/* * Copyright 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // #define LOG_NDEBUG 0 #define ATRACE_TAG ATRACE_TAG_GRAPHICS // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wextra" #include #include #include #include #include #include #include "../SurfaceFlingerProperties.h" #include "RefreshRateConfigs.h" #undef LOG_TAG #define LOG_TAG "RefreshRateConfigs" namespace android::scheduler { namespace { struct RefreshRateScore { DisplayModeIterator modeIt; float overallScore; struct { float modeBelowThreshold; float modeAboveThreshold; } fixedRateBelowThresholdLayersScore; }; template const DisplayModePtr& getMaxScoreRefreshRate(Iterator begin, Iterator end) { const auto it = std::max_element(begin, end, [](RefreshRateScore max, RefreshRateScore current) { const auto& [modeIt, overallScore, _] = current; std::string name = to_string(modeIt->second->getFps()); ALOGV("%s scores %.2f", name.c_str(), overallScore); ATRACE_INT(name.c_str(), static_cast(std::round(overallScore * 100))); constexpr float kEpsilon = 0.0001f; return overallScore > max.overallScore * (1 + kEpsilon); }); return it->modeIt->second; } constexpr RefreshRateConfigs::GlobalSignals kNoSignals; std::string formatLayerInfo(const RefreshRateConfigs::LayerRequirement& layer, float weight) { return base::StringPrintf("%s (type=%s, weight=%.2f, seamlessness=%s) %s", layer.name.c_str(), ftl::enum_string(layer.vote).c_str(), weight, ftl::enum_string(layer.seamlessness).c_str(), to_string(layer.desiredRefreshRate).c_str()); } std::vector constructKnownFrameRates(const DisplayModes& modes) { std::vector knownFrameRates = {24_Hz, 30_Hz, 45_Hz, 60_Hz, 72_Hz}; knownFrameRates.reserve(knownFrameRates.size() + modes.size()); // Add all supported refresh rates. for (const auto& [id, mode] : modes) { knownFrameRates.push_back(mode->getFps()); } // Sort and remove duplicates. std::sort(knownFrameRates.begin(), knownFrameRates.end(), isStrictlyLess); knownFrameRates.erase(std::unique(knownFrameRates.begin(), knownFrameRates.end(), isApproxEqual), knownFrameRates.end()); return knownFrameRates; } // The Filter is a `bool(const DisplayMode&)` predicate. template std::vector sortByRefreshRate(const DisplayModes& modes, Filter&& filter) { std::vector sortedModes; sortedModes.reserve(modes.size()); for (auto it = modes.begin(); it != modes.end(); ++it) { const auto& [id, mode] = *it; if (filter(*mode)) { ALOGV("%s: including mode %d", __func__, id.value()); sortedModes.push_back(it); } } std::sort(sortedModes.begin(), sortedModes.end(), [](auto it1, auto it2) { const auto& mode1 = it1->second; const auto& mode2 = it2->second; if (mode1->getVsyncPeriod() == mode2->getVsyncPeriod()) { return mode1->getGroup() > mode2->getGroup(); } return mode1->getVsyncPeriod() > mode2->getVsyncPeriod(); }); return sortedModes; } bool canModesSupportFrameRateOverride(const std::vector& sortedModes) { for (const auto it1 : sortedModes) { const auto& mode1 = it1->second; for (const auto it2 : sortedModes) { const auto& mode2 = it2->second; if (RefreshRateConfigs::getFrameRateDivisor(mode1->getFps(), mode2->getFps()) >= 2) { return true; } } } return false; } } // namespace std::string RefreshRateConfigs::Policy::toString() const { return base::StringPrintf("{defaultModeId=%d, allowGroupSwitching=%s" ", primaryRange=%s, appRequestRange=%s}", defaultMode.value(), allowGroupSwitching ? "true" : "false", to_string(primaryRange).c_str(), to_string(appRequestRange).c_str()); } std::pair RefreshRateConfigs::getDisplayFrames(nsecs_t layerPeriod, nsecs_t displayPeriod) const { auto [quotient, remainder] = std::div(layerPeriod, displayPeriod); if (remainder <= MARGIN_FOR_PERIOD_CALCULATION || std::abs(remainder - displayPeriod) <= MARGIN_FOR_PERIOD_CALCULATION) { quotient++; remainder = 0; } return {quotient, remainder}; } float RefreshRateConfigs::calculateNonExactMatchingLayerScoreLocked(const LayerRequirement& layer, Fps refreshRate) const { constexpr float kScoreForFractionalPairs = .8f; const auto displayPeriod = refreshRate.getPeriodNsecs(); const auto layerPeriod = layer.desiredRefreshRate.getPeriodNsecs(); if (layer.vote == LayerVoteType::ExplicitDefault) { // Find the actual rate the layer will render, assuming // that