/* * Copyright (C) 2016 The Android Open Source Project * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; int android_bootloader_message_load( struct blk_desc *dev_desc, const disk_partition_t *part_info, struct android_bootloader_message *message) { ulong message_blocks = sizeof(struct android_bootloader_message) / part_info->blksz; if (message_blocks > part_info->size) { printf("misc partition too small.\n"); return -1; } if (blk_dread(dev_desc, part_info->start + android_bcb_msg_sector_offset(), message_blocks, message) != message_blocks) { printf("Could not read from misc partition\n"); return -1; } debug("ANDROID: Loaded BCB, %lu blocks.\n", message_blocks); return 0; } static int android_bootloader_message_write( struct blk_desc *dev_desc, const disk_partition_t *part_info, struct android_bootloader_message *message) { ulong message_blocks = sizeof(struct android_bootloader_message) / part_info->blksz + android_bcb_msg_sector_offset(); if (message_blocks > part_info->size) { printf("misc partition too small.\n"); return -1; } if (blk_dwrite(dev_desc, part_info->start, message_blocks, message) != message_blocks) { printf("Could not write to misc partition\n"); return -1; } debug("ANDROID: Wrote new BCB, %lu blocks.\n", message_blocks); return 0; } static enum android_boot_mode android_bootloader_load_and_clear_mode( struct blk_desc *dev_desc, const disk_partition_t *misc_part_info) { struct android_bootloader_message bcb; #ifdef CONFIG_FASTBOOT char *bootloader_str; /* Check for message from bootloader stored in RAM from a previous boot. */ bootloader_str = (char *)CONFIG_FASTBOOT_BUF_ADDR; if (!strcmp("reboot-bootloader", bootloader_str)) { bootloader_str[0] = '\0'; return ANDROID_BOOT_MODE_BOOTLOADER; } #endif /* Check and update the BCB message if needed. */ if (android_bootloader_message_load(dev_desc, misc_part_info, &bcb) < 0) { printf("WARNING: Unable to load the BCB.\n"); return ANDROID_BOOT_MODE_NORMAL; } if (!strcmp("bootonce-bootloader", bcb.command)) { /* Erase the message in the BCB since this value should be used * only once. */ memset(bcb.command, 0, sizeof(bcb.command)); android_bootloader_message_write(dev_desc, misc_part_info, &bcb); return ANDROID_BOOT_MODE_BOOTLOADER; } if (!strcmp("boot-recovery", bcb.command)) return ANDROID_BOOT_MODE_RECOVERY; if (!strcmp("boot-fastboot", bcb.command)) return ANDROID_BOOT_MODE_RECOVERY; return ANDROID_BOOT_MODE_NORMAL; } int android_bcb_write(char *cmd) { struct android_bootloader_message message = {0}; disk_partition_t part_info; struct blk_desc *dev_desc; int ret; if (!cmd) return -ENOMEM; if (strlen(cmd) >= 32) return -ENOMEM; dev_desc = rockchip_get_bootdev(); if (!dev_desc) { printf("%s: dev_desc is NULL!\n", __func__); return -ENODEV; } ret = part_get_info_by_name(dev_desc, ANDROID_PARTITION_MISC, &part_info); if (ret < 0) { printf("%s: Could not found misc partition, just run recovery\n", __func__); return -ENODEV; } strcpy(message.command, cmd); return android_bootloader_message_write(dev_desc, &part_info, &message); } /** * Return the reboot reason string for the passed boot mode. * * @param mode The Android Boot mode. * @return a pointer to the reboot reason string for mode. */ static const char *android_boot_mode_str(enum android_boot_mode mode) { switch (mode) { case ANDROID_BOOT_MODE_NORMAL: return "(none)"; case ANDROID_BOOT_MODE_RECOVERY: return "recovery"; case ANDROID_BOOT_MODE_BOOTLOADER: return "bootloader"; } return NULL; } static int android_bootloader_boot_bootloader(void) { const char *fastboot_cmd = env_get("fastbootcmd"); if (fastboot_cmd == NULL) { printf("fastboot_cmd is null, run default fastboot_cmd!\n"); fastboot_cmd = "fastboot usb 0"; } return run_command(fastboot_cmd, CMD_FLAG_ENV); } #ifdef CONFIG_SUPPORT_OEM_DTB static int android_bootloader_get_fdt(const char *part_name, const char *load_file_name) { struct blk_desc *dev_desc; disk_partition_t part_info; char *fdt_addr = NULL; char dev_part[3] = {0}; loff_t bytes = 0; loff_t pos = 0; loff_t len_read; unsigned long addr = 0; int part_num = -1; int ret; dev_desc = rockchip_get_bootdev(); if (!dev_desc) { printf("%s: dev_desc is NULL!\n", __func__); return -1; } part_num = part_get_info_by_name(dev_desc, part_name, &part_info); if (part_num < 0) { printf("ANDROID: Could not find partition \"%s\"\n", part_name); return -1; } snprintf(dev_part, ARRAY_SIZE(dev_part), ":%x", part_num); if (fs_set_blk_dev_with_part(dev_desc, part_num)) return -1; fdt_addr = env_get("fdt_addr_r"); if (!fdt_addr) { printf("ANDROID: No Found FDT Load Address.