/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Generic utils similar to those from the C++ header . #ifndef NLP_SAFT_COMPONENTS_COMMON_MOBILE_MATH_ALGORITHM_H_ #define NLP_SAFT_COMPONENTS_COMMON_MOBILE_MATH_ALGORITHM_H_ #include #include #include namespace libtextclassifier3 { namespace mobile { // Returns index of max element from the vector |elements|. Returns 0 if // |elements| is empty. T should be a type that can be compared by operator<. template inline int GetArgMax(const std::vector &elements) { return std::distance( elements.begin(), std::max_element(elements.begin(), elements.end())); } // Returns index of min element from the vector |elements|. Returns 0 if // |elements| is empty. T should be a type that can be compared by operator<. template inline int GetArgMin(const std::vector &elements) { return std::distance( elements.begin(), std::min_element(elements.begin(), elements.end())); } // Returns indices of greatest k elements from |v|. // // The order between elements is indicated by |smaller|, which should be an // object like std::less, std::greater, etc. If smaller(a, b) is true, // that means that "a is smaller than b". Intuitively, |smaller| is a // generalization of operator<. Formally, it is a strict weak ordering, see // https://en.cppreference.com/w/cpp/named_req/Compare // // Calling this function with std::less() returns the indices of the larger k // elements; calling it with std::greater() returns the indices of the // smallest k elements. This is similar to e.g., std::priority_queue: using the // default std::less gives you a max-heap, while using std::greater results in a // min-heap. // // Returned indices are sorted in decreasing order of the corresponding elements // (e.g., first element of the returned array is the index of the largest // element). In case of ties (e.g., equal elements) we select the one with the // smallest index. E.g., getting the indices of the top-2 elements from [3, 2, // 1, 3, 0, 3] returns [0, 3] (the indices of the first and the second 3). // // Corner cases: If k <= 0, this function returns an empty vector. If |v| has // only n < k elements, this function returns all n indices [0, 1, 2, ..., n - // 1], sorted according to the comp order of the indicated elements. // // Assuming each comparison is O(1), this function uses O(k) auxiliary space, // and runs in O(n * log k) time. Note: it is possible to use std::nth_element // and obtain an O(n + k * log k) time algorithm, but that uses O(n) auxiliary // space. In our case, k << n, e.g., we may want to select the top-3 most // likely classes from a set of 100 classes, so the time complexity difference // should not matter in practice. template std::vector GetTopKIndices(int k, const std::vector &v, Smaller smaller) { if (k <= 0) { return std::vector(); } if (k > v.size()) { k = v.size(); } // An order between indices. Intuitively, rev_vcomp(i1, i2) iff v[i2] is // smaller than v[i1]. No typo: this inversion is necessary for Invariant B // below. "vcomp" stands for "value comparator" (we compare the values // indicates by the two indices) and "rev_" stands for the reverse order. const auto rev_vcomp = [&v, &smaller](int i1, int i2) -> bool { if (smaller(v[i2], v[i1])) return true; if (smaller(v[i1], v[i2])) return false; // Break ties in favor of earlier elements. return i1 < i2; }; // Indices of the top-k elements seen so far. std::vector heap(k); // First, we fill |heap| with the first k indices. for (int i = 0; i < k; ++i) { heap[i] = i; } std::make_heap(heap.begin(), heap.end(), rev_vcomp); // Next, we explore the rest of the vector v. Loop invariants: // // Invariant A: |heap| contains the indices of the top-k elements from v[0:i]. // // Invariant B: heap[0] is the index of the smallest element from all elements // indicated by the indices from |heap|. // // Invariant C: |heap| is a max heap, according to order rev_vcomp. for (int i = k; i < v.size(); ++i) { // We have to update |heap| iff v[i] is larger than the smallest of the // top-k seen so far. This test is easy to do, due to Invariant B above. if (smaller(v[heap[0]], v[i])) { // Next lines replace heap[0] with i and re-"heapify" heap[0:k-1]. heap.push_back(i); std::pop_heap(heap.begin(), heap.end(), rev_vcomp); heap.pop_back(); } } // Arrange indices from |heap| in decreasing order of corresponding elements. // // More info: in iteration #0, we extract the largest heap element (according // to rev_vcomp, i.e., the index of the smallest of the top-k elements) and // place it at the end of heap, i.e., in heap[k-1]. In iteration #1, we // extract the second largest and place it in heap[k-2], etc. for (int i = 0; i < k; ++i) { std::pop_heap(heap.begin(), heap.end() - i, rev_vcomp); } return heap; } template std::vector GetTopKIndices(int k, const std::vector &elements) { return GetTopKIndices(k, elements, std::less()); } } // namespace mobile } // namespace nlp_saft #endif // NLP_SAFT_COMPONENTS_COMMON_MOBILE_MATH_ALGORITHM_H_