/* * Copyright (C) 2017 The Android Open Source Project * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include /** android_boot_control_compute_crc - Compute the CRC-32 of the bootloader * control struct. Only the bytes up to the crc32_le field are considered for * the CRC-32 calculation. */ static uint32_t android_boot_control_compute_crc( struct android_bootloader_control *abc) { return crc32(0, (void *)abc, offsetof(typeof(*abc), crc32_le)); } /** android_boot_control_default - Initialize android_bootloader_control to the * default value which allows to boot all slots in order from the first one. * This value should be used when the bootloader message is corrupted, but not * when a valid message indicates that all slots are unbootable. */ void android_boot_control_default(struct android_bootloader_control *abc) { int i; const struct android_slot_metadata metadata = { .priority = 15, .tries_remaining = 7, .successful_boot = 0, .verity_corrupted = 0, .reserved = 0 }; memcpy(abc->slot_suffix, "a\0\0\0", 4); abc->magic = ANDROID_BOOT_CTRL_MAGIC; abc->version = ANDROID_BOOT_CTRL_VERSION; abc->nb_slot = ARRAY_SIZE(abc->slot_info); memset(abc->reserved0, 0, sizeof(abc->reserved0)); for (i = 0; i < abc->nb_slot; ++i) { abc->slot_info[i] = metadata; } memset(abc->reserved1, 0, sizeof(abc->reserved1)); abc->crc32_le = android_boot_control_compute_crc(abc); } /** android_boot_control_create_from_disk * Load the boot_control struct from disk into newly allocated memory. This * function allocates and returns an integer number of disk blocks, based on the * block size of the passed device to help performing a read-modify-write * operation on the boot_control struct. The boot_control struct offset (2 KiB) * must be a multiple of the device block size, for simplicity. * @dev_desc: device where to read the boot_control struct from. * @part_info: partition in 'dev_desc' where to read from, normally the "misc" * partition should be used. */ static void *android_boot_control_create_from_disk( struct blk_desc *dev_desc, const disk_partition_t *part_info) { ulong abc_offset, abc_blocks; void *buf; abc_offset = offsetof(struct android_bootloader_message_ab, slot_suffix); if (abc_offset % part_info->blksz) { printf("ANDROID: Boot control block not block aligned.\n"); return NULL; } abc_offset /= part_info->blksz; abc_blocks = DIV_ROUND_UP(sizeof(struct android_bootloader_control), part_info->blksz); if (abc_offset + abc_blocks > part_info->size) { printf("ANDROID: boot control partition too small. Need at" " least %lu blocks but have %lu blocks.\n", abc_offset + abc_blocks, part_info->size); return NULL; } buf = malloc(abc_blocks * part_info->blksz); if (!buf) return NULL; if (blk_dread(dev_desc, part_info->start + abc_offset, abc_blocks, buf) != abc_blocks) { printf("ANDROID: Could not read from boot control partition\n"); free(buf); return NULL; } debug("ANDROID: Loaded ABC, %lu blocks.\n", abc_blocks); return buf; } /** android_boot_control_store * Store the loaded boot_control block back to the same location it was read * from with android_boot_control_create_from_misc(). * * @abc_data_block: pointer to the boot_control struct and the extra bytes after * it up to the nearest block boundary. * @dev_desc: device where we should write the boot_control struct. * @part_info: partition on the 'dev_desc' where to write. * @return 0 on success and -1 on error. */ static int android_boot_control_store(void *abc_data_block, struct blk_desc *dev_desc, const disk_partition_t *part_info) { ulong abc_offset, abc_blocks; abc_offset = offsetof(struct android_bootloader_message_ab, slot_suffix) / part_info->blksz; abc_blocks = DIV_ROUND_UP(sizeof(struct android_bootloader_control), part_info->blksz); if (blk_dwrite(dev_desc, part_info->start + abc_offset, abc_blocks, abc_data_block) != abc_blocks) { printf("ANDROID: Could not write back the misc partition\n"); return -1; } return 