\n"); return -1; } addr = simple_strtoul(fdt_addr, NULL, 16); ret = fs_read(load_file_name, addr, pos, bytes, &len_read); if (ret < 0) return -1; return 0; } #endif /* * Test on RK3308 AARCH64 mode (Cortex A35 816 MHZ) boot with eMMC: * * |-------------------------------------------------------------------| * | Format | Size(Byte) | Ratio | Decomp time(ms) | Boot time(ms) | * |-------------------------------------------------------------------| * | Image | 7720968 | | | 488 | * |-------------------------------------------------------------------| * | Image.lz4 | 4119448 | 53% | 59 | 455 | * |-------------------------------------------------------------------| * | Image.lzo | 3858322 | 49% | 141 | 536 | * |-------------------------------------------------------------------| * | Image.gz | 3529108 | 45% | 222 | 609 | * |-------------------------------------------------------------------| * | Image.bz2 | 3295914 | 42% | 2940 | | * |-------------------------------------------------------------------| * | Image.lzma| 2683750 | 34% | | | * |-------------------------------------------------------------------| */ static int sysmem_alloc_uncomp_kernel(ulong andr_hdr, ulong uncomp_kaddr, u32 comp) { struct andr_img_hdr *hdr = (struct andr_img_hdr *)andr_hdr; ulong ksize, kaddr; if (comp != IH_COMP_NONE) { /* Release compressed sysmem */ kaddr = env_get_hex("kernel_addr_c", 0); if (!kaddr) kaddr = env_get_hex("kernel_addr_r", 0); kaddr -= hdr->page_size; if (sysmem_free((phys_addr_t)kaddr)) return -EINVAL; #ifdef CONFIG_SKIP_RELOCATE_UBOOT sysmem_free(CONFIG_SYS_TEXT_BASE); #endif /* * Use smaller Ratio to get larger estimated uncompress * kernel size. */ if (comp == IH_COMP_ZIMAGE) ksize = hdr->kernel_size * 100 / 45; else if (comp == IH_COMP_LZ4) ksize = hdr->kernel_size * 100 / 50; else if (comp == IH_COMP_LZO) ksize = hdr->kernel_size * 100 / 45; else if (comp == IH_COMP_GZIP) ksize = hdr->kernel_size * 100 / 40; else if (comp == IH_COMP_BZIP2) ksize = hdr->kernel_size * 100 / 40; else if (comp == IH_COMP_LZMA) ksize = hdr->kernel_size * 100 / 30; else ksize = hdr->kernel_size; kaddr = uncomp_kaddr; ksize = ALIGN(ksize, 512); if (!sysmem_alloc_base(MEM_UNCOMP_KERNEL, (phys_addr_t)kaddr, ksize)) return -ENOMEM; } return 0; } int android_bootloader_boot_kernel(unsigned long kernel_address) { char *kernel_addr_r = env_get("kernel_addr_r"); char *kernel_addr_c = env_get("kernel_addr_c"); char *fdt_addr = env_get("fdt_addr_r"); char kernel_addr_str[12]; char comp_str[32] = {0}; ulong comp_type; const char *comp_name[] = { [IH_COMP_NONE] = "IMAGE", [IH_COMP_GZIP] = "GZIP", [IH_COMP_BZIP2] = "BZIP2", [IH_COMP_LZMA] = "LZMA", [IH_COMP_LZO] = "LZO", [IH_COMP_LZ4] = "LZ4", [IH_COMP_ZIMAGE]= "ZIMAGE", }; char *bootm_args[] = { kernel_addr_str, kernel_addr_str, fdt_addr, NULL }; comp_type = env_get_ulong("os_comp", 10, 0); sprintf(kernel_addr_str, "0x%08lx", kernel_address); if (comp_type != IH_COMP_NONE) { if (comp_type == IH_COMP_ZIMAGE && kernel_addr_r && !kernel_addr_c) { kernel_addr_c = kernel_addr_r; kernel_addr_r = __stringify(CONFIG_SYS_SDRAM_BASE); } snprintf(comp_str, 32, "%s%s%s", "(Uncompress to ", kernel_addr_r, ")"); } printf("Booting %s kernel at %s%s with fdt at %s...\n\n\n", comp_name[comp_type], comp_type != IH_COMP_NONE ? kernel_addr_c : kernel_addr_r, comp_str, fdt_addr); hotkey_run(HK_SYSMEM); /* * Check whether there is enough space for uncompress kernel, * Actually, here only gives a sysmem warning message when failed * but never return -1. */ if (sysmem_alloc_uncomp_kernel(kernel_address, simple_strtoul(kernel_addr_r, NULL, 16), comp_type)) return -1; return do_bootm_states(NULL, 0, ARRAY_SIZE(bootm_args), bootm_args, BOOTM_STATE_START | BOOTM_STATE_FINDOS | BOOTM_STATE_FINDOTHER | BOOTM_STATE_LOADOS | #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH BOOTM_STATE_RAMDISK | #endif BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO, &images, 1); } static char *strjoin(const char **chunks, char separator) { int len, joined_len = 0; char *ret, *current; const char **p; for (p = chunks; *p; p++) joined_len += strlen(*p) + 1; if (!joined_len) { ret = malloc(1); if (ret) ret[0] = '\0'; return ret; } ret = malloc(joined_len); current = ret; if (!ret) return ret; for (p = chunks; *p; p++) { len = strlen(*p); memcpy(current, *p, len); current += len; *current = separator; current++; } /* Replace the last separator by a \0. */ current[-1] = '\0'; return ret; } /** android_assemble_cmdline - Assemble the command line to pass to the kernel * @return a newly