layerPeriod is the minimal period to render a frame. // For example if layerPeriod is 20ms and displayPeriod is 16ms, // then the actualLayerPeriod will be 32ms, because it is the // smallest multiple of the display period which is >= layerPeriod. auto actualLayerPeriod = displayPeriod; int multiplier = 1; while (layerPeriod > actualLayerPeriod + MARGIN_FOR_PERIOD_CALCULATION) { multiplier++; actualLayerPeriod = displayPeriod * multiplier; } // Because of the threshold we used above it's possible that score is slightly // above 1. return std::min(1.0f, static_cast(layerPeriod) / static_cast(actualLayerPeriod)); } if (layer.vote == LayerVoteType::ExplicitExactOrMultiple || layer.vote == LayerVoteType::Heuristic) { if (isFractionalPairOrMultiple(refreshRate, layer.desiredRefreshRate)) { return kScoreForFractionalPairs; } // Calculate how many display vsyncs we need to present a single frame for this // layer const auto [displayFramesQuotient, displayFramesRemainder] = getDisplayFrames(layerPeriod, displayPeriod); static constexpr size_t MAX_FRAMES_TO_FIT = 10; // Stop calculating when score < 0.1 if (displayFramesRemainder == 0) { // Layer desired refresh rate matches the display rate. return 1.0f; } if (displayFramesQuotient == 0) { // Layer desired refresh rate is higher than the display rate. return (static_cast(layerPeriod) / static_cast(displayPeriod)) * (1.0f / (MAX_FRAMES_TO_FIT + 1)); } // Layer desired refresh rate is lower than the display rate. Check how well it fits // the cadence. auto diff = std::abs(displayFramesRemainder - (displayPeriod - displayFramesRemainder)); int iter = 2; while (diff > MARGIN_FOR_PERIOD_CALCULATION && iter < MAX_FRAMES_TO_FIT) { diff = diff - (displayPeriod - diff); iter++; } return (1.0f / iter); } return 0; } float RefreshRateConfigs::calculateLayerScoreLocked(const LayerRequirement& layer, Fps refreshRate, bool isSeamlessSwitch) const { // Slightly prefer seamless switches. constexpr float kSeamedSwitchPenalty = 0.95f; const float seamlessness = isSeamlessSwitch ? 1.0f : kSeamedSwitchPenalty; // If the layer wants Max, give higher score to the higher refresh rate if (layer.vote == LayerVoteType::Max) { const auto& maxRefreshRate = mAppRequestRefreshRates.back()->second; const auto ratio = refreshRate.getValue() / maxRefreshRate->getFps().getValue(); // use ratio^2 to get a lower score the more we get further from peak return ratio * ratio; } if (layer.vote == LayerVoteType::ExplicitExact) { const int divisor = getFrameRateDivisor(refreshRate, layer.desiredRefreshRate); if (mSupportsFrameRateOverrideByContent) { // Since we support frame rate override, allow refresh rates which are // multiples of the layer's request, as those apps would be throttled // down to run at the desired refresh rate. return divisor > 0; } return divisor == 1; } // If the layer frame rate is a divisor of the refresh rate it should score // the highest score. if (getFrameRateDivisor(refreshRate, layer.desiredRefreshRate) > 0) { return 1.0f * seamlessness; } // The layer frame rate is not a divisor of the refresh rate, // there is a small penalty attached to the score to favor the frame rates // the exactly matches the display refresh rate or a multiple. constexpr float kNonExactMatchingPenalty = 0.95f; return calculateNonExactMatchingLayerScoreLocked(layer, refreshRate) * seamlessness * kNonExactMatchingPenalty; } auto RefreshRateConfigs::getBestRefreshRate(const std::vector& layers, GlobalSignals signals) const -> std::pair { std::lock_guard lock(mLock); if (mGetBestRefreshRateCache && mGetBestRefreshRateCache->arguments == std::make_pair(layers, signals)) { return mGetBestRefreshRateCache->result; } const auto result = getBestRefreshRateLocked(layers, signals); mGetBestRefreshRateCache = GetBestRefreshRateCache{{layers, signals}, result}; return result; } auto RefreshRateConfigs::getBestRefreshRateLocked(const std::vector& layers, GlobalSignals signals) const -> std::pair { using namespace fps_approx_ops; ATRACE_CALL(); ALOGV("%s: %zu layers", __func__, layers.size()); int noVoteLayers = 0; int minVoteLayers = 0; int maxVoteLayers = 0; int explicitDefaultVoteLayers = 0; int explicitExactOrMultipleVoteLayers = 0; int explicitExact = 