// SPDX-License-Identifier: GPL-2.0-only /* * vl6180.c - Support for STMicroelectronics VL6180 ALS, range and proximity * sensor * * Copyright 2017 Peter Meerwald-Stadler * Copyright 2017 Manivannan Sadhasivam * * IIO driver for VL6180 (7-bit I2C slave address 0x29) * * Range: 0 to 100mm * ALS: < 1 Lux up to 100 kLux * IR: 850nm * * TODO: threshold events, continuous mode */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define VL6180_DRV_NAME "vl6180" /* Device identification register and value */ #define VL6180_MODEL_ID 0x000 #define VL6180_MODEL_ID_VAL 0xb4 /* Configuration registers */ #define VL6180_SYS_MODE_GPIO1 0x011 #define VL6180_INTR_CONFIG 0x014 #define VL6180_INTR_CLEAR 0x015 #define VL6180_OUT_OF_RESET 0x016 #define VL6180_HOLD 0x017 #define VL6180_RANGE_START 0x018 #define VL6180_RANGE_INTER_MES_PERIOD 0x01b #define VL6180_ALS_START 0x038 #define VL6180_ALS_THRESH_HIGH 0x03a #define VL6180_ALS_THRESH_LOW 0x03c #define VL6180_ALS_INTER_MES_PERIOD 0x03e #define VL6180_ALS_GAIN 0x03f #define VL6180_ALS_IT 0x040 /* Status registers */ #define VL6180_RANGE_STATUS 0x04d #define VL6180_ALS_STATUS 0x04e #define VL6180_INTR_STATUS 0x04f /* Result value registers */ #define VL6180_ALS_VALUE 0x050 #define VL6180_RANGE_VALUE 0x062 #define VL6180_RANGE_RATE 0x066 #define VL6180_RANGE_THRESH_HIGH 0x019 #define VL6180_RANGE_THRESH_LOW 0x01a #define VL6180_RANGE_MAX_CONVERGENCE_TIME 0x01c #define VL6180_RANGE_CROSSTALK_COMPENSATION_RATE 0x01e #define VL6180_RANGE_PART_TO_PART_RANGE_OFFSET 0x024 #define VL6180_RANGE_RANGE_IGNORE_VALID_HEIGHT 0x025 #define VL6180_RANGE_RANGE_IGNORE_THRESHOLD 0x026 #define VL6180_RANGE_MAX_AMBIENT_LEVEL_MULT 0x02c #define VL6180_RANGE_RANGE_CHECK_ENABLES 0x02d #define VL6180_RANGE_VHV_RECALIBRATE 0x02e #define VL6180_RANGE_VHV_REPEAT_RATE 0x031 #define VL6180_READOUT_AVERAGING_SAMPLE_PERIOD 0x10a /* bits of the SYS_MODE_GPIO1 register */ #define VL6180_SYS_GPIO1_POLARITY BIT(5) /* active high */ #define VL6180_SYS_GPIO1_SELECT BIT(4) /* configure GPIO interrupt output */ /* bits of the RANGE_START and ALS_START register */ #define VL6180_MODE_CONT BIT(1) /* continuous mode */ #define VL6180_STARTSTOP BIT(0) /* start measurement, auto-reset */ /* bits of the INTR_STATUS and INTR_CONFIG register */ #define VL6180_ALS_LEVEL_LOW BIT(3) #define VL6180_ALS_LEVEL_HIGH BIT(4) #define VL6180_ALS_OUT_OF_WINDOW (BIT(3) | BIT(4)) #define VL6180_ALS_READY BIT(5) #define VL6180_RANGE_LEVEL_LOW BIT(0) #define VL6180_RANGE_LEVEL_HIGH BIT(1) #define VL6180_RANGE_OUT_OF_WINDOW (BIT(0) | BIT(1)) #define VL6180_RANGE_READY BIT(2) #define VL6180_INT_RANGE_GPIO_MASK GENMASK(2, 0) #define VL6180_INT_ALS_GPIO_MASK GENMASK(5, 3) #define VL6180_INT_ERR_GPIO_MASK GENMASK(7, 6) /* bits of the INTR_CLEAR register */ #define VL6180_CLEAR_ERROR BIT(2) #define VL6180_CLEAR_ALS BIT(1) #define VL6180_CLEAR_RANGE BIT(0) /* bits of the HOLD register */ #define VL6180_HOLD_ON BIT(0) /* default value for the ALS_IT register */ #define VL6180_ALS_IT_100 0x63 /* 100 ms */ /* values for the ALS_GAIN register */ #define VL6180_ALS_GAIN_1 0x46 #define