/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "android-base/result.h" #include #include "errno.h" #include #include #include #include #include #include #include "android-base/result-gmock.h" using namespace std::string_literals; using ::testing::Eq; using ::testing::ExplainMatchResult; using ::testing::HasSubstr; using ::testing::Not; using ::testing::StartsWith; namespace android { namespace base { TEST(result, result_accessors) { Result result = "success"; ASSERT_RESULT_OK(result); ASSERT_TRUE(result.has_value()); EXPECT_EQ("success", *result); EXPECT_EQ("success", result.value()); EXPECT_EQ('s', result->data()[0]); } TEST(result, result_accessors_rvalue) { ASSERT_TRUE(Result("success").ok()); ASSERT_TRUE(Result("success").has_value()); EXPECT_EQ("success", *Result("success")); EXPECT_EQ("success", Result("success").value()); EXPECT_EQ('s', Result("success")->data()[0]); } TEST(result, result_void) { Result ok = {}; EXPECT_RESULT_OK(ok); ok.value(); // should not crash ASSERT_DEATH(ok.error(), ""); Result fail = Error() << "failure" << 1; EXPECT_FALSE(fail.ok()); EXPECT_EQ("failure1", fail.error().message()); EXPECT_EQ(0, fail.error().code()); EXPECT_TRUE(ok != fail); ASSERT_DEATH(fail.value(), ""); auto test = [](bool ok) -> Result { if (ok) return {}; else return Error() << "failure" << 1; }; EXPECT_TRUE(test(true).ok()); EXPECT_FALSE(test(false).ok()); test(true).value(); // should not crash ASSERT_DEATH(test(true).error(), ""); ASSERT_DEATH(test(false).value(), ""); EXPECT_EQ("failure1", test(false).error().message()); } TEST(result, result_error) { Result result = Error() << "failure" << 1; ASSERT_FALSE(result.ok()); ASSERT_FALSE(result.has_value()); EXPECT_EQ(0, result.error().code()); EXPECT_EQ("failure1", result.error().message()); } TEST(result, result_error_empty) { Result result = Error(); ASSERT_FALSE(result.ok()); ASSERT_FALSE(result.has_value()); EXPECT_EQ(0, result.error().code()); EXPECT_EQ("", result.error().message()); } TEST(result, result_error_rvalue) { // Error() and ErrnoError() aren't actually used to create a Result object. // Under the hood, they are an intermediate class that can be implicitly constructed into a // Result. This is needed both to create the ostream and because Error() itself, by // definition will not know what the type, T, of the underlying Result object that it would // create is. auto MakeRvalueErrorResult = []() -> Result { return Error() << "failure" << 1; }; ASSERT_FALSE(MakeRvalueErrorResult().ok()); ASSERT_FALSE(MakeRvalueErrorResult().has_value()); EXPECT_EQ(0, MakeRvalueErrorResult().error().code()); EXPECT_EQ("failure1", MakeRvalueErrorResult().error().message()); } TEST(result, result_errno_error) { constexpr int test_errno = 6; errno = test_errno; Result result = ErrnoError() << "failure" << 1; ASSERT_FALSE(result.ok()); ASSERT_FALSE(result.has_value()); EXPECT_EQ(test_errno, result.error().code()); EXPECT_EQ("failure1: "s + strerror(test_errno), result.error().message()); } TEST(result, result_errno_error_no_text) { constexpr int test_errno = 6; errno = test_errno; Result result = ErrnoError(); ASSERT_FALSE(result.ok()); ASSERT_FALSE(result.has_value()); EXPECT_EQ(test_errno, result.error().code()); EXPECT_EQ(strerror(test_errno), result.error().message()); } TEST(result, result_error_from_other_result) { auto error_text = "test error"s; Result result = Error() << error_text; ASSERT_FALSE(result.ok()); ASSERT_FALSE(result.has_value()); Result result2 = result.error(); ASSERT_FALSE(result2.ok()); ASSERT_FALSE(result2.has_value()); EXPECT_EQ(0, result2.error().code()); EXPECT_EQ(error_text, result2.error().message()); } TEST(result, result_error_through_ostream) { auto error_text = "test error"s; Result result = Error() << error_text; ASSERT_FALSE(result.ok()); ASSERT_FALSE(result.has_value()); Result result2 = Error() << result.error(); ASSERT_FALSE(result2.ok()); ASSERT_FALSE(result2.has_value()); EXPECT_EQ(0, result2.error().code()); EXPECT_EQ(error_text, result2.error().message()); } TEST(result, result_errno_error_through_ostream) { auto error_text = "test error"s; constexpr int test_errno = 6; errno = 6; Result result = ErrnoError() << error_text; errno = 0; ASSERT_FALSE(result.ok()); ASSERT_FALSE(result.has_value()); Result result2 = Error() << result.error(); ASSERT_FALSE(result2.ok()); ASSERT_FALSE(result2.has_value()); EXPECT_EQ(test_errno, result2.error().code()); EXPECT_EQ(error_text + ": " + strerror(test_errno), result2.error().message()); } enum class CustomError { A, B }; struct CustomErrorWrapper { CustomErrorWrapper() : val_(CustomError::A) {} CustomErrorWrapper(const CustomError& e) : val_(e) {} CustomError value() const { return val_; } operator CustomError() const { return value(); } std::string print() const { switch (val_) { case CustomError::A: return "A"; case CustomError::B: return "B"; } } CustomError val_; }; #define NewCustomError(e) Error(CustomError::e) TEST(result, result_with_custom_errorcode) { Result ok = {}; EXPECT_RESULT_OK(ok); ok.value(); // should not crash EXPECT_DEATH(ok.error(), ""); auto error_text = "test error"s; Result err = NewCustomError(A) << error_text; EXPECT_FALSE(err.ok()); EXPECT_FALSE(err.has_value()); EXPECT_EQ(CustomError::A, err.error().code()); EXPECT_EQ(error_text + ": A", err.error().message()); } Result success_or_fail(bool success) { if (success) return "success"; else return NewCustomError(A) << "fail"; } TEST(result, constructor_forwarding) { auto result = Result(std::in_place, 5, 'a'); ASSERT_RESULT_OK(result); ASSERT_TRUE(result.has_value()); EXPECT_EQ("aaaaa", *result); } TEST(result, unwrap_or_return) { auto f = [](bool success) -> Result { return OR_RETURN(success_or_fail(success)).size(); }; auto r = f(true); EXPECT_TRUE(r.ok()); EXPECT_EQ(strlen("success"), *r); auto s = f(false); EXPECT_FALSE(s.ok()); EXPECT_EQ(CustomError::A, s.error().code()); EXPECT_EQ("fail: A", s.error().message()); } TEST(result, unwrap_or_return_errorcode) { auto f = [](bool success) -> CustomError { // Note that we use the same OR_RETURN macro for different return types: Result // and CustomError. std::string val = OR_RETURN(success_or_fail(success)); EXPECT_EQ("success", val); return CustomError::B; }; auto r = f(true); EXPECT_EQ(CustomError::B, r); auto s = f(false); EXPECT_EQ(CustomError::A, s); } TEST(result, unwrap_or_fatal) { auto r = OR_FATAL(success_or_fail(true)); EXPECT_EQ("success", r); EXPECT_DEATH(OR_FATAL(success_or_fail(false)), "fail: A"); } TEST(result, unwrap_ambiguous_int) { const std::string firstSuccess{"a"}; constexpr int secondSuccess = 5; auto enum_success_or_fail = [&](bool success) -> Result { if (success) return firstSuccess; return ResultError("Fail", 10); }; auto f = [&](bool success) -> Result { auto val = OR_RETURN(enum_success_or_fail(success)); EXPECT_EQ(firstSuccess, val); return secondSuccess; }; auto r = f(true); ASSERT_TRUE(r.ok()); EXPECT_EQ(r.value(), secondSuccess); auto s = f(false); ASSERT_TRUE(!s.ok()); EXPECT_EQ(s.error().code(), 10); } TEST(result, unwrap_ambiguous_uint_conv) { const std::string firstSuccess{"a"}; constexpr size_t secondSuccess = 5ull; auto enum_success_or_fail = [&](bool success) -> Result { if (success) return firstSuccess; return ResultError("Fail", 10); }; auto f = [&](bool success) -> Result { auto val = OR_RETURN(enum_success_or_fail(success)); EXPECT_EQ(firstSuccess, val); return secondSuccess; }; auto r = f(true); ASSERT_TRUE(r.ok()); EXPECT_EQ(r.value(), secondSuccess); auto s = f(false); ASSERT_TRUE(!s.ok()); EXPECT_EQ(s.error().code(), 10); } struct IntConst { int val_; template >> IntConst(T&& val) : val_(val) {} operator status_t() {return val_;} }; TEST(result, unwrap_ambiguous_constructible) { constexpr int firstSuccess = 5; constexpr int secondSuccess = 7; struct A { A (int val) : val_(val) {} operator status_t() { return 0; } int val_; }; // If this returns Result instead of Result, // compilation fails unless we compile with c++20 auto enum_success_or_fail = [&](bool success) -> Result { if (success) return firstSuccess; return ResultError(10); }; auto f = [&](bool success) -> Result { auto val = OR_RETURN(enum_success_or_fail(success)); EXPECT_EQ(firstSuccess, val.val_); return secondSuccess; }; auto r = f(true); EXPECT_EQ(r.value().val_, secondSuccess); auto s = f(false); EXPECT_EQ(s.error().code(), 10); } struct Dangerous {}; struct ImplicitFromDangerous { ImplicitFromDangerous(Dangerous); }; template struct Templated { U val_; template >> Templated(T val) : val_(val) {} }; TEST(result, dangerous_result_conversion) { ResultError error {Dangerous{}}; Result, Dangerous, false> surprise {error}; EXPECT_TRUE(!surprise.ok()); Result, Dangerous, false> surprise2 {error}; EXPECT_TRUE(!surprise2.ok()); } TEST(result, generic_convertible) { const std::string firstSuccess{"a"}; struct A {}; struct B { operator A() {return A{};} }; auto enum_success_or_fail = [&](bool success) -> Result { if (success) return firstSuccess; return ResultError("Fail", B{}); }; auto f = [&](bool success) -> Result { auto val = OR_RETURN(enum_success_or_fail(success)); EXPECT_EQ(firstSuccess, val); return A{}; }; auto r = f(true); EXPECT_TRUE(r.ok()); auto s = f(false); EXPECT_TRUE(!s.ok()); } TEST(result, generic_exact) { const std::string firstSuccess{"a"}; struct A {}; auto enum_success_or_fail = [&](bool success) -> Result { if (success) return firstSuccess; return ResultError("Fail", A{}); }; auto f = [&](bool success) -> Result { auto val = OR_RETURN(enum_success_or_fail(success)); EXPECT_EQ(firstSuccess, val); return A{}; }; auto r = f(true); EXPECT_TRUE(r.ok()); auto s = f(false); EXPECT_TRUE(!s.ok()); } struct MyData { const int data; static int copy_constructed; static int move_constructed; explicit MyData(int d) : data(d) {} MyData(const MyData& other) : data(other.data) { copy_constructed++; } MyData(MyData&& other) : data(other.data) { move_constructed++; } MyData& operator=(const MyData&) = delete; MyData& operator=(MyData&&) = delete; }; int MyData::copy_constructed = 0; int MyData::move_constructed = 0; TEST(result, unwrap_does_not_incur_additional_copying) { MyData::copy_constructed = 0; MyData::move_constructed = 0; auto f = []() -> Result { return MyData{10}; }; [&]() -> Result { int data = OR_RETURN(f()).data; EXPECT_EQ(10, data); EXPECT_EQ(0, MyData::copy_constructed); // Moved once when MyData{10} is returned as Result in the lambda f. // Moved once again when the variable d is constructed from OR_RETURN. EXPECT_EQ(2, MyData::move_constructed); return {}; }(); } TEST(result, supports_move_only_type) { auto f = [](bool success) -> Result> { if (success) return std::make_unique("hello"); return Error() << "error"; }; auto g = [&](bool success) -> Result> { auto r = OR_RETURN(f(success)); EXPECT_EQ("hello", *(r.get())); return std::make_unique("world"); }; auto s = g(true); EXPECT_RESULT_OK(s); EXPECT_EQ("world", *(s->get())); auto t = g(false); EXPECT_FALSE(t.ok()); EXPECT_EQ("error", t.error().message()); } TEST(result, unique_ptr) { using testing::Ok; auto return_unique_ptr = [](bool success) -> Result> { auto result = OR_RETURN(Result>(std::make_unique(3))); if (!success) { return Error() << __func__ << " failed."; } return result; }; Result> result1 = return_unique_ptr(false); ASSERT_THAT(result1, Not(Ok())); Result> result2 = return_unique_ptr(true); ASSERT_THAT(result2, Ok()); EXPECT_EQ(**result2, 3); } struct ConstructorTracker { static size_t constructor_called; static size_t copy_constructor_called; static size_t move_constructor_called; static size_t copy_assignment_called; static size_t move_assignment_called; template ConstructorTracker(T&& string) : string(string) { ++constructor_called; } ConstructorTracker(const ConstructorTracker& ct) { ++copy_constructor_called; string = ct.string; } ConstructorTracker(ConstructorTracker&& ct) noexcept { ++move_constructor_called; string = std::move(ct.string); } ConstructorTracker& operator=(const ConstructorTracker& ct) { ++copy_assignment_called; string = ct.string; return *this; } ConstructorTracker& operator=(ConstructorTracker&& ct) noexcept { ++move_assignment_called; string = std::move(ct.string); return *this; } std::string string; }; size_t ConstructorTracker::constructor_called = 0; size_t ConstructorTracker::copy_constructor_called = 0; size_t ConstructorTracker::move_constructor_called = 0; size_t ConstructorTracker::copy_assignment_called = 0; size_t ConstructorTracker::move_assignment_called = 0; Result ReturnConstructorTracker(const std::string& in) { if (in.empty()) { return "literal string"; } if (in == "test2") { return ConstructorTracker(in + in + "2"); } ConstructorTracker result(in + " " + in); return result; }; TEST(result, no_copy_on_return) { // If returning parameters that may be used to implicitly construct the type T of Result, // then those parameters are forwarded to the construction of Result. // If returning an prvalue or xvalue, it will be move constructed during the construction of // Result. // This check ensures that that is the case, and particularly that no copy constructors // are called. auto result1 = ReturnConstructorTracker(""); ASSERT_RESULT_OK(result1); EXPECT_EQ("literal string", result1->string); EXPECT_EQ(1U, ConstructorTracker::constructor_called); EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called); EXPECT_EQ(0U, ConstructorTracker::move_constructor_called); EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called); EXPECT_EQ(0U, ConstructorTracker::move_assignment_called); auto result2 = ReturnConstructorTracker("test2"); ASSERT_RESULT_OK(result2); EXPECT_EQ("test2test22", result2->string); EXPECT_EQ(2U, ConstructorTracker::constructor_called); EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called); EXPECT_EQ(1U, ConstructorTracker::move_constructor_called); EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called); EXPECT_EQ(0U, ConstructorTracker::move_assignment_called); auto result3 = ReturnConstructorTracker("test3"); ASSERT_RESULT_OK(result3); EXPECT_EQ("test3 test3", result3->string); EXPECT_EQ(3U, ConstructorTracker::constructor_called); EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called); EXPECT_EQ(2U, ConstructorTracker::move_constructor_called); EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called); EXPECT_EQ(0U, ConstructorTracker::move_assignment_called); } // Below two tests require that we do not hide the move constructor with our forwarding reference // constructor. This is done with by disabling the forwarding reference constructor if its first // and only type is Result. TEST(result, result_result_with_success) { auto return_result_result_with_success = []() -> Result> { return Result(); }; auto result = return_result_result_with_success(); ASSERT_RESULT_OK(result); ASSERT_RESULT_OK(*result); auto inner_result = result.value(); ASSERT_RESULT_OK(inner_result); } TEST(result, result_result_with_failure) { auto return_result_result_with_error = []() -> Result> { return Result(ResultError("failure string", 