/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "RenderScriptToolkit.h" #include "TaskProcessor.h" #include "Utils.h" #define LOG_TAG "renderscript.toolkit.Convolve3x3" namespace android { namespace renderscript { extern "C" void rsdIntrinsicConvolve3x3_K(void* dst, const void* y0, const void* y1, const void* y2, const int16_t* coef, uint32_t count); class Convolve3x3Task : public Task { const void* mIn; void* mOut; // Even though we have exactly 9 coefficients, store them in an array of size 16 so that // the SIMD instructions can load them in chunks multiple of 8. float mFp[16]; int16_t mIp[16]; void kernelU4(uchar* out, uint32_t xstart, uint32_t xend, const uchar* py0, const uchar* py1, const uchar* py2); void convolveU4(const uchar* pin, uchar* pout, size_t vectorSize, size_t sizeX, size_t sizeY, size_t startX, size_t startY, size_t endX, size_t endY); // Process a 2D tile of the overall work. threadIndex identifies which thread does the work. virtual void processData(int threadIndex, size_t startX, size_t startY, size_t endX, size_t endY) override; public: Convolve3x3Task(const void* in, void* out, size_t vectorSize, size_t sizeX, size_t sizeY, const float* coefficients, const Restriction* restriction) : Task{sizeX, sizeY, vectorSize, false, restriction}, mIn{in}, mOut{out} { for (int ct = 0; ct < 9; ct++) { mFp[ct] = coefficients[ct]; if (mFp[ct] >= 0) { mIp[ct] = (int16_t)(mFp[ct] * 256.f + 0.5f); } else { mIp[ct] = (int16_t)(mFp[ct] * 256.f - 0.5f); } } } }; /** * Computes one convolution and stores the result in the output. This is used for uchar, uchar2, * uchar3, and uchar4 vectors. * * @tparam InputOutputType Type of the input and output arrays. A vector type, e.g. uchar4. * @tparam ComputationType Type we use for the intermediate computations. * @param x The index in the row of the value we'll convolve. * @param out The location in the output array where we store the value. * @param py0 The start of the top row. * @param py1 The start of the middle row. * @param py2 The start of the bottom row. * @param coeff Pointer to the float coefficients, in row major format. * @param sizeX The number of cells of one row. */ template static void convolveOneU(uint32_t x, InputOutputType* out, const InputOutputType* py0, const InputOutputType* py1, const InputOutputType* py2, const float* coeff, int32_t sizeX) { uint32_t x1 = std::max((int32_t)x - 1, 0); uint32_t x2 = std::min((int32_t)x + 1, sizeX - 1); ComputationType px = convert(py0[x1]) * coeff[0] + convert(py0[x]) * coeff[1] + convert(py0[x2]) * coeff[2] + convert(py1[x1]) * coeff[3] + convert(py1[x]) * coeff[4] + convert(py1[x2]) * coeff[5] + convert(py2[x1]) * coeff[6] + convert(py2[x]) * coeff[7] + convert(py2[x2]) * coeff[8]; px = clamp(px + 0.5f, 0.f, 255.f); *out = convert(px); } #ifdef ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT /** * Computes one convolution and stores the result in the output. This is used for float, float2, * float3, and float4 vectors. * * @tparam InputOutputType Type of the input and output arrays. A vector type, e.g. float4. * @param x The index in the row of the value we'll convolve. * @param out The location in the output array where we store the value. * @param py0 The start of the top row. * @param py1 The start of the middle row. * @param py2 The start of the bottom row. * @param coeff Pointer to the float coefficients, in row major format. * @param sizeX The number of cells of one row. */ template static void ConvolveOneF(uint32_t x, InputOutputType* out, const InputOutputType* py0, const InputOutputType* py1, const InputOutputType* py2, const float* coeff, int32_t sizeX) { uint32_t x1 = std::max((int32_t)x - 1, 0); uint32_t x2 = std::min((int32_t)x + 1, sizeX - 1); *out = (py0[x1] * coeff[0]) + (py0[x] * coeff[1]) + (py0[x2] * coeff[2]) + (py1[x1] * coeff[3]) + (py1[x] * coeff[4]) + (py1[x2] * coeff[5]) + (py2[x1] * coeff[6]) + (py2[x] * coeff[7]) + (py2[x2] * coeff[8]); } #endif // ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT /** * This function convolves one line. * * @param pout Where to place the next output. * @param xstart Index in the X direction of where to start. * @param xend End index * @param ppy0 Points to the start of the previous