VL6180_ALS_GAIN_1_25 0x45 #define VL6180_ALS_GAIN_1_67 0x44 #define VL6180_ALS_GAIN_2_5 0x43 #define VL6180_ALS_GAIN_5 0x42 #define VL6180_ALS_GAIN_10 0x41 #define VL6180_ALS_GAIN_20 0x40 #define VL6180_ALS_GAIN_40 0x47 struct vl6180_data { struct i2c_client *client; struct mutex lock; unsigned int als_gain_milli; unsigned int als_it_ms; struct gpio_desc *avdd; struct gpio_desc *chip_enable; /* Ensure natural alignment of timestamp */ struct { u16 channels[3]; u16 reserved; s64 ts; } scan; }; enum { VL6180_ALS, VL6180_RANGE, VL6180_PROX }; /** * struct vl6180_chan_regs - Registers for accessing channels * @drdy_mask: Data ready bit in status register * @start_reg: Conversion start register * @value_reg: Result value register * @word: Register word length */ struct vl6180_chan_regs { u8 drdy_mask; u16 start_reg, value_reg; bool word; }; static const struct vl6180_chan_regs vl6180_chan_regs_table[] = { [VL6180_ALS] = { .drdy_mask = VL6180_ALS_READY, .start_reg = VL6180_ALS_START, .value_reg = VL6180_ALS_VALUE, .word = true, }, [VL6180_RANGE] = { .drdy_mask = VL6180_RANGE_READY, .start_reg = VL6180_RANGE_START, .value_reg = VL6180_RANGE_VALUE, .word = false, }, [VL6180_PROX] = { .drdy_mask = VL6180_RANGE_READY, .start_reg = VL6180_RANGE_START, .value_reg = VL6180_RANGE_RATE, .word = true, }, }; /** * struct vl6180_custom_data - Data for custom initialization * @reg: Register * @val: Value */ struct vl6180_custom_data { u16 reg; u8 val; }; static const struct vl6180_custom_data vl6180_custom_data_table[] = { { .reg = 0x207, .val = 0x01, }, { .reg = 0x208, .val = 0x01, }, { .reg = 0x096, .val = 0x00, }, { .reg = 0x097, .val = 0xfd, }, { .reg = 0x0e3, .val = 0x00, }, { .reg = 0x0e4, .val = 0x04, }, { .reg = 0x0e5, .val = 0x02, }, { .reg = 0x0e6, .val = 0x01, }, { .reg = 0x0e7, .val = 0x03, }, { .reg = 0x0f5, .val = 0x02, }, { .reg = 0x0d9, .val = 0x05, }, { .reg = 0x0db, .val = 0xce, }, { .reg = 0x0dc, .val = 0x03, }, { .reg = 0x0dd, .val = 0xf8, }, { .reg = 0x09f, .val = 0x00, }, { .reg = 0x0a3, .val = 0x3c, }, { .reg = 0x0b7, .val = 0x00, }, { .reg = 0x0bb, .val = 0x3c, }, { .reg = 0x0b2, .val = 0x09, }, { .reg = 0x0ca, .val = 0x09, }, { .reg = 0x198, .val = 0x01, }, { .reg = 0x1b0, .val = 0x17, }, { .reg = 0x1ad, .val = 0x00, }, { .reg = 0x0ff, .val = 0x05, }, { .reg = 0x100, .val = 0x05, }, { .reg = 0x199, .val = 0x05, }, { .reg = 0x1a6, .val = 0x1b, }, { .reg = 0x1ac, .val = 0x3e, }, { .reg = 0x1a7, .val = 0x1f, }, { .reg = 0x030, .val = 0x00, }, }; static int vl6180_read(struct i2c_client *client, u16 cmd, void *databuf, u8 len) { __be16 cmdbuf = cpu_to_be16(cmd); struct i2c_msg msgs[2] = { { .addr = client->addr, .len = sizeof(cmdbuf), .buf = (u8 *) &cmdbuf }, { .addr = client->addr, .len = len, .buf = databuf, .flags = I2C_M_RD } }; int ret; ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); if (ret < 0) dev_err(&client->dev, "failed reading register 0x%04x\n", cmd); return ret; } static int vl6180_read_byte(struct i2c_client *client, u16 cmd) { u8 data; int ret; ret = vl6180_read(client, cmd, &data, sizeof(data)); if (ret < 0) return ret; return