/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/gain_controller2.h" #include #include #include "api/array_view.h" #include "modules/audio_processing/agc2/agc2_testing_common.h" #include "modules/audio_processing/audio_buffer.h" #include "modules/audio_processing/test/audio_buffer_tools.h" #include "modules/audio_processing/test/bitexactness_tools.h" #include "rtc_base/checks.h" #include "test/gtest.h" namespace webrtc { namespace test { namespace { void SetAudioBufferSamples(float value, AudioBuffer* ab) { // Sets all the samples in |ab| to |value|. for (size_t k = 0; k < ab->num_channels(); ++k) { std::fill(ab->channels()[k], ab->channels()[k] + ab->num_frames(), value); } } float RunAgc2WithConstantInput(GainController2* agc2, float input_level, size_t num_frames, int sample_rate) { const int num_samples = rtc::CheckedDivExact(sample_rate, 100); AudioBuffer ab(sample_rate, 1, sample_rate, 1, sample_rate, 1); // Give time to the level estimator to converge. for (size_t i = 0; i < num_frames + 1; ++i) { SetAudioBufferSamples(input_level, &ab); agc2->Process(&ab); } // Return the last sample from the last processed frame. return ab.channels()[0][num_samples - 1]; } AudioProcessing::Config::GainController2 CreateAgc2FixedDigitalModeConfig( float fixed_gain_db) { AudioProcessing::Config::GainController2 config; config.adaptive_digital.enabled = false; config.fixed_digital.gain_db = fixed_gain_db; // TODO(alessiob): Check why ASSERT_TRUE() below does not compile. EXPECT_TRUE(GainController2::Validate(config)); return config; } std::unique_ptr CreateAgc2FixedDigitalMode( float fixed_gain_db, size_t sample_rate_hz) { auto agc2 = std::make_unique(); agc2->ApplyConfig(CreateAgc2FixedDigitalModeConfig(fixed_gain_db)); agc2->Initialize(sample_rate_hz); return agc2; } float GainAfterProcessingFile(GainController2* gain_controller) { // Set up an AudioBuffer to be filled from the speech file. constexpr size_t kStereo = 2u; const StreamConfig capture_config(AudioProcessing::kSampleRate48kHz, kStereo, false); AudioBuffer ab(capture_config.sample_rate_hz(), capture_config.num_channels(), capture_config.sample_rate_hz(), capture_config.num_channels(), capture_config.sample_rate_hz(), capture_config.num_channels()); test::InputAudioFile capture_file( test::GetApmCaptureTestVectorFileName(AudioProcessing::kSampleRate48kHz)); std::vector capture_input(capture_config.num_frames() * capture_config.num_channels()); // The file should contain at least this many frames. Every iteration, we put // a frame through the gain controller. const int kNumFramesToProcess = 100; for (int frame_no = 0; frame_no < kNumFramesToProcess; ++frame_no) { ReadFloatSamplesFromStereoFile(capture_config.num_frames(), capture_config.num_channels(), &capture_file, capture_input); test::CopyVectorToAudioBuffer(capture_config, capture_input, &ab); gain_controller->Process(&ab); } // Send in a last frame with values constant 1 (It's low enough to detect high // gain, and for ease of computation). The applied gain is the result. constexpr float sample_value = 1.f; SetAudioBufferSamples(sample_value, &ab); gain_controller->Process(&ab); return ab.channels()[0][0]; } } // namespace TEST(GainController2, CreateApplyConfig) { // Instances GainController2 and applies different configurations. std::unique_ptr gain_controller2(new GainController2()); // Check that the default config is valid. AudioProcessing::Config::GainController2 config; EXPECT_TRUE(GainController2::Validate(config)); gain_controller2->ApplyConfig(config); // Check that attenuation is not allowed. config.fixed_digital.gain_db = -5.f; EXPECT_FALSE(GainController2::Validate(config)); // Check that valid configurations are applied. for (const float& fixed_gain_db : {0.f, 5.f, 10.f, 40.f}) { config.fixed_digital.gain_db = fixed_gain_db; EXPECT_TRUE(GainController2::Validate(config)); gain_controller2->ApplyConfig(config); } } TEST(GainController2, ToString) { // Tests GainController2::ToString(). Only test the enabled property. AudioProcessing::Config::GainController2 config; config.enabled = false; EXPECT_EQ("{enabled: false", GainController2::ToString(config).substr(0, 15)); config.enabled = true; EXPECT_EQ("{enabled: true", GainController2::ToString(config).substr(0, 14)); } TEST(GainController2FixedDigital, GainShouldChangeOnSetGain) { constexpr float kInputLevel = 1000.f; constexpr size_t kNumFrames = 5; constexpr size_t kSampleRateHz = 8000; constexpr float kGain0Db = 0.f; constexpr float kGain20Db = 20.f; auto