allocated string */ char *android_assemble_cmdline(const char *slot_suffix, const char *extra_args) { const char *cmdline_chunks[16]; const char **current_chunk = cmdline_chunks; char *env_cmdline, *cmdline, *rootdev_input, *serialno; char *allocated_suffix = NULL; char *allocated_serialno = NULL; char *allocated_rootdev = NULL; unsigned long rootdev_len; env_cmdline = env_get("bootargs"); if (env_cmdline) *(current_chunk++) = env_cmdline; /* The |slot_suffix| needs to be passed to the kernel to know what * slot to boot from. */ #ifdef CONFIG_ANDROID_AB if (slot_suffix) { allocated_suffix = malloc(strlen(ANDROID_ARG_SLOT_SUFFIX) + strlen(slot_suffix) + 1); memset(allocated_suffix, 0, strlen(ANDROID_ARG_SLOT_SUFFIX) + strlen(slot_suffix) + 1); strcpy(allocated_suffix, ANDROID_ARG_SLOT_SUFFIX); strcat(allocated_suffix, slot_suffix); *(current_chunk++) = allocated_suffix; } #endif serialno = env_get("serial#"); if (serialno) { allocated_serialno = malloc(strlen(ANDROID_ARG_SERIALNO) + strlen(serialno) + 1); memset(allocated_serialno, 0, strlen(ANDROID_ARG_SERIALNO) + strlen(serialno) + 1); strcpy(allocated_serialno, ANDROID_ARG_SERIALNO); strcat(allocated_serialno, serialno); *(current_chunk++) = allocated_serialno; } rootdev_input = env_get("android_rootdev"); if (rootdev_input) { rootdev_len = strlen(ANDROID_ARG_ROOT) + CONFIG_SYS_CBSIZE + 1; allocated_rootdev = malloc(rootdev_len); strcpy(allocated_rootdev, ANDROID_ARG_ROOT); cli_simple_process_macros(rootdev_input, allocated_rootdev + strlen(ANDROID_ARG_ROOT)); /* Make sure that the string is null-terminated since the * previous could not copy to the end of the input string if it * is too big. */ allocated_rootdev[rootdev_len - 1] = '\0'; *(current_chunk++) = allocated_rootdev; } if (extra_args) *(current_chunk++) = extra_args; *(current_chunk++) = NULL; cmdline = strjoin(cmdline_chunks, ' '); free(allocated_suffix); free(allocated_rootdev); return cmdline; } #ifdef CONFIG_ANDROID_AVB static void slot_set_unbootable(AvbABSlotData* slot) { slot->priority = 0; slot->tries_remaining = 0; slot->successful_boot = 0; } static char *join_str(const char *a, const char *b) { size_t len = strlen(a) + strlen(b) + 1 /* null term */; char *ret = (char *)malloc(len); if (!ret) { debug("failed to alloc %zu\n", len); return NULL; } strcpy(ret, a); strcat(ret, b); return ret; } static size_t get_partition_size(AvbOps *ops, char *name, const char *slot_suffix) { char *partition_name = join_str(name, slot_suffix); uint64_t size = 0; AvbIOResult res; if (partition_name == NULL) goto bail; res = ops->get_size_of_partition(ops, partition_name, &size); if (res != AVB_IO_RESULT_OK && res != AVB_IO_RESULT_ERROR_NO_SUCH_PARTITION) size = 0; bail: if (partition_name) free(partition_name); return size; } static struct AvbOpsData preload_user_data; static int avb_image_distribute_prepare(AvbSlotVerifyData *slot_data, AvbOps *ops, char *slot_suffix) { struct AvbOpsData *data = (struct AvbOpsData *)(ops->user_data); size_t vendor_boot_size; size_t init_boot_size; size_t resource_size; size_t boot_size; void *image_buf; boot_size = max(get_partition_size(ops, ANDROID_PARTITION_BOOT, slot_suffix), get_partition_size(ops, ANDROID_PARTITION_RECOVERY, slot_suffix)); init_boot_size = get_partition_size(ops, ANDROID_PARTITION_INIT_BOOT, slot_suffix); vendor_boot_size = get_partition_size(ops, ANDROID_PARTITION_VENDOR_BOOT, slot_suffix); resource_size = get_partition_size(ops, ANDROID_PARTITION_RESOURCE, slot_suffix); image_buf = sysmem_alloc(MEM_AVB_ANDROID, boot_size + init_boot_size + vendor_boot_size + resource_size); if (!image_buf) { printf("avb: sysmem alloc failed\n"); return -ENOMEM; } /* layout: | boot/recovery | vendor_boot | init_boot | resource | */ data->slot_suffix = slot_suffix; data->boot.addr = image_buf; data->boot.size = 0; data->vendor_boot.addr = data->boot.addr + boot_size; data->vendor_boot.size = 0; data->init_boot.addr = data->vendor_boot.addr + vendor_boot_size; data->init_boot.size = 0; data->resource.addr = data->init_boot.addr + init_boot_size; data->resource.size = 0; return 0; } static int avb_image_distribute_finish(AvbSlotVerifyData *slot_data, AvbSlotVerifyFlags flags, ulong *load_address) { struct andr_img_hdr *hdr; ulong load_addr = *load_address; void *vendor_boot_hdr = NULL; void *init_boot_hdr = NULL; void *boot_hdr = NULL; char *part_name; int i, ret; for (i = 0; i < slot_data->num_loaded_partitions; i++) { part_name = slot_data->loaded_partitions[i].partition_name; if (!strncmp(ANDROID_PARTITION_BOOT, part_name, 