0; float maxExplicitWeight = 0; int seamedFocusedLayers = 0; for (const auto& layer : layers) { switch (layer.vote) { case LayerVoteType::NoVote: noVoteLayers++; break; case LayerVoteType::Min: minVoteLayers++; break; case LayerVoteType::Max: maxVoteLayers++; break; case LayerVoteType::ExplicitDefault: explicitDefaultVoteLayers++; maxExplicitWeight = std::max(maxExplicitWeight, layer.weight); break; case LayerVoteType::ExplicitExactOrMultiple: explicitExactOrMultipleVoteLayers++; maxExplicitWeight = std::max(maxExplicitWeight, layer.weight); break; case LayerVoteType::ExplicitExact: explicitExact++; maxExplicitWeight = std::max(maxExplicitWeight, layer.weight); break; case LayerVoteType::Heuristic: break; } if (layer.seamlessness == Seamlessness::SeamedAndSeamless && layer.focused) { seamedFocusedLayers++; } } const bool hasExplicitVoteLayers = explicitDefaultVoteLayers > 0 || explicitExactOrMultipleVoteLayers > 0 || explicitExact > 0; const Policy* policy = getCurrentPolicyLocked(); const auto& defaultMode = mDisplayModes.get(policy->defaultMode)->get(); // If the default mode group is different from the group of current mode, // this means a layer requesting a seamed mode switch just disappeared and // we should switch back to the default group. // However if a seamed layer is still present we anchor around the group // of the current mode, in order to prevent unnecessary seamed mode switches // (e.g. when pausing a video playback). const auto anchorGroup = seamedFocusedLayers > 0 ? mActiveModeIt->second->getGroup() : defaultMode->getGroup(); // Consider the touch event if there are no Explicit* layers. Otherwise wait until after we've // selected a refresh rate to see if we should apply touch boost. if (signals.touch && !hasExplicitVoteLayers) { const DisplayModePtr& max = getMaxRefreshRateByPolicyLocked(anchorGroup); ALOGV("TouchBoost - choose %s", to_string(max->getFps()).c_str()); return {max, GlobalSignals{.touch = true}}; } // If the primary range consists of a single refresh rate then we can only // move out the of range if layers explicitly request a different refresh // rate. const bool primaryRangeIsSingleRate = isApproxEqual(policy->primaryRange.min, policy->primaryRange.max); if (!signals.touch && signals.idle && !(primaryRangeIsSingleRate && hasExplicitVoteLayers)) { const DisplayModePtr& min = getMinRefreshRateByPolicyLocked(); ALOGV("Idle - choose %s", to_string(min->getFps()).c_str()); return {min, GlobalSignals{.idle = true}}; } if (layers.empty() || noVoteLayers == layers.size()) { const DisplayModePtr& max = getMaxRefreshRateByPolicyLocked(anchorGroup); ALOGV("no layers with votes - choose %s", to_string(max->getFps()).c_str()); return {max, kNoSignals}; } // Only if all layers want Min we should return Min if (noVoteLayers + minVoteLayers == layers.size()) { const DisplayModePtr& min = getMinRefreshRateByPolicyLocked(); ALOGV("all layers Min - choose %s", to_string(min->getFps()).c_str()); return {min, kNoSignals}; } // Find the best refresh rate based on score std::vector scores; scores.reserve(mAppRequestRefreshRates.size()); for (const DisplayModeIterator modeIt : mAppRequestRefreshRates) { scores.emplace_back(RefreshRateScore{modeIt, 0.0f}); } for (const auto& layer : layers) { ALOGV("Calculating score for %s (%s, weight %.2f, desired %.2f) ", layer.name.c_str(), ftl::enum_string(layer.vote).c_str(), layer.weight, layer.desiredRefreshRate.getValue()); if (layer.vote == LayerVoteType::NoVote || layer.vote == LayerVoteType::Min) { continue; } const auto weight = layer.weight; for (auto& [modeIt, overallScore, fixedRateBelowThresholdLayersScore] : scores) { const auto& [id, mode] = *modeIt; const bool isSeamlessSwitch = mode->getGroup() == mActiveModeIt->second->getGroup(); if (layer.seamlessness == Seamlessness::OnlySeamless && !isSeamlessSwitch) { ALOGV("%s ignores %s to avoid non-seamless switch. Current mode = %s", formatLayerInfo(layer, weight).c_str(), to_string(*mode).c_str(), to_string(*mActiveModeIt->second).c_str()); continue; } if (layer.seamlessness == Seamlessness::SeamedAndSeamless && !isSeamlessSwitch && !layer.focused) { ALOGV("%s ignores %s because it's not focused and the switch is going to be seamed." " Current