0; } /** android_boot_compare_slots - compares two slots returning which slot is * should we boot from among the two. * @a: The first bootable slot metadata * @b: The second bootable slot metadata * @return negative if the slot "a" is better, positive of the slot "b" is * better or 0 if they are equally good. */ static int android_ab_compare_slots(const struct android_slot_metadata *a, const struct android_slot_metadata *b) { /* Higher priority is better */ if (a->priority != b->priority) return b->priority - a->priority; /* Higher successful_boot value is better, in case of same priority. */ if (a->successful_boot != b->successful_boot) return b->successful_boot - a->successful_boot; /* Higher tries_remaining is better to ensure round-robin. */ if (a->tries_remaining != b->tries_remaining) return b->tries_remaining - a->tries_remaining; return 0; } int android_ab_select(struct blk_desc *dev_desc, disk_partition_t *part_info) { struct android_bootloader_control *abc; u32 crc32_le; int slot, i; bool store_needed = false; char slot_suffix[4]; abc = android_boot_control_create_from_disk(dev_desc, part_info); if (!abc) { /* This condition represents an actual problem with the code * or the board setup, like an invalid partition information. * Signal a repair mode and do not try to boot from either * slot. */ return -1; } crc32_le = android_boot_control_compute_crc(abc); if (abc->crc32_le != crc32_le) { printf("ANDROID: Invalid CRC-32 (expected %.8x, found %.8x), " "re-initializing A/B metadata.\n", crc32_le, abc->crc32_le); android_boot_control_default(abc); store_needed = true; } if (abc->magic != ANDROID_BOOT_CTRL_MAGIC) { printf("ANDROID: Unknown A/B metadata: %.8x\n", abc->magic); free(abc); return -1; } if (abc->version > ANDROID_BOOT_CTRL_VERSION) { printf("ANDROID: Unsupported A/B metadata version: %.8x\n", abc->version); free(abc); return -1; } /* At this point a valid boot control metadata is stored in abc, * followed by other reserved data in the same block. * We select a with the higher priority slot that * - is not marked as corrupted and * - either has tries_remaining > 0 or successful_boot is true. * If the slot selected has a false successful_boot, we also decrement * the tries_remaining until it eventually becomes unbootable because * tries_remaining reaches 0. This mechanism produces a bootloader * induced rollback, typically right after a failed update. */ /* Safety check: limit the number of slots. */ if (abc->nb_slot > ARRAY_SIZE(abc->slot_info)) { abc->nb_slot = ARRAY_SIZE(abc->slot_info); store_needed = true; } slot = -1; for (i = 0; i < abc->nb_slot; ++i) { if (abc->slot_info[i].verity_corrupted || !abc->slot_info[i].tries_remaining) { debug("ANDROID: unbootable slot %d tries: %d, " "corrupt: %d\n", i, abc->slot_info[i].tries_remaining, abc->slot_info[i].verity_corrupted); continue; } debug("ANDROID: bootable slot %d pri: %d, tries: %d, " "corrupt: %d, successful: %d\n", i, abc->slot_info[i].priority, abc->slot_info[i].tries_remaining, abc->slot_info[i].verity_corrupted, abc->slot_info[i].successful_boot); if (slot < 0 || android_ab_compare_slots(&abc->slot_info[i], &abc->slot_info[slot]) < 0) { slot = i; } } if (slot >= 0 && !abc->slot_info[slot].successful_boot) { printf("ANDROID: Attempting slot %c, tries remaining %d\n", ANDROID_BOOT_SLOT_NAME(slot), abc->slot_info[slot].tries_remaining); abc->slot_info[slot].tries_remaining--; store_needed = true; } if (slot >= 0) { /* Legacy user-space requires this field to be set in the BCB. * Newer releases load this the slot suffix from the command * line or the device tree. */ memset(slot_suffix, 0, sizeof(slot_suffix)); slot_suffix[0] = ANDROID_BOOT_SLOT_NAME(slot); if (memcmp(abc->slot_suffix, slot_suffix, sizeof(slot_suffix))) { memcpy(abc->slot_suffix, slot_suffix, sizeof(slot_suffix)); store_needed = true; } } if (store_needed) { abc->crc32_le = android_boot_control_compute_crc(abc); android_boot_control_store(abc, dev_desc, part_info); } free(abc); if (slot < 0) return -1; return slot; } int read_misc_virtual_ab_message(struct misc_virtual_ab_message *message) { struct blk_desc *dev_desc; disk_partition_t part_info; u32 bcb_offset = (ANDROID_VIRTUAL_AB_METADATA_OFFSET_IN_MISC >> 9); int cnt, ret; if (!message) { debug("%s: message is NULL!