4) || !strncmp(ANDROID_PARTITION_RECOVERY, part_name, 8)) { boot_hdr = slot_data->loaded_partitions[i].data; } else if (!strncmp(ANDROID_PARTITION_INIT_BOOT, part_name, 9)) { init_boot_hdr = slot_data->loaded_partitions[i].data; } else if (!strncmp(ANDROID_PARTITION_VENDOR_BOOT, part_name, 11)) { vendor_boot_hdr = slot_data->loaded_partitions[i].data; } } /* * populate boot_img_hdr_v34 * * If allow verification error: the images are loaded by * ops->get_preloaded_partition() which auto populates * boot_img_hdr_v34. * * If not allow verification error: the images are full loaded * by ops->read_from_partition() which doesn't populate * boot_img_hdr_v34, we need to fix it here for bootm and */ hdr = boot_hdr; if (hdr->header_version >= 3 && !(flags & AVB_SLOT_VERIFY_FLAGS_ALLOW_VERIFICATION_ERROR)) { hdr = malloc(sizeof(struct andr_img_hdr)); if (!hdr) return -ENOMEM; ret = populate_boot_info(boot_hdr, vendor_boot_hdr, init_boot_hdr, hdr, true); if (ret < 0) { printf("avb: populate boot info failed, ret=%d\n", ret); return ret; } memcpy(boot_hdr, hdr, sizeof(*hdr)); } /* distribute ! */ load_addr -= hdr->page_size; if (android_image_memcpy_separate(boot_hdr, &load_addr)) { printf("Failed to separate copy android image\n"); return AVB_SLOT_VERIFY_RESULT_ERROR_IO; } *load_address = load_addr; return 0; } int android_image_verify_resource(const char *boot_part, ulong *resc_buf) { const char *requested_partitions[] = { NULL, NULL, }; struct AvbOpsData *data; uint8_t unlocked = true; AvbOps *ops; AvbSlotVerifyFlags flags; AvbSlotVerifyData *slot_data = {NULL}; AvbSlotVerifyResult verify_result; char slot_suffix[3] = {0}; char *part_name; void *image_buf = NULL; int retry_no_vbmeta_partition = 1; int i, ret; ops = avb_ops_user_new(); if (ops == NULL) { printf("avb_ops_user_new() failed!\n"); return -AVB_SLOT_VERIFY_RESULT_ERROR_OOM; } if (ops->read_is_device_unlocked(ops, (bool *)&unlocked) != AVB_IO_RESULT_OK) printf("Error determining whether device is unlocked.\n"); printf("Device is: %s\n", (unlocked & LOCK_MASK)? "UNLOCKED" : "LOCKED"); if (unlocked & LOCK_MASK) { *resc_buf = 0; return 0; } flags = AVB_SLOT_VERIFY_FLAGS_NONE; if (strcmp(boot_part, ANDROID_PARTITION_RECOVERY) == 0) flags |= AVB_SLOT_VERIFY_FLAGS_NO_VBMETA_PARTITION; #ifdef CONFIG_ANDROID_AB part_name = strdup(boot_part); *(part_name + strlen(boot_part) - 2) = '\0'; requested_partitions[0] = part_name; ret = rk_avb_get_current_slot(slot_suffix); if (ret) { printf("Failed to get slot suffix, ret=%d\n", ret); return ret; } #else requested_partitions[0] = boot_part; #endif data = (struct AvbOpsData *)(ops->user_data); ret = avb_image_distribute_prepare(slot_data, ops, slot_suffix); if (ret) { printf("avb image distribute prepare failed %d\n", ret); return ret; } retry_verify: verify_result = avb_slot_verify(ops, requested_partitions, slot_suffix, flags, AVB_HASHTREE_ERROR_MODE_RESTART, &slot_data); if (verify_result != AVB_SLOT_VERIFY_RESULT_OK && verify_result != AVB_SLOT_VERIFY_RESULT_ERROR_PUBLIC_KEY_REJECTED) { if (retry_no_vbmeta_partition && strcmp(boot_part, ANDROID_PARTITION_RECOVERY) == 0) { printf("Verify recovery with vbmeta.\n"); flags &= ~AVB_SLOT_VERIFY_FLAGS_NO_VBMETA_PARTITION; retry_no_vbmeta_partition = 0; goto retry_verify; } } if (verify_result != AVB_SLOT_VERIFY_RESULT_OK || !slot_data) { sysmem_free((ulong)data->boot.addr); return verify_result; } for (i = 0; i < slot_data->num_loaded_partitions; i++) { part_name = slot_data->loaded_partitions[i].partition_name; if (!strncmp(ANDROID_PARTITION_RESOURCE, part_name, 8)) { image_buf = slot_data->loaded_partitions[i].data; break; } else if (!strncmp(ANDROID_PARTITION_BOOT, part_name, 4) || !strncmp(ANDROID_PARTITION_RECOVERY, part_name, 8)) { struct andr_img_hdr *hdr; hdr = (void *)slot_data->loaded_partitions[i].data; if (android_image_check_header(hdr)) continue; if (hdr->header_version <= 2) { image_buf = (void *)hdr + hdr->page_size + ALIGN(hdr->kernel_size, hdr->page_size) + ALIGN(hdr->ramdisk_size, hdr->page_size); break; } } } if (image_buf) { memcpy((char *)&preload_user_data, (char *)data, sizeof(*data)); *resc_buf = (ulong)image_buf; } return 0; } /* * AVB Policy. * * == avb with unlock: * Don't process hash verify. * Go pre-loaded path: Loading vendor_boot and init_boot * directly to where they should be, while loading the * boot/recovery. The boot message tells like: * ··· * preloaded: distribute image from 'boot_a' * preloaded: distribute image from 'init_boot_a' * preloaded: distribute image from 'vendor_boot_a' * ··· * * == avb with lock: * Process hash verify. * Go pre-loaded path: Loading full vendor_boot, init_boot and * boot/recovery one by one to verify, and distributing them to * where they should be by memcpy at last. * * The three images share a large memory buffer that allocated * by sysmem_alloc(), it locate at high memory address that * just lower than SP bottom. The boot message tells like: * ··· * preloaded: full image from 'boot_a' at 0xe47f90c0 - 0xe7a4b0c0 * preloaded: full image from 'init_boot_a' at 0xeaff90c0 - 0xeb2950c0 * preloaded: full image from 'vendor_boot_a' at 0xe87f90c0 - 0xe9f6e0c0 * ··· */ static AvbSlotVerifyResult android_slot_verify(char *boot_partname, unsigned long *android_load_address, char *slot_suffix) { const char *requested_partitions[] = { boot_partname, NULL, NULL, NULL, }; struct AvbOpsData *data; struct blk_desc *dev_desc; struct andr_img_hdr *hdr; disk_partition_t part_info; uint8_t unlocked = true; AvbOps *ops; AvbSlotVerifyFlags flags; AvbSlotVerifyData *slot_data = {NULL}; AvbSlotVerifyResult verify_result; AvbABData ab_data, ab_data_orig; size_t slot_index_to_boot = 0; char verify_state[38] = {0}; char can_boot = 1; char retry_no_vbmeta_partition = 1; unsigned long load_address = *android_load_address; int ret; dev_desc = rockchip_get_bootdev(); if (!dev_desc) return AVB_IO_RESULT_ERROR_IO; if (part_get_info_by_name(dev_desc, boot_partname, &part_info) < 0) { printf("Could not find \"%s\" partition\n", boot_partname); return AVB_IO_RESULT_ERROR_NO_SUCH_PARTITION; } hdr = populate_andr_img_hdr(dev_desc, &part_info); if (!hdr) { printf("No valid android hdr\n"); return AVB_IO_RESULT_ERROR_NO_SUCH_VALUE; } if (hdr->header_version >= 4) { requested_partitions[1] = ANDROID_PARTITION_VENDOR_BOOT; if (((hdr->os_version >> 25) & 0x7f) >= 13) requested_partitions[2] = ANDROID_PARTITION_INIT_BOOT; } ops = avb_ops_user_new(); if (ops == NULL) { printf("avb_ops_user_new() failed!\n"); return AVB_SLOT_VERIFY_RESULT_ERROR_OOM; } if (ops->read_is_device_unlocked(ops, (bool *)&unlocked) != AVB_IO_RESULT_OK) printf("Error determining whether device is unlocked.\n"); printf("read_is_device_unlocked() ops returned that device is %s\n", (unlocked & LOCK_MASK)? "UNLOCKED" : "LOCKED"); flags = AVB_SLOT_VERIFY_FLAGS_NONE; if (unlocked & LOCK_MASK) flags |= AVB_SLOT_VERIFY_FLAGS_ALLOW_VERIFICATION_ERROR; if (load_metadata(ops->ab_ops, &ab_data, &ab_data_orig)) { printf("Can not load metadata\n"); return AVB_SLOT_VERIFY_RESULT_ERROR_IO; } if (!strncmp(slot_suffix, "_a", 2)) slot_index_to_boot = 0; else if (!strncmp(slot_suffix, "_b", 2)) slot_index_to_boot = 1; else slot_index_to_boot = 0; if (strcmp(boot_partname, ANDROID_PARTITION_RECOVERY) == 0) flags |= AVB_SLOT_VERIFY_FLAGS_NO_VBMETA_PARTITION; #ifdef CONFIG_MP_BOOT preload_user_data.boot.addr = (void *)mpb_post(1); preload_user_data.boot.size = (size_t)mpb_post(2); #endif /* use preload one if available */ if (preload_user_data.boot.addr) { data = (struct AvbOpsData *)(ops->user_data); data->slot_suffix = slot_suffix; data->boot = preload_user_data.boot; data->vendor_boot = preload_user_data.vendor_boot; data->init_boot = preload_user_data.init_boot; data->resource = preload_user_data.resource; } else { ret = avb_image_distribute_prepare(slot_data, ops, slot_suffix); if (ret < 0) { printf("avb image distribute prepare failed %d\n", ret); return AVB_SLOT_VERIFY_RESULT_ERROR_OOM; } } retry_verify: verify_result = avb_slot_verify(ops, requested_partitions, slot_suffix, flags, AVB_HASHTREE_ERROR_MODE_RESTART, &slot_data); if (verify_result != AVB_SLOT_VERIFY_RESULT_OK && verify_result != AVB_SLOT_VERIFY_RESULT_ERROR_PUBLIC_KEY_REJECTED) { if (retry_no_vbmeta_partition && strcmp(boot_partname, ANDROID_PARTITION_RECOVERY) == 0) { printf("Verify recovery with vbmeta.\n"); flags &= ~AVB_SLOT_VERIFY_FLAGS_NO_VBMETA_PARTITION; retry_no_vbmeta_partition = 0; goto retry_verify; } } strcat(verify_state, ANDROID_VERIFY_STATE); switch (verify_result) { case AVB_SLOT_VERIFY_RESULT_OK: if (unlocked & LOCK_MASK) strcat(verify_state, "orange"); else strcat(verify_state, "green"); break; case AVB_SLOT_VERIFY_RESULT_ERROR_PUBLIC_KEY_REJECTED: if (unlocked & LOCK_MASK) strcat(verify_state, "orange"); else strcat(verify_state, "yellow"); break; case AVB_SLOT_VERIFY_RESULT_ERROR_OOM: case AVB_SLOT_VERIFY_RESULT_ERROR_IO: case AVB_SLOT_VERIFY_RESULT_ERROR_INVALID_METADATA: case AVB_SLOT_VERIFY_RESULT_ERROR_UNSUPPORTED_VERSION: case AVB_SLOT_VERIFY_RESULT_ERROR_VERIFICATION: case AVB_SLOT_VERIFY_RESULT_ERROR_ROLLBACK_INDEX: default: if (unlocked & LOCK_MASK) strcat(verify_state, "orange"); else strcat(verify_state, "red"); break; } if (!slot_data) { can_boot = 0; goto out; } if (verify_result == AVB_SLOT_VERIFY_RESULT_OK || verify_result == AVB_SLOT_VERIFY_RESULT_ERROR_PUBLIC_KEY_REJECTED || (unlocked & LOCK_MASK)) { int len = 0; char *bootargs, *newbootargs; #ifdef CONFIG_ANDROID_AVB_ROLLBACK_INDEX if (rk_avb_update_stored_rollback_indexes_for_slot(ops, slot_data)) printf("Fail to update the rollback indexes.