mode = %s", formatLayerInfo(layer, weight).c_str(), to_string(*mode).c_str(), to_string(*mActiveModeIt->second).c_str()); continue; } // Layers with default seamlessness vote for the current mode group if // there are layers with seamlessness=SeamedAndSeamless and for the default // mode group otherwise. In second case, if the current mode group is different // from the default, this means a layer with seamlessness=SeamedAndSeamless has just // disappeared. const bool isInPolicyForDefault = mode->getGroup() == anchorGroup; if (layer.seamlessness == Seamlessness::Default && !isInPolicyForDefault) { ALOGV("%s ignores %s. Current mode = %s", formatLayerInfo(layer, weight).c_str(), to_string(*mode).c_str(), to_string(*mActiveModeIt->second).c_str()); continue; } const bool inPrimaryRange = policy->primaryRange.includes(mode->getFps()); if ((primaryRangeIsSingleRate || !inPrimaryRange) && !(layer.focused && (layer.vote == LayerVoteType::ExplicitDefault || layer.vote == LayerVoteType::ExplicitExact))) { // Only focused layers with ExplicitDefault frame rate settings are allowed to score // refresh rates outside the primary range. continue; } const float layerScore = calculateLayerScoreLocked(layer, mode->getFps(), isSeamlessSwitch); const float weightedLayerScore = weight * layerScore; // Layer with fixed source has a special consideration which depends on the // mConfig.frameRateMultipleThreshold. We don't want these layers to score // refresh rates above the threshold, but we also don't want to favor the lower // ones by having a greater number of layers scoring them. Instead, we calculate // the score independently for these layers and later decide which // refresh rates to add it. For example, desired 24 fps with 120 Hz threshold should not // score 120 Hz, but desired 60 fps should contribute to the score. const bool fixedSourceLayer = [](LayerVoteType vote) { switch (vote) { case LayerVoteType::ExplicitExactOrMultiple: case LayerVoteType::Heuristic: return true; case LayerVoteType::NoVote: case LayerVoteType::Min: case LayerVoteType::Max: case LayerVoteType::ExplicitDefault: case LayerVoteType::ExplicitExact: return false; } }(layer.vote); const bool layerBelowThreshold = mConfig.frameRateMultipleThreshold != 0 && layer.desiredRefreshRate < Fps::fromValue(mConfig.frameRateMultipleThreshold / 2); if (fixedSourceLayer && layerBelowThreshold) { const bool modeAboveThreshold = mode->getFps() >= Fps::fromValue(mConfig.frameRateMultipleThreshold); if (modeAboveThreshold) { ALOGV("%s gives %s fixed source (above threshold) score of %.4f", formatLayerInfo(layer, weight).c_str(), to_string(mode->getFps()).c_str(), layerScore); fixedRateBelowThresholdLayersScore.modeAboveThreshold += weightedLayerScore; } else { ALOGV("%s gives %s fixed source (below threshold) score of %.4f", formatLayerInfo(layer, weight).c_str(), to_string(mode->getFps()).c_str(), layerScore); fixedRateBelowThresholdLayersScore.modeBelowThreshold += weightedLayerScore; } } else { ALOGV("%s gives %s score of %.4f", formatLayerInfo(layer, weight).c_str(), to_string(mode->getFps()).c_str(), layerScore); overallScore += weightedLayerScore; } } } // We want to find the best refresh rate without the fixed source layers, // so we could know whether we should add the modeAboveThreshold scores or not. // If the best refresh rate is already above the threshold, it means that // some non-fixed source layers already scored it, so we can just add the score // for all fixed source layers, even the ones that are above the threshold. const bool maxScoreAboveThreshold = [&] { if (mConfig.frameRateMultipleThreshold == 0 || scores.empty()) { return false; } const auto maxScoreIt = std::max_element(scores.begin(), scores.end(), [](RefreshRateScore max, RefreshRateScore current) { const auto& [modeIt, overallScore, _] = current; return overallScore > max.overallScore; }); ALOGV("%s is the best refresh rate without fixed source layers. It is %s the threshold for " "refresh rate multiples", to_string(maxScoreIt->modeIt->second->getFps()).c_str(), maxScoreAboveThreshold ? "above" : "below"); return maxScoreIt->modeIt->second->getFps() >= Fps::fromValue(mConfig.frameRateMultipleThreshold); }(); // Now we can add