// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2021 Rockchip Electronics Co. Ltd. * * Author: Kay Guo */ #include #include #ifdef CONFIG_HAS_EARLYSUSPEND #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #define STK_STATE 0x00 #define PS_CTRL 0x01 #define ALS_CTRL1 0x02 #define LED_CTRL 0x03 #define INT_CTRL1 0x04 #define STK_WAIT 0x05 #define THDH1_PS 0x06 #define THDH2_PS 0x07 #define THDL1_PS 0x08 #define THDL2_PS 0x09 #define THDH1_ALS 0x0A #define THDH2_ALS 0x0B #define THDL1_ALS 0x0C #define THDL2_ALS 0x0D #define STK_FLAG 0x10 #define DATA1_PS 0x11 #define DATA2_PS 0x12 #define DATA1_ALS 0x13 #define DATA2_ALS 0x14 #define DATA1_C 0x1B #define DATA2_C 0x1C #define DATA1_PS_OFFSET 0x1D #define DATA2_PS_OFFSET 0x1E #define DATA_CTRL1 0x20 #define DATA_CTRL2 0x21 #define DATA_CTRL3 0x22 #define DATA_CTRL4 0x23 #define STKPDT_ID 0x3E #define STK_RESERVED 0x3F #define ALS_CTRL2 0x4E #define INTELLI_WAIT 0x4F #define SOFT_RESET 0x80 #define PSPD_CTRL 0xA1 #define INT_CTRL2 0xA5 /* STK_STATE 0x00 */ #define PS_DISABLE (0 << 0) #define PS_ENABLE (1 << 0) #define ALS_DISABLE (0 << 1) #define ALS_ENABLE (1 << 1) #define WAIT_DISABLE (0 << 2) #define WAIT_ENABLE (1 << 2) #define INTELLI_DISABLE (0 << 3) #define INTELLI_ENABLE (1 << 3) #define CTAUTOK_DISABLE (0 << 4) #define CTAUTOK_ENABLE (1 << 4) /* PS/GS_CTRL 0x01 */ #define PS_IT_96US (0 << 0) #define PS_IT_192US (1 << 0) #define PS_IT_384US (2 << 0) #define PS_IT_768US (3 << 0) #define PS_IT_1MS54 (4 << 0) #define PS_IT_3MS07 (5 << 0) #define PS_IT_6MS14 (6 << 0) #define PS_GAIN_1G (0 << 4) #define PS_GAIN_2G (1 << 4) #define PS_GAIN_4G (2 << 4) #define PS_GAIN_8G (3 << 4) #define PS_PRST_1T (0 << 6) #define PS_PRST_2T (1 << 6) #define PS_PRST_4T (2 << 6) #define PS_PRST_16T (3 << 6) /* ALS_CTRL1 0x02 */ #define ALS_REFT_MS (1 << 0)/* [3:0] 25 ms, default value is 50ms */ #define ALS_GAIN_1G (0 << 4) #define ALS_GAIN_4G (1 << 4) #define ALS_GAIN_16G (2 << 4) #define ALS_GAIN_64G (3 << 4) #define ALS_PRST_1T (0 << 6) #define ALS_PRST_2T (1 << 6) #define ALS_PRST_4T (2 << 6) #define ALS_PRST_8T (3 << 6) /* LED_CTRL 0x03 */ #define LED_CTIR_EN 0x03 /* [5:0] 2.89us , default value is 0.185ms */ #define CTIR_DISABLE (0 << 0) #define CTIR_ENABLE (1 << 0) #define CTIRFC_DISABLE (0 << 1) #define CTIRFC_ENABLE (1 << 1) #define LED_CUR_12MA (2 << 5) #define LED_CUR_25MA (3 << 5) #define LED_CUR_50MA (4 << 5) #define LED_CUR_100MA (5 << 5) #define LED_CUR_150MA (6 << 5) /* INT 0x04 */ #define PS_INT_DISABLE (0 << 0) #define PS_INT_ENABLE (1 << 0) #define PS_INT_ENABLE_FLGNFH (2 << 0) #define PS_INT_ENABLE_FLGNFL (3 << 0) #define PS_INT_MODE_ENABLE (4 << 0) #define PS_INT_ENABLE_THL (5 << 0) #define PS_INT_ENABLE_THH (6 << 0) #define PS_INT_ENABLE_THHL (7 << 0) #define ALS_INT_DISABLE (0 << 3) #define ALS_INT_ENABLE (1 << 3) #define INT_CTRL_PS_OR_LS (0 << 7) #define INT_CTRL_PS_AND_LS (1 << 7) /* FLAG 0x10 */ #define STK_FLAG_NF (1 << 0) #define STK_FLAG_INPS_INT (1 << 1) #define STK_FLAG_ALS_STATE (1 << 2) #define STK_FLAG_PS_INT (1 << 4) #define STK_FLAG_ALS_INT (1 << 5) #define