\n"); #endif if (slot_data->cmdline) { debug("Kernel command line: %s\n", slot_data->cmdline); len += strlen(slot_data->cmdline); } bootargs = env_get("bootargs"); if (bootargs) len += strlen(bootargs); newbootargs = malloc(len + 2); if (!newbootargs) { puts("Error: malloc in android_slot_verify failed!\n"); return AVB_SLOT_VERIFY_RESULT_ERROR_OOM; } *newbootargs = '\0'; if (bootargs) { strcpy(newbootargs, bootargs); strcat(newbootargs, " "); } if (slot_data->cmdline) strcat(newbootargs, slot_data->cmdline); env_set("bootargs", newbootargs); /* if need, distribute full image to where they should be */ ret = avb_image_distribute_finish(slot_data, flags, &load_address); if (ret) { printf("avb image distribute finish failed %d\n", ret); return ret; } *android_load_address = load_address; } else { slot_set_unbootable(&ab_data.slots[slot_index_to_boot]); } out: env_update("bootargs", verify_state); if (save_metadata_if_changed(ops->ab_ops, &ab_data, &ab_data_orig)) { printf("Can not save metadata\n"); verify_result = AVB_SLOT_VERIFY_RESULT_ERROR_IO; } if (slot_data != NULL) avb_slot_verify_data_free(slot_data); if ((unlocked & LOCK_MASK) && can_boot) return 0; else return verify_result; } #endif #if defined(CONFIG_CMD_DTIMG) && defined(CONFIG_OF_LIBFDT_OVERLAY) /* * Default return index 0. */ __weak int board_select_fdt_index(ulong dt_table_hdr) { /* * User can use "dt_for_each_entry(entry, hdr, idx)" to iterate * over all dt entry of DT image and pick up which they want. * * Example: * struct dt_table_entry *entry; * int index; * * dt_for_each_entry(entry, dt_table_hdr, index) { * * .... (use entry) * } * * return index; */ return 0; } static int android_get_dtbo(ulong *fdt_dtbo, const struct andr_img_hdr *hdr, int *index, const char *part_dtbo) { struct dt_table_header *dt_hdr = NULL; struct blk_desc *dev_desc; disk_partition_t part_info; u32 blk_offset, blk_cnt; void *buf; ulong e_addr; u32 e_size; int e_idx; int ret; /* Get partition info */ dev_desc = rockchip_get_bootdev(); if (!dev_desc) return -ENODEV; ret = part_get_info_by_name(dev_desc, part_dtbo, &part_info); if (ret < 0) { printf("No %s partition, ret=%d\n", part_dtbo, ret); return ret; } /* Check dt table header */ if (!strcmp(part_dtbo, PART_RECOVERY)) blk_offset = part_info.start + (hdr->recovery_dtbo_offset / part_info.blksz); else blk_offset = part_info.start; dt_hdr = memalign(ARCH_DMA_MINALIGN, part_info.blksz); if (!dt_hdr) return -ENOMEM; ret = blk_dread(dev_desc, blk_offset, 1, dt_hdr); if (ret != 1) goto out1; if (!android_dt_check_header((ulong)dt_hdr)) { printf("DTBO: invalid dt table header: 0x%x\n", dt_hdr->magic); ret = -EINVAL; goto out1; } #ifdef DEBUG android_dt_print_contents((ulong)dt_hdr); #endif blk_cnt = DIV_ROUND_UP(fdt32_to_cpu(dt_hdr->total_size), part_info.blksz); /* Read all DT Image */ buf = memalign(ARCH_DMA_MINALIGN, part_info.blksz * blk_cnt); if (!buf) { ret = -ENOMEM; goto out1; } ret = blk_dread(dev_desc, blk_offset, blk_cnt, buf); if (ret != blk_cnt) goto out2; e_idx = board_select_fdt_index((ulong)buf); if (e_idx < 0) { printf("%s: failed to select board fdt index\n", __func__); ret = -EINVAL; goto out2; } ret = android_dt_get_fdt_by_index((ulong)buf, e_idx, &e_addr, &e_size); if (!ret) { printf("%s: failed to get fdt, index=%d\n", __func__, e_idx); ret = -EINVAL; goto out2; } if (fdt_dtbo) *fdt_dtbo = e_addr; if (index) *index = e_idx; free(dt_hdr); debug("ANDROID: Loading dt entry to 0x%lx size 0x%x idx %d from \"%s\" part\n", e_addr, e_size, e_idx, part_dtbo); return 0; out2: free(buf); out1: free(dt_hdr); return ret; } int android_fdt_overlay_apply(void *fdt_addr) { struct andr_img_hdr *hdr; struct blk_desc *dev_desc; const char *part_boot = PART_BOOT; disk_partition_t part_info; char *fdt_backup; char *part_dtbo = PART_DTBO; char buf[32] = {0}; ulong fdt_dtbo = -1; u32 totalsize; int index = -1; int ret; if (rockchip_get_boot_mode() == BOOT_MODE_RECOVERY) { #ifdef CONFIG_ANDROID_AB bool can_find_recovery; can_find_recovery = ab_can_find_recovery_part(); part_boot = can_find_recovery ? PART_RECOVERY : PART_BOOT; part_dtbo = can_find_recovery ? PART_RECOVERY : PART_DTBO; #else part_boot = PART_RECOVERY; part_dtbo = PART_RECOVERY; #endif } dev_desc = rockchip_get_bootdev(); if (!dev_desc) return -ENODEV; ret = part_get_info_by_name(dev_desc, part_boot, &part_info); if (ret < 0) return ret; hdr = populate_andr_img_hdr(dev_desc, &part_info); if (!hdr) return -EINVAL; #ifdef DEBUG android_print_contents(hdr); #endif /* * Google requires a/b system mandory from Android Header v3 for * google authentication, that means there is not recovery. * * But for the products that don't care about google authentication, * it's not mandory to use a/b system. So that we use the solution: * boot.img(v3+) with recovery(v2). * * [recovery_dtbo fields] * recovery.img with boot_img_hdr_v1,2: supported * recovery.img with boot_img_hdr_v0,3+: illegal */ if ((hdr->header_version == 0) || (hdr->header_version >= 3 && !strcmp(part_boot, PART_RECOVERY))) goto out; ret = android_get_dtbo(&fdt_dtbo, (void *)hdr, &index, part_dtbo); if (!ret) { phys_size_t fdt_size; /* Must incease size before overlay */ fdt_size = fdt_totalsize((void *)fdt_addr) + fdt_totalsize((void *)fdt_dtbo); if (sysmem_free((phys_addr_t)fdt_addr)) goto out; if (!sysmem_alloc_base(MEM_FDT_DTBO, (phys_addr_t)fdt_addr, fdt_size + CONFIG_SYS_FDT_PAD)) goto out; /* * Backup main fdt in case of being destroyed by * fdt_overlay_apply() when it overlys failed. */ totalsize = fdt_totalsize(fdt_addr); fdt_backup = malloc(totalsize); if (!fdt_backup) goto out; memcpy(fdt_backup, fdt_addr, totalsize); fdt_increase_size(fdt_addr, fdt_totalsize((void *)fdt_dtbo)); ret = fdt_overlay_apply(fdt_addr, (void *)fdt_dtbo); if (!ret) { snprintf(buf, 32, "%s%d", "androidboot.dtbo_idx=", index); env_update("bootargs", buf); printf("ANDROID: fdt overlay OK\n"); } else { memcpy(fdt_addr, fdt_backup, totalsize); printf("ANDROID: fdt overlay failed, ret=%d\n", ret); } free(fdt_backup); } out: free(hdr); return 0; } #endif int android_image_load_by_partname(struct blk_desc *dev_desc, const char *boot_partname, unsigned long *load_address) { disk_partition_t boot_part; int ret, part_num; part_num = part_get_info_by_name(dev_desc, boot_partname, &boot_part); if (part_num < 0) { printf("%s: Can't find part: %s\n", __func__, boot_partname); return -1; } debug("ANDROID: Loading kernel from \"%s\", partition %d.\n", boot_part.name, part_num); ret = android_image_load(dev_desc, &boot_part, *load_address, -1UL); if (ret < 0) { debug("%s: %s part load fail, ret=%d\n", __func__, boot_part.name, ret); return ret; } *load_address = ret; return 0; } int android_bootloader_boot_flow(struct blk_desc *dev_desc, unsigned long load_address) { enum android_boot_mode mode = ANDROID_BOOT_MODE_NORMAL; disk_partition_t misc_part_info; int part_num; char *command_line; char slot_suffix[3] = {0}; const char *mode_cmdline = NULL; char *boot_partname = ANDROID_PARTITION_BOOT; /* * 1. Load MISC partition and determine the boot mode * clear its value for the next boot if needed. */ part_num = part_get_info_by_name(dev_desc, ANDROID_PARTITION_MISC, &misc_part_info); if (part_num < 0) { printf("Could not find misc partition\n"); } else { #ifdef CONFIG_ANDROID_KEYMASTER_CA /* load attestation key from misc partition. */ load_attestation_key(dev_desc, &misc_part_info); #endif mode = android_bootloader_load_and_clear_mode(dev_desc, &misc_part_info); #ifdef CONFIG_RKIMG_BOOTLOADER if (mode == ANDROID_BOOT_MODE_NORMAL) { if (rockchip_get_boot_mode() == BOOT_MODE_RECOVERY) mode = ANDROID_BOOT_MODE_RECOVERY; } #endif } printf("ANDROID: reboot reason: \"%s\"\n", android_boot_mode_str(mode)); #ifdef CONFIG_ANDROID_AB /* Get current slot_suffix */ if (ab_get_slot_suffix(slot_suffix)) return -1; #endif switch (mode) { case ANDROID_BOOT_MODE_NORMAL: /* In normal mode, we load the kernel from "boot" but append * "skip_initramfs" to the cmdline to make it ignore the * recovery initramfs in the boot partition. */ #ifdef CONFIG_ANDROID_AB /* In A/B, the recovery image is built as boot.img, containing the * recovery's ramdisk. Previously, bootloader used the skip_initramfs * kernel command line parameter to decide which mode to boot into. * For Android >=10 and with dynamic partition support, the bootloader * MUST NOT pass skip_initramfs to the kernel command-line. * Instead, bootloader should pass androidboot.force_normal_boot=1 * and then Android's first-stage init in ramdisk * will skip recovery and boot normal Android. */ if (ab_is_support_dynamic_partition(dev_desc)) { mode_cmdline = "androidboot.force_normal_boot=1"; } else { mode_cmdline = "skip_initramfs"; } #endif break; case ANDROID_BOOT_MODE_RECOVERY: /* * In recovery mode, if have recovery partition, we still boot the * kernel from "recovery". If not, don't skip the initramfs so it * boots to recovery from image in partition "boot". */ #ifdef CONFIG_ANDROID_AB boot_partname = ab_can_find_recovery_part() ? ANDROID_PARTITION_RECOVERY : ANDROID_PARTITION_BOOT; #else boot_partname = ANDROID_PARTITION_RECOVERY; #endif break; case ANDROID_BOOT_MODE_BOOTLOADER: /* Bootloader mode enters fastboot. If this operation fails we * simply return since we can't recover from this situation by * switching to another slot. */ return android_bootloader_boot_bootloader(); } #ifdef CONFIG_ANDROID_AVB uint8_t vboot_flag = 0; disk_partition_t vbmeta_part_info; #ifdef CONFIG_OPTEE_CLIENT if (trusty_read_vbootkey_enable_flag(&vboot_flag)) { printf("Can't read vboot flag\n"); return -1; } #endif if (vboot_flag) { printf("Vboot=1, SecureBoot enabled, AVB verify\n"); if (android_slot_verify(boot_partname, &load_address, slot_suffix)) { printf("AVB verify failed\n"); return -1; } } else { part_num = part_get_info_by_name(dev_desc, ANDROID_PARTITION_VBMETA, &vbmeta_part_info); if (part_num < 0) { printf("Not AVB images, AVB skip\n"); env_update("bootargs", "androidboot.verifiedbootstate=orange"); if (android_image_load_by_partname(dev_desc, boot_partname, &load_address)) { printf("Android image load failed\n"); return -1; } } else { printf("Vboot=0, AVB images, AVB verify\n"); if (android_slot_verify(boot_partname, &load_address, slot_suffix)) { printf("AVB verify failed\n"); return -1; } } } #else /* * 2. Load the boot/recovery from the desired "boot" partition. * Determine if this is an AOSP image. */ if (android_image_load_by_partname(dev_desc, boot_partname, &load_address)) { printf("Android image load failed\n"); return -1; } #endif /* Set Android root variables. */ env_set_ulong("android_root_devnum", dev_desc->devnum); env_set("android_slotsufix", slot_suffix); #ifdef CONFIG_FASTBOOT_OEM_UNLOCK /* read oem unlock status and attach to bootargs */ uint8_t unlock = 0; TEEC_Result result; char oem_unlock[OEM_UNLOCK_ARG_SIZE] = {0}; result = trusty_read_oem_unlock(&unlock); if (result) { printf("read oem unlock status with error : 0x%x\n", result); } else { snprintf(oem_unlock, OEM_UNLOCK_ARG_SIZE, "androidboot.oem_unlocked=%d", unlock); env_update("bootargs", oem_unlock); } #endif /* Assemble the command line */ command_line = android_assemble_cmdline(slot_suffix, mode_cmdline); env_update("bootargs", command_line); debug("ANDROID: bootargs: \"%s\"\n", command_line); #ifdef CONFIG_SUPPORT_OEM_DTB if (android_bootloader_get_fdt(ANDROID_PARTITION_OEM, ANDROID_ARG_FDT_FILENAME)) { printf("Can not get the fdt data from oem!\n"); } #endif #ifdef CONFIG_OPTEE_CLIENT if (trusty_notify_optee_uboot_end()) printf("Close optee client failed!\n"); #endif #ifdef CONFIG_AMP return android_bootloader_boot_kernel(load_address); #else android_bootloader_boot_kernel(load_address); /* TODO: If the kernel doesn't boot mark the selected slot as bad. */ return -1; #endif } int android_avb_boot_flow(unsigned long kernel_address) { struct blk_desc *dev_desc; disk_partition_t boot_part_info; int ret; dev_desc = rockchip_get_bootdev(); if (!dev_desc) { printf("%s: dev_desc is NULL!\n", __func__); return -1; } /* Load the kernel from the desired "boot" partition. */ ret = part_get_info_by_name(dev_desc, ANDROID_PARTITION_BOOT, &boot_part_info); if (ret < 0) { printf("%s: failed to get boot part\n", __func__); return ret; } ret = android_image_load(dev_desc, &boot_part_info, kernel_address, -1UL); if (ret < 0) { printf("Android avb boot failed, error %d.\n", ret); return ret; } android_bootloader_boot_kernel(kernel_address); /* TODO: If the kernel doesn't boot mark the selected slot as bad. */ return -1; } int android_boot_flow(unsigned long kernel_address) { struct blk_desc *dev_desc; disk_partition_t boot_part_info; int ret; dev_desc = rockchip_get_bootdev(); if (!dev_desc) { printf("%s: dev_desc is NULL!\n", __func__); return -1; } /* Load the kernel from the desired "boot" partition. */ ret = part_get_info_by_name(dev_desc, ANDROID_PARTITION_BOOT, &boot_part_info); if (ret < 0) { printf("%s: failed to get boot part\n", __func__); return ret; } ret = android_image_load(dev_desc, &boot_part_info, kernel_address, -1UL); if (ret < 0) return ret; android_bootloader_boot_kernel(kernel_address); /* TODO: If the kernel doesn't boot mark the selected slot as bad. */ return -1; }