\n", __func__); return -1; } dev_desc = rockchip_get_bootdev(); if (!dev_desc) { debug("%s: dev_desc is NULL!\n", __func__); return -1; } ret = part_get_info_by_name(dev_desc, PART_MISC, &part_info); if (ret < 0) { debug("%s: Could not found misc partition\n", __func__); return -1; } cnt = DIV_ROUND_UP(sizeof(struct misc_virtual_ab_message), dev_desc->blksz); if (blk_dread(dev_desc, part_info.start + bcb_offset, cnt, message) != cnt) { debug("%s: could not read from misc partition\n", __func__); return -1; } return 0; } int write_misc_virtual_ab_message(struct misc_virtual_ab_message *message) { struct blk_desc *dev_desc; disk_partition_t part_info; u32 bcb_offset = (ANDROID_VIRTUAL_AB_METADATA_OFFSET_IN_MISC >> 9); int cnt, ret; if (!message) { debug("%s: message is NULL!\n", __func__); return -1; } dev_desc = rockchip_get_bootdev(); if (!dev_desc) { debug("%s: dev_desc is NULL!\n", __func__); return -1; } ret = part_get_info_by_name(dev_desc, PART_MISC, &part_info); if (ret < 0) { debug("%s: Could not found misc partition\n", __func__); return -1; } cnt = DIV_ROUND_UP(sizeof(struct misc_virtual_ab_message), dev_desc->blksz); ret = blk_dwrite(dev_desc, part_info.start + bcb_offset, cnt, message); if (ret != cnt) debug("%s: blk_dwrite write failed, ret=%d\n", __func__, ret); return 0; } int ab_is_support_dynamic_partition(struct blk_desc *dev_desc) { disk_partition_t super_part_info; disk_partition_t boot_part_info; int part_num; int is_dp = 0; char *super_dp = NULL; char *super_info = "androidboot.super_partition="; memset(&super_part_info, 0x0, sizeof(super_part_info)); part_num = part_get_info_by_name(dev_desc, ANDROID_PARTITION_SUPER, &super_part_info); if (part_num < 0) { memset(&boot_part_info, 0x0, sizeof(boot_part_info)); part_num = part_get_info_by_name(dev_desc, ANDROID_PARTITION_BOOT, &boot_part_info); if (part_num < 0) { is_dp = 0; } else { andr_img_hdr hdr; ulong hdr_blocks = sizeof(struct andr_img_hdr) / boot_part_info.blksz; memset(&hdr, 0x0, sizeof(hdr)); if (blk_dread(dev_desc, boot_part_info.start, hdr_blocks, &hdr) != hdr_blocks) { is_dp = 0; } else { debug("hdr cmdline=%s\n", hdr.cmdline); super_dp = strstr(hdr.cmdline, super_info); if (super_dp) is_dp = 1; else is_dp = 0; } } } else { debug("Find super partition, the firmware support dynamic partition\n"); is_dp = 1; } debug("%s is_dp=%d\n", __func__, is_dp); return is_dp; } static int get_partition_unique_uuid(char *partition, char *guid_buf, size_t guid_buf_size) { struct blk_desc *dev_desc; disk_partition_t part_info; dev_desc = rockchip_get_bootdev(); if (!dev_desc) { printf("%s: Could not find device\n", __func__); return -1; } if (part_get_info_by_name(dev_desc, partition, &part_info) < 0) { printf("Could not find \"%s\" partition\n", partition); return -1; } if (guid_buf && guid_buf_size > 0) memcpy(guid_buf, part_info.uuid, guid_buf_size); return 0; } static void ab_update_root_uuid(void) { /* * In android a/b & avb process, the system.img is mandory and the * "root=" will be added in vbmeta.img. * * In linux a/b & avb process, the system is NOT mandory and the * "root=" will not be added in vbmeta.img but in kernel dts bootargs. * (Parsed and dropped late, i.e. "root=" is not available now/always). * * To compatible with the above two processes, test the existence of * "root=" and create it for linux ab & avb. */ char root_partuuid[70] = "root=PARTUUID="; char *boot_args = env_get("bootargs"); char guid_buf[UUID_SIZE] = {0}; struct blk_desc *dev_desc; dev_desc = rockchip_get_bootdev(); if (!dev_desc) { printf("%s: Could not find device\n", __func__); return; } if (ab_is_support_dynamic_partition(dev_desc)) return; if (!strstr(boot_args, "root=")) { get_partition_unique_uuid(ANDROID_PARTITION_SYSTEM, guid_buf, UUID_SIZE); strcat(root_partuuid, guid_buf); env_update("bootargs", root_partuuid); } } void ab_update_root_partition(void) { char *boot_args = env_get("bootargs"); char root_part_dev[64] = {0}; disk_partition_t part_info; struct blk_desc *dev_desc; const char *part_type; int part_num; dev_desc = rockchip_get_bootdev(); if (!dev_desc) return; if (ab_is_support_dynamic_partition(dev_desc)) return; /* Get 'system' partition device number. */ part_num = part_get_info_by_name(dev_desc, ANDROID_PARTITION_SYSTEM, &part_info); if (part_num < 0) { printf("%s: Failed to get partition '%s'.\n", __func__, ANDROID_PARTITION_SYSTEM); return; } /* Get partition type. */ part_type = part_get_type(dev_desc); if (!part_type) return; /* Judge the partition device type. */ switch (dev_desc->if_type) { case IF_TYPE_MMC: if (strstr(part_type, "ENV")) snprintf(root_part_dev, 64, "root=/dev/mmcblk0p%d", part_num); else if (strstr(part_type, "EFI")) ab_update_root_uuid(); break; case IF_TYPE_SPINAND: if (strstr(part_type, "ENV")) /* TODO */ printf("%s: TODO: ENV partition for 'IF_TYPE_SPINAND'.\n", __func__); else if (strstr(part_type, "EFI")) ab_update_root_uuid(); break; case IF_TYPE_MTD: if (dev_desc->devnum == BLK_MTD_NAND || dev_desc->devnum == BLK_MTD_SPI_NAND) { if (strstr(boot_args, "rootfstype=squashfs") || strstr(boot_args, "rootfstype=erofs")) snprintf(root_part_dev, 64, "ubi.mtd=%d root=/dev/ubiblock0_0", part_num - 1); else if (strstr(boot_args, "rootfstype=ubifs")) snprintf(root_part_dev, 64, "ubi.mtd=%d root=ubi0:system", part_num - 1); } else if (dev_desc->devnum == BLK_MTD_SPI_NOR) { snprintf(root_part_dev, 64, "root=/dev/mtdblock%d", part_num - 1); } break; default: printf("%s: Not found part type, failed to set root part device.\n", __func__); return; } env_update("bootargs", root_part_dev); } int ab_get_slot_suffix(char *slot_suffix) { /* TODO: get from pre-loader or misc partition */ if (rk_avb_get_current_slot(slot_suffix)) { printf("rk_avb_get_current_slot() failed\n"); return -1; } if (slot_suffix[0] != '_') { #ifndef CONFIG_ANDROID_AVB printf("###There is no bootable slot, bring up lastboot!###\n"); if (rk_get_lastboot() == 1) memcpy(slot_suffix, "_b", 2); else if (rk_get_lastboot() == 0) memcpy(slot_suffix, "_a", 2); else #endif return -1; } return 0; } int ab_decrease_tries(void) { AvbABData ab_data_orig; AvbABData ab_data; char slot_suffix[3] = {0}; AvbOps *ops; size_t slot_index = 0; if (ab_get_slot_suffix(slot_suffix)) return -1; if (!strncmp(slot_suffix, "_a", 2)) slot_index = 0; else if (!strncmp(slot_suffix, "_b", 2)) slot_index = 1; else slot_index = 0; ops = avb_ops_user_new(); if (!ops) { printf("avb_ops_user_new() failed!\n"); return -1; } if (load_metadata(ops->ab_ops, &ab_data, &ab_data_orig)) { printf("Can not load metadata\n"); return -1; } /* ... and decrement tries remaining, if applicable. */ if (!ab_data.slots[slot_index].successful_boot && ab_data.slots[slot_index].tries_remaining > 0) ab_data.slots[slot_index].tries_remaining -= 1; if (save_metadata_if_changed(ops->ab_ops, &ab_data, &ab_data_orig)) { printf("Can not save metadata\n"); return -1; } return 0; } /* * In android A/B system, there is no recovery partition, * but in the linux system, we need the recovery to update system. * This function is used to find firmware in recovery partition * when enable CONFIG_ANDROID_AB. */ bool ab_can_find_recovery_part(void) { disk_partition_t part_info; struct blk_desc *dev_desc; int part_num; dev_desc = rockchip_get_bootdev(); if (!dev_desc) { printf("%s: Could not find device\n", __func__); return false; } part_num = part_get_info_by_name(dev_desc, ANDROID_PARTITION_RECOVERY, &part_info); if (part_num < 0) return false; else return true; }