STK_FLAG_PSDR (1 << 6) #define STK_FLAG_ALSDR (1 << 7) static int ps_threshold_low; static int ps_threshold_high; static int val_flag; static int sensor_active(struct i2c_client *client, int enable, int rate) { struct sensor_private_data *sensor = (struct sensor_private_data *)i2c_get_clientdata(client); int result = 0; int status = 0; sensor->ops->ctrl_data = sensor_read_reg(client, sensor->ops->ctrl_reg); if (!enable) { status = ~PS_ENABLE; sensor->ops->ctrl_data &= status; } else { status = PS_ENABLE; sensor->ops->ctrl_data |= status; } dev_dbg(&client->dev, "reg=0x%x, reg_ctrl=0x%x, enable=%d\n", sensor->ops->ctrl_reg, sensor->ops->ctrl_data, enable); result = sensor_write_reg(client, sensor->ops->ctrl_reg, sensor->ops->ctrl_data); if (result) dev_err(&client->dev, "%s:fail to active sensor\n", __func__); return result; } static int sensor_init(struct i2c_client *client) { struct sensor_private_data *sensor = (struct sensor_private_data *)i2c_get_clientdata(client); struct device_node *np = client->dev.of_node; int ps_val = 0; int result = 0; int val = 0; result = sensor->ops->active(client, 0, 0); if (result) { dev_err(&client->dev, "%s:sensor active fail\n", __func__); return result; } sensor->status_cur = SENSOR_OFF; result = of_property_read_u32(np, "ps_threshold_low", &ps_val); if (result) dev_err(&client->dev, "%s:Unable to read ps_threshold_low\n", __func__); ps_threshold_low = ps_val; result = sensor_write_reg(client, THDL1_PS, (unsigned char)(ps_val >> 8)); if (result) { dev_err(&client->dev, "%s:write THDL1_PS fail\n", __func__); return result; } result = sensor_write_reg(client, THDL2_PS, (unsigned char)ps_val); if (result) { dev_err(&client->dev, "%s:write THDL1_PS fail\n", __func__); return result; } result = of_property_read_u32(np, "ps_threshold_high", &ps_val); if (result) dev_err(&client->dev, "%s:Unable to read ps_threshold_high\n", __func__); ps_threshold_high = ps_val; result = sensor_write_reg(client, THDH1_PS, (unsigned char)(ps_val >> 8)); if (result) { dev_err(&client->dev, "%s:write THDH1_PS fail\n", __func__); return result; } result = sensor_write_reg(client, THDH2_PS, (unsigned char)ps_val); if (result) { dev_err(&client->dev, "%s:write THDH1_PS fail\n", __func__); return result; } result = of_property_read_u32(np, "ps_ctrl_gain", &ps_val); if (result) dev_err(&client->dev, "%s:Unable to read ps_ctrl_gain\n", __func__); result = sensor_write_reg(client, PS_CTRL, (unsigned char)((ps_val << 4) | PS_IT_384US)); if (result) { dev_err(&client->dev, "%s:write PS_CTRL fail\n", __func__); return result; } result = of_property_read_u32(np, "ps_led_current", &ps_val); if (result) dev_err(&client->dev, "%s:Unable to read ps_led_current\n", __func__); result = sensor_write_reg(client, LED_CTRL, (unsigned char)((ps_val << 5) | LED_CTIR_EN)); if (result) { dev_err(&client->dev, "%s:write LED_CTRL fail\n", __func__); return result; } val = sensor_read_reg(client, INT_CTRL1); val &= ~INT_CTRL_PS_AND_LS; if (sensor->pdata->irq_enable) val |= PS_INT_ENABLE_FLGNFL; else val &= PS_INT_DISABLE; result = sensor_write_reg(client, INT_CTRL1, val); if (result) { dev_err(&client->dev, "%s:write INT_CTRL fail\n", __func__); return result; } return result; } static int stk3332_get_ps_value(int ps) { int index = 0; if ((ps > ps_threshold_high) && (val_flag == 0)) { index = 1; val_flag = 1; } else if ((ps < ps_threshold_low) && (val_flag == 1)) { index = 0; val_flag = 0; } else { index = -1; } return index; } static int sensor_report_value(struct i2c_client *client) { struct sensor_private_data *sensor = (struct sensor_private_data *)i2c_get_clientdata(client); int result = 0; int value = 0; char buffer[2] = { 0 }; int index = 1; if (sensor->ops->read_len < 2) { dev_err(&client->dev, "%s:length is error, len=%d\n", __func__, sensor->ops->read_len); return -EINVAL; } buffer[0] = sensor->ops->read_reg; result = sensor_rx_data(client, buffer, sensor->ops->read_len); if (result) { dev_err(&client->dev, "%s:sensor read data fail\n", __func__); return result; } value = (buffer[0] << 8) | buffer[1]; if (sensor->pdata->irq_enable && sensor->ops->int_status_reg) { value = sensor_read_reg(client, sensor->ops->int_status_reg); if (value & STK_FLAG_NF) index = 0; else index = 1; input_report_abs(sensor->input_dev, ABS_DISTANCE, index); input_sync(sensor->input_dev); value &= ~STK_FLAG_PS_INT; result = sensor_write_reg(client, sensor->ops->int_status_reg, value); dev_dbg(&client->dev, "%s object near = %d", sensor->ops->name, index); if (result) { dev_err(&client->dev, "write status reg error\n"); return result; } } else if (!sensor->pdata->irq_enable) { index = stk3332_get_ps_value(value); if (index >= 0) { input_report_abs(sensor->input_dev, ABS_DISTANCE, index); input_sync(sensor->input_dev); dev_dbg(&client->dev, "%s sensor closed=%d\n", sensor->ops->name, index); } } return result; } static struct sensor_operate psensor_stk3332_ops = { .name = "ps_stk3332", .type = SENSOR_TYPE_PROXIMITY, .id_i2c = PROXIMITY_ID_STK3332, .read_reg = DATA1_PS, .read_len = 2, .id_reg = SENSOR_UNKNOW_DATA, .id_data = SENSOR_UNKNOW_DATA, .precision = 16, .ctrl_reg = STK_STATE, .int_status_reg = STK_FLAG, .range = { 100, 65535 }, .brightness = { 10, 255 }, .trig = IRQF_TRIGGER_LOW | IRQF_ONESHOT | IRQF_SHARED, .active = sensor_active, .init = sensor_init, .report = sensor_report_value, }; static int proximity_stk3332_probe(struct i2c_client *client, const struct i2c_device_id *devid) { return sensor_register_device(client, NULL, devid, &psensor_stk3332_ops); } static int proximity_stk3332_remove(struct i2c_client *client) { return sensor_unregister_device(client, NULL, &psensor_stk3332_ops); } static const struct i2c_device_id proximity_stk3332_id[] = { { "ps_stk3332", PROXIMITY_ID_STK3332 }, {} }; static struct i2c_driver proximity_stk3332_driver = { .probe = proximity_stk3332_probe, .remove = proximity_stk3332_remove, .shutdown = sensor_shutdown, .id_table = proximity_stk3332_id, .driver = { .name = "proximity_stk3332", #ifdef CONFIG_PM .pm = &sensor_pm_ops, #endif }, }; module_i2c_driver(proximity_stk3332_driver); MODULE_AUTHOR("Kay Guo"); MODULE_DESCRIPTION("stk3332 proximity driver"); MODULE_LICENSE("GPL");