agc2_fixed = CreateAgc2FixedDigitalMode(kGain0Db, kSampleRateHz); // Signal level is unchanged with 0 db gain. EXPECT_FLOAT_EQ(RunAgc2WithConstantInput(agc2_fixed.get(), kInputLevel, kNumFrames, kSampleRateHz), kInputLevel); // +20 db should increase signal by a factor of 10. agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGain20Db)); EXPECT_FLOAT_EQ(RunAgc2WithConstantInput(agc2_fixed.get(), kInputLevel, kNumFrames, kSampleRateHz), kInputLevel * 10); } TEST(GainController2FixedDigital, ChangeFixedGainShouldBeFastAndTimeInvariant) { // Number of frames required for the fixed gain controller to adapt on the // input signal when the gain changes. constexpr size_t kNumFrames = 5; constexpr float kInputLevel = 1000.f; constexpr size_t kSampleRateHz = 8000; constexpr float kGainDbLow = 0.f; constexpr float kGainDbHigh = 25.f; static_assert(kGainDbLow < kGainDbHigh, ""); auto agc2_fixed = CreateAgc2FixedDigitalMode(kGainDbLow, kSampleRateHz); // Start with a lower gain. const float output_level_pre = RunAgc2WithConstantInput( agc2_fixed.get(), kInputLevel, kNumFrames, kSampleRateHz); // Increase gain. agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGainDbHigh)); static_cast(RunAgc2WithConstantInput(agc2_fixed.get(), kInputLevel, kNumFrames, kSampleRateHz)); // Back to the lower gain. agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGainDbLow)); const float output_level_post = RunAgc2WithConstantInput( agc2_fixed.get(), kInputLevel, kNumFrames, kSampleRateHz); EXPECT_EQ(output_level_pre, output_level_post); } struct FixedDigitalTestParams { FixedDigitalTestParams(float gain_db_min, float gain_db_max, size_t sample_rate, bool saturation_expected) : gain_db_min(gain_db_min), gain_db_max(gain_db_max), sample_rate(sample_rate), saturation_expected(saturation_expected) {} float gain_db_min; float gain_db_max; size_t sample_rate; bool saturation_expected; }; class FixedDigitalTest : public ::testing::Test, public ::testing::WithParamInterface {}; TEST_P(FixedDigitalTest, CheckSaturationBehaviorWithLimiter) { const float kInputLevel = 32767.f; const size_t kNumFrames = 5; const auto params = GetParam(); const auto gains_db = test::LinSpace(params.gain_db_min, params.gain_db_max, 10); for (const auto gain_db : gains_db) { SCOPED_TRACE(std::to_string(gain_db)); auto agc2_fixed = CreateAgc2FixedDigitalMode(gain_db, params.sample_rate); const float processed_sample = RunAgc2WithConstantInput( agc2_fixed.get(), kInputLevel, kNumFrames, params.sample_rate); if (params.saturation_expected) { EXPECT_FLOAT_EQ(processed_sample, 32767.f); } else { EXPECT_LT(processed_sample, 32767.f); } } } static_assert(test::kLimiterMaxInputLevelDbFs < 10, ""); INSTANTIATE_TEST_SUITE_P( GainController2, FixedDigitalTest, ::testing::Values( // When gain < |test::kLimiterMaxInputLevelDbFs|, the limiter will not // saturate the signal (at any sample rate). FixedDigitalTestParams(0.1f, test::kLimiterMaxInputLevelDbFs - 0.01f, 8000, false), FixedDigitalTestParams(0.1, test::kLimiterMaxInputLevelDbFs - 0.01f, 48000, false), // When gain > |test::kLimiterMaxInputLevelDbFs|, the limiter will // saturate the signal (at any sample rate). FixedDigitalTestParams(test::kLimiterMaxInputLevelDbFs + 0.01f, 10.f, 8000, true), FixedDigitalTestParams(test::kLimiterMaxInputLevelDbFs + 0.01f, 10.f, 48000, true))); TEST(GainController2, UsageSaturationMargin) { GainController2 gain_controller2; gain_controller2.Initialize(AudioProcessing::kSampleRate48kHz); AudioProcessing::Config::GainController2 config; // Check that samples are not amplified as much when extra margin is // high. They should not be amplified at all, but only after convergence. GC2 // starts with a gain, and it takes time until it's down to 0 dB. config.fixed_digital.gain_db = 0.f; config.adaptive_digital.enabled = true; config.adaptive_digital.extra_saturation_margin_db = 50.f; gain_controller2.ApplyConfig(config); EXPECT_LT(GainAfterProcessingFile(&gain_controller2), 2.f); } TEST(GainController2, UsageNoSaturationMargin) { GainController2 gain_controller2; gain_controller2.Initialize(AudioProcessing::kSampleRate48kHz); AudioProcessing::Config::GainController2 config; // Check that some gain is applied if there is no margin. config.fixed_digital.gain_db = 0.f; config.adaptive_digital.enabled = true; config.adaptive_digital.extra_saturation_margin_db = 0.f; gain_controller2.ApplyConfig(config); EXPECT_GT(GainAfterProcessingFile(&gain_controller2), 2.f); } } // namespace test } // namespace webrtc