6)); }; auto result = return_result_result_with_error(); ASSERT_RESULT_OK(result); ASSERT_FALSE(result->ok()); EXPECT_EQ("failure string", (*result).error().message()); EXPECT_EQ(6, (*result).error().code()); } // This test requires that we disable the forwarding reference constructor if Result is the // *only* type that we are forwarding. In otherwords, if we are forwarding Result, int to // construct a Result, then we still need the constructor. TEST(result, result_two_parameter_constructor_same_type) { struct TestStruct { TestStruct(int value) : value_(value) {} TestStruct(Result result, int value) : value_(result->value_ * value) {} int value_; }; auto return_test_struct = []() -> Result { return Result(std::in_place, Result(std::in_place, 6), 6); }; auto result = return_test_struct(); ASSERT_RESULT_OK(result); EXPECT_EQ(36, result->value_); } TEST(result, die_on_access_failed_result) { Result result = Error(); ASSERT_DEATH(*result, ""); } TEST(result, die_on_get_error_succesful_result) { Result result = "success"; ASSERT_DEATH(result.error(), ""); } template std::basic_ostream& SetErrnoToTwo(std::basic_ostream& ss) { errno = 2; return ss; } TEST(result, preserve_errno) { errno = 1; int old_errno = errno; Result result = Error() << "Failed" << SetErrnoToTwo; ASSERT_FALSE(result.ok()); EXPECT_EQ(old_errno, errno); errno = 1; old_errno = errno; Result result2 = ErrnoError() << "Failed" << SetErrnoToTwo; ASSERT_FALSE(result2.ok()); EXPECT_EQ(old_errno, errno); EXPECT_EQ(old_errno, result2.error().code()); } TEST(result, error_with_fmt) { Result result = Errorf("{} {}!", "hello", "world"); EXPECT_EQ("hello world!", result.error().message()); result = Errorf("{} {}!", std::string("hello"), std::string("world")); EXPECT_EQ("hello world!", result.error().message()); result = Errorf("{1} {0}!", "world", "hello"); EXPECT_EQ("hello world!", result.error().message()); result = Errorf("hello world!"); EXPECT_EQ("hello world!", result.error().message()); Result result2 = Errorf("error occurred with {}", result.error()); EXPECT_EQ("error occurred with hello world!", result2.error().message()); constexpr int test_errno = 6; errno = test_errno; result = ErrnoErrorf("{} {}!", "hello", "world"); EXPECT_EQ(test_errno, result.error().code()); EXPECT_EQ("hello world!: "s + strerror(test_errno), result.error().message()); } TEST(result, error_with_fmt_carries_errno) { constexpr int inner_errno = 6; errno = inner_errno; Result inner_result = ErrnoErrorf("inner failure"); errno = 0; EXPECT_EQ(inner_errno, inner_result.error().code()); // outer_result is created with Errorf, but its error code is got from inner_result. Result outer_result = Errorf("outer failure caused by {}", inner_result.error()); EXPECT_EQ(inner_errno, outer_result.error().code()); EXPECT_EQ("outer failure caused by inner failure: "s + strerror(inner_errno), outer_result.error().message()); // now both result objects are created with ErrnoErrorf. errno from the inner_result // is not passed to outer_result. constexpr int outer_errno = 10; errno = outer_errno; outer_result = ErrnoErrorf("outer failure caused by {}", inner_result.error()); EXPECT_EQ(outer_errno, outer_result.error().code()); EXPECT_EQ("outer failure caused by inner failure: "s + strerror(inner_errno) + ": "s + strerror(outer_errno), outer_result.error().message()); } TEST(result, errno_chaining_multiple) { constexpr int errno1 = 6; errno = errno1; Result inner1 = ErrnoErrorf("error1"); constexpr int errno2 = 10; errno = errno2; Result inner2 = ErrnoErrorf("error2"); // takes the error code of inner2 since its the last one. Result outer = Errorf("two errors: {}, {}", inner1.error(), inner2.error()); EXPECT_EQ(errno2, outer.error().code()); EXPECT_EQ("two errors: error1: "s + strerror(errno1) + ", error2: "s + strerror(errno2), outer.error().message()); } TEST(result, error_without_message) { constexpr bool include_message = false; Result res = Error(10); EXPECT_FALSE(res.ok()); EXPECT_EQ(10, res.error().code()); EXPECT_EQ(sizeof(int), sizeof(res.error())); } namespace testing { class Listener : public ::testing::MatchResultListener { public: Listener() : MatchResultListener(&ss_) {} ~Listener() = default; std::string message() const { return ss_.str(); } private: std::stringstream ss_; }; class ResultMatchers : public ::testing::Test { public: Result result = 1; Result error = Error(EBADF) << "error message"; Listener listener; }; TEST_F(ResultMatchers, ok_result) { EXPECT_TRUE(ExplainMatchResult(Ok(), result, &listener)); EXPECT_THAT(listener.message(), Eq("result is OK")); } TEST_F(ResultMatchers, ok_error) { EXPECT_FALSE(ExplainMatchResult(Ok(), error, &listener)); EXPECT_THAT(listener.message(), StartsWith("error is")); EXPECT_THAT(listener.message(), HasSubstr(error.error().message())); EXPECT_THAT(listener.message(), HasSubstr(strerror(error.error().code()))); } TEST_F(ResultMatchers, not_ok_result) { EXPECT_FALSE(ExplainMatchResult(Not(Ok()), result, &listener)); EXPECT_THAT(listener.message(), Eq("result is OK")); } TEST_F(ResultMatchers, not_ok_error) { EXPECT_TRUE(ExplainMatchResult(Not(Ok()), error, &listener)); EXPECT_THAT(listener.message(), StartsWith("error is")); EXPECT_THAT(listener.message(), HasSubstr(error.error().message())); EXPECT_THAT(listener.message(), HasSubstr(strerror(error.error().code()))); } TEST_F(ResultMatchers, has_value_result) { EXPECT_TRUE(ExplainMatchResult(HasValue(*result), result, &listener)); } TEST_F(ResultMatchers, has_value_wrong_result) { EXPECT_FALSE(ExplainMatchResult(HasValue(*result + 1), result, &listener)); } TEST_F(ResultMatchers, has_value_error) { EXPECT_FALSE(ExplainMatchResult(HasValue(*result), error, &listener)); EXPECT_THAT(listener.message(), StartsWith("error is")); EXPECT_THAT(listener.message(), HasSubstr(error.error().message())); EXPECT_THAT(listener.message(), HasSubstr(strerror(error.error().code()))); } TEST_F(ResultMatchers, has_error_code_result) { EXPECT_FALSE(ExplainMatchResult(HasError(WithCode(error.error().code())), result, &listener)); EXPECT_THAT(listener.message(), Eq("result is OK")); } TEST_F(ResultMatchers, has_error_code_wrong_code) { EXPECT_FALSE(ExplainMatchResult(HasError(WithCode(error.error().code() + 1)), error, &listener)); EXPECT_THAT(listener.message(), StartsWith("actual error is")); EXPECT_THAT(listener.message(), HasSubstr(strerror(error.error().code()))); } TEST_F(ResultMatchers, has_error_code_correct_code) { EXPECT_TRUE(ExplainMatchResult(HasError(WithCode(error.error().code())), error, &listener)); EXPECT_THAT(listener.message(), StartsWith("actual error is")); EXPECT_THAT(listener.message(), HasSubstr(strerror(error.error().code()))); } TEST_F(ResultMatchers, has_error_message_result) { EXPECT_FALSE( ExplainMatchResult(HasError(WithMessage(error.error().message())), result, &listener)); EXPECT_THAT(listener.message(), Eq("result is OK")); } TEST_F(ResultMatchers, has_error_message_wrong_message) { EXPECT_FALSE(ExplainMatchResult(HasError(WithMessage("foo")), error, &listener)); EXPECT_THAT(listener.message(), StartsWith("actual error is")); EXPECT_THAT(listener.message(), HasSubstr(error.error().message())); } TEST_F(ResultMatchers, has_error_message_correct_message) { EXPECT_TRUE(ExplainMatchResult(HasError(WithMessage(error.error().message())), error, &listener)); EXPECT_THAT(listener.message(), StartsWith("actual error is")); EXPECT_THAT(listener.message(), HasSubstr(error.error().message())); } } // namespace testing } // namespace base } // namespace android