data; } static int vl6180_read_word(struct i2c_client *client, u16 cmd) { __be16 data; int ret; ret = vl6180_read(client, cmd, &data, sizeof(data)); if (ret < 0) return ret; return be16_to_cpu(data); } static int vl6180_write_byte(struct i2c_client *client, u16 cmd, u8 val) { u8 buf[3]; struct i2c_msg msgs[1] = { { .addr = client->addr, .len = sizeof(buf), .buf = (u8 *) &buf } }; int ret; buf[0] = cmd >> 8; buf[1] = cmd & 0xff; buf[2] = val; ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); if (ret < 0) { dev_err(&client->dev, "failed writing register 0x%04x\n", cmd); return ret; } return 0; } static int vl6180_write_word(struct i2c_client *client, u16 cmd, u16 val) { __be16 buf[2]; struct i2c_msg msgs[1] = { { .addr = client->addr, .len = sizeof(buf), .buf = (u8 *) &buf } }; int ret; buf[0] = cpu_to_be16(cmd); buf[1] = cpu_to_be16(val); ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); if (ret < 0) { dev_err(&client->dev, "failed writing register 0x%04x\n", cmd); return ret; } return 0; } static int vl6180_measure(struct vl6180_data *data, int addr) { struct i2c_client *client = data->client; int tries = 20, ret; u16 value; mutex_lock(&data->lock); /* Start single shot measurement */ ret = vl6180_write_byte(client, vl6180_chan_regs_table[addr].start_reg, VL6180_STARTSTOP); if (ret < 0) goto fail; while (tries--) { ret = vl6180_read_byte(client, VL6180_INTR_STATUS); if (ret < 0) goto fail; if (ret & vl6180_chan_regs_table[addr].drdy_mask) break; msleep(20); } if (tries < 0) { ret = -EIO; goto fail; } /* Read result value from appropriate registers */ ret = vl6180_chan_regs_table[addr].word ? vl6180_read_word(client, vl6180_chan_regs_table[addr].value_reg) : vl6180_read_byte(client, vl6180_chan_regs_table[addr].value_reg); if (ret < 0) goto fail; value = ret; /* Clear the interrupt flag after data read */ ret = vl6180_write_byte(client, VL6180_INTR_CLEAR, VL6180_CLEAR_ERROR | VL6180_CLEAR_ALS | VL6180_CLEAR_RANGE); if (ret < 0) goto fail; ret = value; fail: mutex_unlock(&data->lock); return ret; } static const struct iio_chan_spec vl6180_channels[] = { { .type = IIO_LIGHT, .address = VL6180_ALS, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_HARDWAREGAIN), .scan_index = 0, .scan_type = { .sign = 'u', .realbits = 16, .storagebits = 16, } }, { .type = IIO_DISTANCE, .address = VL6180_RANGE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .scan_index = 1, .scan_type = { .sign = 'u', .realbits = 16, .storagebits = 16, } }, { .type = IIO_PROXIMITY, .address = VL6180_PROX, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .scan_index = 2, .scan_type = { .sign = 'u', .realbits = 16, .storagebits = 16, } }, IIO_CHAN_SOFT_TIMESTAMP(3), }; /* * Available Ambient Light Sensor gain settings, 1/1000th, and * corresponding setting for the VL6180_ALS_GAIN register */ static const int vl6180_als_gain_tab[8] = { 1000, 1250, 1670, 2500, 5000, 10000, 20000, 40000 }; static const u8 vl6180_als_gain_tab_bits[8] = { VL6180_ALS_GAIN_1, VL6180_ALS_GAIN_1_25, VL6180_ALS_GAIN_1_67, VL6180_ALS_GAIN_2_5, VL6180_ALS_GAIN_5, VL6180_ALS_GAIN_10, VL6180_ALS_GAIN_20, VL6180_ALS_GAIN_40 }; static int vl6180_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct vl6180_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = vl6180_measure(data, chan->address); if (ret < 0) return ret; *val = ret; return IIO_VAL_INT; case IIO_CHAN_INFO_INT_TIME: *val = data->als_it_ms; *val2 = 1000; return IIO_VAL_FRACTIONAL; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_LIGHT: /* one ALS count is 0.32 Lux @ gain 1, IT 100 ms */ *val = 32000; /* 0.32 * 1000 * 100 */ *val2 = data->als_gain_milli * data->als_it_ms; return IIO_VAL_FRACTIONAL; case IIO_DISTANCE: *val = 0; /* sensor reports mm, scale to meter */ *val2 = 1000; break; default: return -EINVAL; } return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_HARDWAREGAIN: *val = data->als_gain_milli; *val2 = 1000; return IIO_VAL_FRACTIONAL; default: return -EINVAL; } } static IIO_CONST_ATTR(als_gain_available, "1 1.25 1.67 2.5 5 10 20 40"); static struct attribute *vl6180_attributes[] = { &iio_const_attr_als_gain_available.dev_attr.attr, NULL }; static const struct attribute_group vl6180_attribute_group = { .attrs = vl6180_attributes, }; /* HOLD is needed before updating any config registers */ static int vl6180_hold(struct vl6180_data *data, bool hold) { return vl6180_write_byte(data->client, VL6180_HOLD, hold ? VL6180_HOLD_ON : 0); } static int vl6180_set_als_gain(struct vl6180_data *data, int val, int val2) { int i, ret, gain; if (val < 1 || val > 40) return -EINVAL; gain = (val * 1000000 + val2) / 1000; if (gain < 1 || gain > 40000) return -EINVAL; i = find_closest(gain, vl6180_als_gain_tab, ARRAY_SIZE(vl6180_als_gain_tab)); mutex_lock(&data->lock); ret = vl6180_hold(data, true); if (ret < 0) goto fail; ret = vl6180_write_byte(data->client, VL6180_ALS_GAIN, vl6180_als_gain_tab_bits[i]); if (ret >= 0) data->als_gain_milli = vl6180_als_gain_tab[i]; fail: vl6180_hold(data, false); mutex_unlock(&data->lock); return ret; } static int vl6180_set_it(struct vl6180_data *data, int val, int val2) { int ret, it_ms; it_ms = (val2 + 500) / 1000; /* round to ms */ if (val != 0 || it_ms < 1 || it_ms > 512) return -EINVAL; mutex_lock(&data->lock); ret = vl6180_hold(data, true); if (ret < 0) goto fail; ret = vl6180_write_word(data->client, VL6180_ALS_IT, it_ms - 1); if (ret >= 0) data->als_it_ms = it_ms; fail: vl6180_hold(data, false); mutex_unlock(&data->lock); return ret; } static int vl6180_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct vl6180_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_INT_TIME: return vl6180_set_it(data, val, val2); case IIO_CHAN_INFO_HARDWAREGAIN: if (chan->type != IIO_LIGHT) return -EINVAL; return vl6180_set_als_gain(data, val, val2); default: return -EINVAL; } } static const struct iio_info vl6180_info = { .read_raw = vl6180_read_raw, .write_raw = vl6180_write_raw, .attrs = &vl6180_attribute_group, }; static int vl6180_power_enable(struct vl6180_data *data) { /* Enable power supply. */ if (!IS_ERR_OR_NULL(data->avdd)) gpiod_set_value_cansleep(data->avdd, 1); /* Power-up default is chip enable (CE). */ if (!IS_ERR_OR_NULL(data->chip_enable)) { gpiod_set_value_cansleep(data->chip_enable, 0); usleep_range(500, 1000); gpiod_set_value_cansleep(data->chip_enable, 1); } return 0; } static int vl6180_custom_init(struct vl6180_data *data) { struct i2c_client *client = data->client; int ret; int i; /* REGISTER_TUNING_SR03_270514_CustomerView.txt */ for (i = 0; i < ARRAY_SIZE(vl6180_custom_data_table); ++i) { ret = vl6180_write_byte(client, vl6180_custom_data_table[i].reg, vl6180_custom_data_table[i].val); if (ret < 0) break; } return ret; } static int vl6180_range_init(struct vl6180_data *data) { struct i2c_client *client = data->client; int ret; u8 enables; u8 offset; u8 xtalk = 3; /* Enables polling for ‘New Sample ready’ when measurement completes */ ret = vl6180_write_byte(client, VL6180_SYS_MODE_GPIO1, (VL6180_SYS_GPIO1_POLARITY | VL6180_SYS_GPIO1_SELECT)); if (ret < 0) goto out; /* Set the averaging sample period (compromise between lower noise and * increased execution time), 0x30 equals to 4.3 ms. */ ret = vl6180_write_byte(client, VL6180_READOUT_AVERAGING_SAMPLE_PERIOD, 0x30); if (ret < 0) goto out; /* Sets the # of range measurements after which auto calibration of * system is performed */ ret = vl6180_write_byte(client, VL6180_RANGE_VHV_REPEAT_RATE, 0xff); if (ret < 0) goto out; /* Perform a single temperature calibration of the ranging sensor */ ret = vl6180_write_byte(client, VL6180_RANGE_VHV_RECALIBRATE, 0x01); if (ret < 0) goto out; /* Set SNR limit to 0.06 */ ret = vl6180_write_byte(client, VL6180_RANGE_MAX_AMBIENT_LEVEL_MULT, 0xff); if (ret < 0) goto out; /* Set default ranging inter-measurement period to 100ms */ ret = vl6180_write_byte(client, VL6180_RANGE_INTER_MES_PERIOD, 0x09); if (ret < 0) goto out; /* Copy registers */ /* NOTE: 0x0da, 0x027, 0x0db, 0x028, 0x0dc, 0x029 and 0x0dd are * unavailable on the datasheet. */ ret = vl6180_read_byte(client, VL6180_RANGE_RANGE_IGNORE_THRESHOLD); if (ret < 0) goto out; ret = vl6180_write_byte(client, 0x0da, ret); if (ret < 0) goto out; ret = vl6180_read_byte(client, 0x027); if (ret < 0) goto out; ret = vl6180_write_byte(client, 0x0db, ret); if (ret < 0) goto out; ret = vl6180_read_byte(client, 0x028); if (ret < 0) goto out; ret = vl6180_write_byte(client, 0x0dc, ret); if (ret < 0) goto out; ret = vl6180_read_byte(client, 0x029); if (ret < 0) goto out; ret = vl6180_write_byte(client, 0x0dd, ret); if (ret < 0) goto out; ret = vl6180_write_byte(client, VL6180_RANGE_MAX_CONVERGENCE_TIME, 0x32); if (ret < 0) goto out; ret = vl6180_read_byte(client, VL6180_RANGE_RANGE_CHECK_ENABLES); if (ret < 0) goto out; /* Disable early convergence */ enables = ret & 0xfe; ret = vl6180_write_byte(client, VL6180_RANGE_RANGE_CHECK_ENABLES, enables); if (ret < 0) goto out; ret = vl6180_write_byte(client, VL6180_RANGE_THRESH_HIGH, 0xc8); if (ret < 0) goto out; ret = vl6180_write_byte(client, VL6180_RANGE_THRESH_LOW, 0x00); if (ret < 0) goto out; ret = vl6180_write_byte(client, VL6180_ALS_IT, VL6180_ALS_IT_100); if (ret < 0) goto out; ret = vl6180_write_byte(client, VL6180_ALS_INTER_MES_PERIOD, 0x13); if (ret < 0) goto out; ret = vl6180_write_byte(client, VL6180_ALS_GAIN, VL6180_ALS_GAIN_1); if (ret < 0) goto out; ret = vl6180_write_byte(client, VL6180_ALS_THRESH_LOW, 0x00); if (ret < 0) goto out; ret = vl6180_write_byte(client, VL6180_ALS_THRESH_HIGH, 0xff); if (ret < 0) goto out; /* Cover glass ignore */ ret = vl6180_write_byte(client, VL6180_RANGE_RANGE_IGNORE_VALID_HEIGHT, 0xff); if (ret < 0) goto out; ret = vl6180_read_byte(client, VL6180_RANGE_PART_TO_PART_RANGE_OFFSET); if (ret < 0) goto out; /* Apply default calibration on part to part offset */ offset = ret / 4; ret = vl6180_write_byte(client, VL6180_RANGE_PART_TO_PART_RANGE_OFFSET, offset); if (ret < 0) goto out; ret = vl6180_write_byte(client, VL6180_RANGE_CROSSTALK_COMPENSATION_RATE, 0x00); if (ret < 0) goto out; ret = vl6180_write_byte(client, 0x01f, xtalk); out: return ret; } static int vl6180_init(struct vl6180_data *data) { struct i2c_client *client = data->client; int ret; ret = vl6180_power_enable(data); if (ret) { dev_err(&client->dev, "failed to configure power\n"); return ret; } /* * After the MCU boot sequence the device enters software standby, * host initialization can commence immediately after entering * software standby. */ usleep_range(500, 1000); ret = vl6180_read_byte(client, VL6180_MODEL_ID); if (ret < 0) return ret; if (ret != VL6180_MODEL_ID_VAL) { dev_err(&client->dev, "invalid model ID %02x\n", ret); return -ENODEV; } ret = vl6180_hold(data, true); if (ret < 0) return ret; ret = vl6180_read_byte(client, VL6180_OUT_OF_RESET); if (ret < 0) return ret; /* * Detect false reset condition here. This bit is always set when the * system comes out of reset. */ if (ret != 0x01) dev_info(&client->dev, "device is not fresh out of reset\n"); /* ALS integration time: 100ms */ data->als_it_ms = 100; ret = vl6180_write_word(client, VL6180_ALS_IT, VL6180_ALS_IT_100); if (ret < 0) return ret; /* ALS gain: 1 */ data->als_gain_milli = 1000; ret = vl6180_write_byte(client, VL6180_ALS_GAIN, VL6180_ALS_GAIN_1); if (ret < 0) return ret; ret = vl6180_custom_init(data); if (ret < 0) return ret; ret = vl6180_range_init(data); if (ret < 0) return ret; ret = vl6180_write_byte(client, VL6180_RANGE_START, (VL6180_STARTSTOP | VL6180_MODE_CONT)); if (ret < 0) return ret; ret = vl6180_write_byte(client, VL6180_OUT_OF_RESET, 0x00); if (ret < 0) return ret; return vl6180_hold(data, false); } static irqreturn_t vl6180_irq_thread(int irq, void *priv) { struct vl6180_data *data = priv; struct i2c_client *client = data->client; struct iio_dev *indio_dev = i2c_get_clientdata(client); int ret; u8 val = 0; ret = vl6180_read_byte(client, VL6180_INTR_STATUS); if (ret < 0) goto out; if (ret & VL6180_INT_ALS_GPIO_MASK) val |= VL6180_CLEAR_ALS; if (ret & VL6180_INT_RANGE_GPIO_MASK) val |= VL6180_CLEAR_RANGE; if (ret & VL6180_INT_ERR_GPIO_MASK) val |= VL6180_CLEAR_ERROR; vl6180_write_byte(client, VL6180_INTR_CLEAR, val); ret = vl6180_read_word(client, VL6180_ALS_VALUE); if (ret < 0) goto out; data->scan.channels[VL6180_ALS] = ret; ret = vl6180_read_byte(client, VL6180_RANGE_VALUE); if (ret < 0) goto out; data->scan.channels[VL6180_RANGE] = ret; ret = vl6180_read_word(client, VL6180_RANGE_RATE); if (ret < 0) goto out; data->scan.channels[VL6180_PROX] = ret; iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, ktime_get_boottime_ns()); out: return IRQ_HANDLED; } static int vl6180_buffer_preenable(struct iio_dev *indio_dev) { struct vl6180_data *data = iio_priv(indio_dev); u8 val; int ret; ret = vl6180_read_byte(data->client, VL6180_INTR_CONFIG); if (ret < 0) return ret; /* Enable ALS and Range ready interrupts */ val = ret | VL6180_ALS_READY | VL6180_RANGE_READY; ret = vl6180_write_byte(data->client, VL6180_INTR_CONFIG, val); return ret; } static int vl6180_buffer_postdisable(struct iio_dev *indio_dev) { struct vl6180_data *data = iio_priv(indio_dev); u8 val; int ret; ret = vl6180_read_byte(data->client, VL6180_INTR_CONFIG); if (ret < 0) return ret; /* Disable ALS and Range ready interrupts */ val = ret & ~(VL6180_ALS_READY | VL6180_RANGE_READY); ret = vl6180_write_byte(data->client, VL6180_INTR_CONFIG, val); return ret; } static const struct iio_buffer_setup_ops vl6180_buffer_setup_ops = { .preenable = vl6180_buffer_preenable, .postdisable = vl6180_buffer_postdisable, }; static int vl6180_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct vl6180_data *data; struct iio_dev *indio_dev; struct iio_buffer *buffer; u32 type; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; mutex_init(&data->lock); indio_dev->info = &vl6180_info; indio_dev->channels = vl6180_channels; indio_dev->num_channels = ARRAY_SIZE(vl6180_channels); indio_dev->name = VL6180_DRV_NAME; indio_dev->modes = INDIO_DIRECT_MODE; /* * NOTE: If the power is controlled by gpio, the power * configuration should match the power-up timing. */ data->avdd = devm_gpiod_get_optional(&client->dev, "avdd", GPIOD_OUT_HIGH); data->chip_enable = devm_gpiod_get_optional(&client->dev, "chip-enable", GPIOD_OUT_HIGH); ret = vl6180_init(data); if (ret < 0) return ret; if (client->irq) { buffer = devm_iio_kfifo_allocate(&client->dev); if (!buffer) return -ENOMEM; iio_device_attach_buffer(indio_dev, buffer); indio_dev->modes |= INDIO_BUFFER_SOFTWARE; indio_dev->setup_ops = &vl6180_buffer_setup_ops; type = irqd_get_trigger_type(irq_get_irq_data(client->irq)); ret = devm_request_threaded_irq(&client->dev, client->irq, NULL, vl6180_irq_thread, type | IRQF_ONESHOT, "vl6180", data); if (ret) { dev_err(&client->dev, "failed to request vl6180 IRQ\n"); return ret; } } return devm_iio_device_register(&client->dev, indio_dev); } static const struct of_device_id vl6180_of_match[] = { { .compatible = "st,vl6180", }, { }, }; MODULE_DEVICE_TABLE(of, vl6180_of_match); static const struct i2c_device_id vl6180_id[] = { { "vl6180", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, vl6180_id); static struct i2c_driver vl6180_driver = { .driver = { .name = VL6180_DRV_NAME, .of_match_table = vl6180_of_match, }, .probe = vl6180_probe, .id_table = vl6180_id, }; module_i2c_driver(vl6180_driver); MODULE_AUTHOR("Peter Meerwald-Stadler "); MODULE_AUTHOR("Manivannan Sadhasivam "); MODULE_DESCRIPTION("STMicro VL6180 ALS, range and proximity sensor driver"); MODULE_LICENSE("GPL");