the fixed rate layers score for (auto& [modeIt, overallScore, fixedRateBelowThresholdLayersScore] : scores) { overallScore += fixedRateBelowThresholdLayersScore.modeBelowThreshold; if (maxScoreAboveThreshold) { overallScore += fixedRateBelowThresholdLayersScore.modeAboveThreshold; } ALOGV("%s adjusted overallScore is %.4f", to_string(modeIt->second->getFps()).c_str(), overallScore); } // Now that we scored all the refresh rates we need to pick the one that got the highest // overallScore. In case of a tie we will pick the higher refresh rate if any of the layers // wanted Max, or the lower otherwise. const DisplayModePtr& bestRefreshRate = maxVoteLayers > 0 ? getMaxScoreRefreshRate(scores.rbegin(), scores.rend()) : getMaxScoreRefreshRate(scores.begin(), scores.end()); if (primaryRangeIsSingleRate) { // If we never scored any layers, then choose the rate from the primary // range instead of picking a random score from the app range. if (std::all_of(scores.begin(), scores.end(), [](RefreshRateScore score) { return score.overallScore == 0; })) { const DisplayModePtr& max = getMaxRefreshRateByPolicyLocked(anchorGroup); ALOGV("layers not scored - choose %s", to_string(max->getFps()).c_str()); return {max, kNoSignals}; } else { return {bestRefreshRate, kNoSignals}; } } // Consider the touch event if there are no ExplicitDefault layers. ExplicitDefault are mostly // interactive (as opposed to ExplicitExactOrMultiple) and therefore if those posted an explicit // vote we should not change it if we get a touch event. Only apply touch boost if it will // actually increase the refresh rate over the normal selection. const DisplayModePtr& touchRefreshRate = getMaxRefreshRateByPolicyLocked(anchorGroup); const bool touchBoostForExplicitExact = [&] { if (mSupportsFrameRateOverrideByContent) { // Enable touch boost if there are other layers besides exact return explicitExact + noVoteLayers != layers.size(); } else { // Enable touch boost if there are no exact layers return explicitExact == 0; } }(); using fps_approx_ops::operator<; if (signals.touch && explicitDefaultVoteLayers == 0 && touchBoostForExplicitExact && bestRefreshRate->getFps() < touchRefreshRate->getFps()) { ALOGV("TouchBoost - choose %s", to_string(touchRefreshRate->getFps()).c_str()); return {touchRefreshRate, GlobalSignals{.touch = true}}; } return {bestRefreshRate, kNoSignals}; } std::unordered_map> groupLayersByUid(const std::vector& layers) { std::unordered_map> layersByUid; for (const auto& layer : layers) { auto iter = layersByUid.emplace(layer.ownerUid, std::vector()); auto& layersWithSameUid = iter.first->second; layersWithSameUid.push_back(&layer); } // Remove uids that can't have a frame rate override for (auto iter = layersByUid.begin(); iter != layersByUid.end();) { const auto& layersWithSameUid = iter->second; bool skipUid = false; for (const auto& layer : layersWithSameUid) { if (layer->vote == RefreshRateConfigs::LayerVoteType::Max || layer->vote == RefreshRateConfigs::LayerVoteType::Heuristic) { skipUid = true; break; } } if (skipUid) { iter = layersByUid.erase(iter); } else { ++iter; } } return layersByUid; } RefreshRateConfigs::UidToFrameRateOverride RefreshRateConfigs::getFrameRateOverrides( const std::vector& layers, Fps displayRefreshRate, GlobalSignals globalSignals) const { ATRACE_CALL(); ALOGV("%s: %zu layers", __func__, layers.size()); std::lock_guard lock(mLock); std::vector scores; scores.reserve(mDisplayModes.size()); for (auto it = mDisplayModes.begin(); it != mDisplayModes.end(); ++it) { scores.emplace_back(RefreshRateScore{it, 0.0f}); } std::sort(scores.begin(), scores.end(), [](const auto& lhs, const auto& rhs) { const auto& mode1 = lhs.modeIt->second; const auto& mode2 = rhs.modeIt->second; return isStrictlyLess(mode1->getFps(), mode2->getFps()); }); std::unordered_map> layersByUid = groupLayersByUid(layers); UidToFrameRateOverride frameRateOverrides; for (const auto& [uid, layersWithSameUid] : layersByUid) { // Layers with ExplicitExactOrMultiple expect touch boost const bool hasExplicitExactOrMultiple = std::any_of(layersWithSameUid.cbegin(), layersWithSameUid.cend(), [](const auto& layer) { return layer->vote == LayerVoteType::ExplicitExactOrMultiple; }); if (globalSignals.touch && hasExplicitExactOrMultiple) { continue; } for (auto& [_, score, _1] : scores) { score = 0; } for (const auto& layer : layersWithSameUid) { if (layer->vote == LayerVoteType::NoVote || layer->vote == LayerVoteType::Min) { continue; } LOG_ALWAYS_FATAL_IF(layer->vote != LayerVoteType::ExplicitDefault && layer->vote != LayerVoteType::ExplicitExactOrMultiple && layer->vote != LayerVoteType::ExplicitExact); for (auto& [modeIt, score, _] : scores) { constexpr bool isSeamlessSwitch = true; const auto layerScore = calculateLayerScoreLocked(*layer, modeIt->second->getFps(), isSeamlessSwitch); score += layer->weight * layerScore; } } // We just care about the refresh rates which are a divisor of the // display refresh rate const auto it = std::remove_if(scores.begin(), scores.end(), [&](RefreshRateScore score) { const auto& [id, mode] = *score.modeIt; return getFrameRateDivisor(displayRefreshRate, mode->getFps()) == 0; }); scores.erase(it, scores.end()); // If we never scored any layers, we don't have a preferred frame rate if (std::all_of(scores.begin(), scores.end(), [](RefreshRateScore score) { return score.overallScore == 0; })) { continue; } // Now that we scored all the refresh rates we need to pick the one that got the highest // score. const DisplayModePtr& bestRefreshRate = getMaxScoreRefreshRate(scores.begin(), scores.end()); frameRateOverrides.emplace(uid, bestRefreshRate->getFps()); } return frameRateOverrides; } std::optional RefreshRateConfigs::onKernelTimerChanged( std::optional desiredActiveModeId, bool timerExpired) const { std::lock_guard lock(mLock); const DisplayModePtr& current = desiredActiveModeId ? mDisplayModes.get(*desiredActiveModeId)->get() : mActiveModeIt->second; const DisplayModePtr& min = mMinRefreshRateModeIt->second; if (current == min) { return {}; } const auto& mode = timerExpired ? min : current; return mode->getFps(); } const DisplayModePtr& RefreshRateConfigs::getMinRefreshRateByPolicyLocked() const { for (const DisplayModeIterator modeIt : mPrimaryRefreshRates) { const auto& mode = modeIt->second; if (mActiveModeIt->second->getGroup() == mode->getGroup()) { return mode; } } ALOGE("Can't find min refresh rate by policy with the same mode group" " as the current mode %s", to_string(*mActiveModeIt->second).c_str()); // Default to the lowest refresh rate. return mPrimaryRefreshRates.front()->second; } DisplayModePtr RefreshRateConfigs::getMaxRefreshRateByPolicy() const { std::lock_guard lock(mLock); return getMaxRefreshRateByPolicyLocked(); } const DisplayModePtr& RefreshRateConfigs::getMaxRefreshRateByPolicyLocked(int anchorGroup) const { for (auto it = mPrimaryRefreshRates.rbegin(); it != mPrimaryRefreshRates.rend(); ++it) { const auto& mode = (*it)->second; if (anchorGroup == mode->getGroup()) { return mode; } } ALOGE("Can't find max refresh rate by policy with the same mode group" " as the current mode %s", to_string(*mActiveModeIt->second).c_str()); // Default to the highest refresh rate. return mPrimaryRefreshRates.back()->second; } DisplayModePtr RefreshRateConfigs::getActiveMode() const { std::lock_guard lock(mLock); return mActiveModeIt->second; } void RefreshRateConfigs::setActiveModeId(DisplayModeId modeId) { std::lock_guard lock(mLock); // Invalidate the cached invocation to getBestRefreshRate. This forces // the refresh rate to be recomputed on the next call to getBestRefreshRate. mGetBestRefreshRateCache.reset(); mActiveModeIt = mDisplayModes.find(modeId); LOG_ALWAYS_FATAL_IF(mActiveModeIt == mDisplayModes.end()); } RefreshRateConfigs::RefreshRateConfigs(DisplayModes modes, DisplayModeId activeModeId, Config config) : mKnownFrameRates(constructKnownFrameRates(modes)), mConfig(config) { initializeIdleTimer(); updateDisplayModes(std::move(modes), activeModeId); } void RefreshRateConfigs::initializeIdleTimer() { if (mConfig.idleTimerTimeout > 0ms) { mIdleTimer.emplace( "IdleTimer", mConfig.idleTimerTimeout, [this] { std::scoped_lock lock(mIdleTimerCallbacksMutex); if (const auto callbacks = getIdleTimerCallbacks()) { callbacks->onReset(); } }, [this] { std::scoped_lock lock(mIdleTimerCallbacksMutex); if (const auto callbacks = getIdleTimerCallbacks()) { callbacks->onExpired(); } }); } } void