line. * @param ppy1 Points to the start of the current line. * @param ppy2 Points to the start of the next line. */ void Convolve3x3Task::kernelU4(uchar* pout, uint32_t xstart, uint32_t xend, const uchar* ppy0, const uchar* ppy1, const uchar* ppy2) { uchar4* out = (uchar4*)pout; const uchar4* py0 = (const uchar4*)ppy0; const uchar4* py1 = (const uchar4*)ppy1; const uchar4* py2 = (const uchar4*)ppy2; uint32_t x1 = xstart; uint32_t x2 = xend; if (x1 == 0) { convolveOneU(0, out, py0, py1, py2, mFp, mSizeX); x1++; out++; } if (x2 > x1) { #if defined(ARCH_ARM_USE_INTRINSICS) || defined(ARCH_X86_HAVE_SSSE3) if (mUsesSimd) { int32_t len = (x2 - x1 - 1) >> 1; if (len > 0) { rsdIntrinsicConvolve3x3_K(out, &py0[x1 - 1], &py1[x1 - 1], &py2[x1 - 1], mIp, len); x1 += len << 1; out += len << 1; } } #endif while (x1 != x2) { convolveOneU(x1, out, py0, py1, py2, mFp, mSizeX); out++; x1++; } } } #ifdef ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT template void RsdCpuScriptIntrinsicConvolve3x3_kernelF(void* in, T* out, uint32_t xstart, uint32_t xend, uint32_t currentY, size_t sizeX, size_t sizeY, size_t vectorSize, float* fp) { const uchar* pin = (const uchar*)in; const size_t stride = sizeX * vectorSize * 4; // float takes 4 bytes uint32_t y1 = std::min((int32_t)currentY + 1, (int32_t)(sizeY - 1)); uint32_t y2 = std::max((int32_t)currentY - 1, 0); const T* py0 = (const T*)(pin + stride * y2); const T* py1 = (const T*)(pin + stride * currentY); const T* py2 = (const T*)(pin + stride * y1); for (uint32_t x = xstart; x < xend; x++, out++) { ConvolveOneF(x, out, py0, py1, py2, fp, sizeX); } } #endif // ANDROID_RENDERSCRIPT_TOOLKIT_SUPPORTS_FLOAT template static void convolveU(const uchar* pin, uchar* pout, size_t vectorSize, size_t sizeX, size_t sizeY, size_t startX, size_t startY, size_t endX, size_t endY, float* fp) { const size_t stride = vectorSize * sizeX; for (size_t y = startY; y < endY; y++) { uint32_t y1 = std::min((int32_t)y + 1, (int32_t)(sizeY - 1)); uint32_t y2 = std::max((int32_t)y - 1, 0); size_t offset = (y * sizeX + startX) * vectorSize; InputOutputType* px = (InputOutputType*)(pout + offset); InputOutputType* py0 = (InputOutputType*)(pin + stride * y2); InputOutputType* py1 = (InputOutputType*)(pin + stride * y); InputOutputType* py2 = (InputOutputType*)(pin + stride * y1); for (uint32_t x = startX; x < endX; x++, px++) { convolveOneU(x, px, py0, py1, py2, fp, sizeX); } } } void Convolve3x3Task::convolveU4(const uchar* pin, uchar* pout, size_t vectorSize, size_t sizeX, size_t sizeY, size_t startX, size_t startY, size_t endX, size_t endY) { const size_t stride = paddedSize(vectorSize) * sizeX; for (size_t y = startY; y < endY; y++) { uint32_t y1 = std::min((int32_t)y + 1, (int32_t)(sizeY - 1)); uint32_t y2 = std::max((int32_t)y - 1, 0); size_t offset = (y * sizeX + startX) * paddedSize(vectorSize); uchar* px = pout + offset; const uchar* py0 = pin + stride * y2; const uchar* py1 = pin + stride * y; const uchar* py2 = pin + stride * y1; kernelU4(px, startX, endX, py0, py1, py2); } } void Convolve3x3Task::processData(int /* threadIndex */, size_t startX, size_t startY, size_t endX, size_t endY) { // ALOGI("Thread %d start tile from (%zd, %zd) to (%zd, %zd)", threadIndex, startX, startY, // endX, endY); switch (mVectorSize) { case 1: convolveU((const uchar*)mIn, (uchar*)mOut, mVectorSize, mSizeX, mSizeY, startX, startY, endX, endY, mFp); break; case 2: convolveU((const uchar*)mIn, (uchar*)mOut, mVectorSize, mSizeX, mSizeY, startX, startY, endX, endY, mFp); break; case 3: case 4: convolveU4((const uchar*)mIn, (uchar*)mOut, mVectorSize, mSizeX, mSizeY, startX, startY, endX, endY); break; } } void RenderScriptToolkit::convolve3x3(const void* in, void* out, size_t vectorSize, size_t sizeX, size_t sizeY, const float* coefficients, const Restriction* restriction) { #ifdef ANDROID_RENDERSCRIPT_TOOLKIT_VALIDATE if (!validRestriction(LOG_TAG, sizeX, sizeY, restriction)) { return; } if (vectorSize < 1 || vectorSize > 4) { ALOGE("The vectorSize should be between 1 and 4. %zu provided.", vectorSize); return; } #endif Convolve3x3Task task(in, out, vectorSize, sizeX, sizeY, coefficients, restriction); processor->doTask(&task); } } // namespace renderscript } // namespace android