(batch_size() * sizeof(int8_t), input.data(), output.data(), ¶ms); // Compute reference results for (size_t i = 0; i < batch_size(); i++) { output_ref[i] = float(int16_t(input[i]) - zero_point()) * scale(); } // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(output[i], output_ref[i]) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << int32_t(input[i]); } } } void Test(xnn_qu8_f32_vcvt_ukernel_function vcvt, xnn_init_qu8_f32_cvt_params_fn init_params) const { ASSERT_GE(zero_point(), std::numeric_limits::min()); ASSERT_LE(zero_point(), std::numeric_limits::max()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto distribution = std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()); auto u8rng = std::bind(distribution, std::ref(rng)); std::vector input(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector output(batch_size()); std::vector output_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(u8rng)); std::fill(output.begin(), output.end(), std::nanf("")); union xnn_qu8_f32_cvt_params params; init_params(¶ms, scale(), zero_point()); // Call optimized micro-kernel. vcvt(batch_size() * sizeof(uint8_t), input.data(), output.data(), ¶ms); // Compute reference results for (size_t i = 0; i < batch_size(); i++) { output_ref[i] = float(int16_t(input[i]) - zero_point()) * scale(); } // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_EQ(output[i], output_ref[i]) << "at " << i << " / " << batch_size() << ", x[" << i << "] = " << int32_t(input[i]); } } } private: float scale_ = 1.75f; int16_t zero_point_ = 1; int16_t qmin_ = std::numeric_limits::min(); int16_t qmax_ = std::numeric_limits::max(); size_t batch_size_ = 1; size_t iterations_ = 15; };