RefreshRateConfigs::updateDisplayModes(DisplayModes modes, DisplayModeId activeModeId) { std::lock_guard lock(mLock); // Invalidate the cached invocation to getBestRefreshRate. This forces // the refresh rate to be recomputed on the next call to getBestRefreshRate. mGetBestRefreshRateCache.reset(); mDisplayModes = std::move(modes); mActiveModeIt = mDisplayModes.find(activeModeId); LOG_ALWAYS_FATAL_IF(mActiveModeIt == mDisplayModes.end()); const auto sortedModes = sortByRefreshRate(mDisplayModes, [](const DisplayMode&) { return true; }); mMinRefreshRateModeIt = sortedModes.front(); mMaxRefreshRateModeIt = sortedModes.back(); // Reset the policy because the old one may no longer be valid. mDisplayManagerPolicy = {}; mDisplayManagerPolicy.defaultMode = activeModeId; mSupportsFrameRateOverrideByContent = mConfig.enableFrameRateOverride && canModesSupportFrameRateOverride(sortedModes); constructAvailableRefreshRates(); } bool RefreshRateConfigs::isPolicyValidLocked(const Policy& policy) const { // defaultMode must be a valid mode, and within the given refresh rate range. if (const auto mode = mDisplayModes.get(policy.defaultMode)) { if (!policy.primaryRange.includes(mode->get()->getFps())) { ALOGE("Default mode is not in the primary range."); return false; } } else { ALOGE("Default mode is not found."); return false; } using namespace fps_approx_ops; return policy.appRequestRange.min <= policy.primaryRange.min && policy.appRequestRange.max >= policy.primaryRange.max; } status_t RefreshRateConfigs::setDisplayManagerPolicy(const Policy& policy) { std::lock_guard lock(mLock); if (!isPolicyValidLocked(policy)) { ALOGE("Invalid refresh rate policy: %s", policy.toString().c_str()); return BAD_VALUE; } mGetBestRefreshRateCache.reset(); Policy previousPolicy = *getCurrentPolicyLocked(); mDisplayManagerPolicy = policy; if (*getCurrentPolicyLocked() == previousPolicy) { return CURRENT_POLICY_UNCHANGED; } constructAvailableRefreshRates(); return NO_ERROR; } status_t RefreshRateConfigs::setOverridePolicy(const std::optional& policy) { std::lock_guard lock(mLock); if (policy && !isPolicyValidLocked(*policy)) { return BAD_VALUE; } mGetBestRefreshRateCache.reset(); Policy previousPolicy = *getCurrentPolicyLocked(); mOverridePolicy = policy; if (*getCurrentPolicyLocked() == previousPolicy) { return CURRENT_POLICY_UNCHANGED; } constructAvailableRefreshRates(); return NO_ERROR; } const RefreshRateConfigs::Policy* RefreshRateConfigs::getCurrentPolicyLocked() const { return mOverridePolicy ? &mOverridePolicy.value() : &mDisplayManagerPolicy; } RefreshRateConfigs::Policy RefreshRateConfigs::getCurrentPolicy() const { std::lock_guard lock(mLock); return *getCurrentPolicyLocked(); } RefreshRateConfigs::Policy RefreshRateConfigs::getDisplayManagerPolicy() const { std::lock_guard lock(mLock); return mDisplayManagerPolicy; } bool RefreshRateConfigs::isModeAllowed(DisplayModeId modeId) const { std::lock_guard lock(mLock); return std::any_of(mAppRequestRefreshRates.begin(), mAppRequestRefreshRates.end(), [modeId](DisplayModeIterator modeIt) { return modeIt->second->getId() == modeId; }); } void RefreshRateConfigs::constructAvailableRefreshRates() { // Filter modes based on current policy and sort on refresh rate. const Policy* policy = getCurrentPolicyLocked(); ALOGV("%s: %s ", __func__, policy->toString().c_str()); const auto& defaultMode = mDisplayModes.get(policy->defaultMode)->get(); const auto filterRefreshRates = [&](FpsRange range, const char* rangeName) REQUIRES(mLock) { const auto filter = [&](const DisplayMode& mode) { return mode.getResolution() == defaultMode->getResolution() && mode.getDpi() == defaultMode->getDpi() && (policy->allowGroupSwitching || mode.getGroup() == defaultMode->getGroup()) && range.includes(mode.getFps()); }; const auto modes = sortByRefreshRate(mDisplayModes, filter); LOG_ALWAYS_FATAL_IF(modes.empty(), "No matching modes for %s range %s", rangeName, to_string(range).c_str()); const auto stringifyModes = [&] { std::string str; for (const auto modeIt : modes) { str += to_string(modeIt->second->getFps()); str.push_back(' '); } return str; }; ALOGV("%s refresh rates: %s", rangeName, stringifyModes().c_str()); return modes; }; mPrimaryRefreshRates = filterRefreshRates(policy->primaryRange, "primary"); mAppRequestRefreshRates = filterRefreshRates(policy->appRequestRange, "app request"); } Fps RefreshRateConfigs::findClosestKnownFrameRate(Fps frameRate) const { using namespace fps_approx_ops; if (frameRate <= mKnownFrameRates.front()) { return mKnownFrameRates.front(); } if (frameRate >= mKnownFrameRates.back()) { return mKnownFrameRates.back(); } auto lowerBound = std::lower_bound(mKnownFrameRates.begin(), mKnownFrameRates.end(), frameRate, isStrictlyLess); const auto distance1 = std::abs(frameRate.getValue() - lowerBound->getValue()); const auto distance2 = std::abs(frameRate.getValue() - std::prev(lowerBound)->getValue()); return distance1 < distance2 ? *lowerBound : *std::prev(lowerBound); } RefreshRateConfigs::KernelIdleTimerAction RefreshRateConfigs::getIdleTimerAction() const { std::lock_guard lock(mLock); const Fps deviceMinFps = mMinRefreshRateModeIt->second->getFps(); const DisplayModePtr& minByPolicy = getMinRefreshRateByPolicyLocked(); // Kernel idle timer will set the refresh rate to the device min. If DisplayManager says that // the min allowed refresh rate is higher than the device min, we do not want to enable the // timer. if (isStrictlyLess(deviceMinFps, minByPolicy->getFps())) { return KernelIdleTimerAction::TurnOff; } const DisplayModePtr& maxByPolicy = getMaxRefreshRateByPolicyLocked(); if (minByPolicy == maxByPolicy) { // Turn on the timer when the min of the primary range is below the device min. if (const Policy* currentPolicy = getCurrentPolicyLocked(); isApproxLess(currentPolicy->primaryRange.min, deviceMinFps)) { return KernelIdleTimerAction::TurnOn; } return KernelIdleTimerAction::TurnOff; } // Turn on the timer in all other cases. return KernelIdleTimerAction::TurnOn; } int RefreshRateConfigs::getFrameRateDivisor(Fps displayRefreshRate, Fps layerFrameRate) { // This calculation needs to be in sync with the java code // in DisplayManagerService.getDisplayInfoForFrameRateOverride // The threshold must be smaller than 0.001 in order to differentiate // between the fractional pairs (e.g. 59.94 and 60). constexpr float kThreshold = 0.0009f; const auto numPeriods = displayRefreshRate.getValue() / layerFrameRate.getValue(); const auto numPeriodsRounded = std::round(numPeriods); if (std::abs(numPeriods - numPeriodsRounded) > kThreshold) { return 0; } return static_cast(numPeriodsRounded); } bool RefreshRateConfigs::isFractionalPairOrMultiple(Fps smaller, Fps bigger) { if (isStrictlyLess(bigger, smaller)) { return isFractionalPairOrMultiple(bigger, smaller); } const auto multiplier = std::round(bigger.getValue() / smaller.getValue()); constexpr float kCoef = 1000.f / 1001.f; return isApproxEqual(bigger, Fps::fromValue(smaller.getValue() * multiplier / kCoef)) || isApproxEqual(bigger, Fps::fromValue(smaller.getValue() * multiplier * kCoef)); } void RefreshRateConfigs::dump(std::string& result) const { using namespace std::string_literals; std::lock_guard lock(mLock); const auto activeModeId = mActiveModeIt->first; result += " activeModeId="s; result += std::to_string(activeModeId.value()); result += "\n displayModes=\n"s; for (const auto& [id, mode] : mDisplayModes) { result += " "s; result += to_string(*mode); result += '\n'; } base::StringAppendF(&result, " displayManagerPolicy=%s\n", mDisplayManagerPolicy.toString().c_str()); if (const Policy& currentPolicy = *getCurrentPolicyLocked(); mOverridePolicy && currentPolicy != mDisplayManagerPolicy) { base::StringAppendF(&result, " overridePolicy=%s\n", currentPolicy.toString().c_str()); } base::StringAppendF(&result, " supportsFrameRateOverrideByContent=%s\n", mSupportsFrameRateOverrideByContent ? "true" : "false"); result += " idleTimer="s; if (mIdleTimer) { result += mIdleTimer->dump(); } else { result += "off"s; } if (const auto controller = mConfig.kernelIdleTimerController) { base::StringAppendF(&result, " (kernel via %s)", ftl::enum_string(*controller).c_str()); } else { result += " (platform)"s; } result += '\n'; } std::chrono::milliseconds RefreshRateConfigs::getIdleTimerTimeout() { return mConfig.idleTimerTimeout; } } // namespace android::scheduler // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic pop // ignored "-Wextra"