/* * (C) Copyright 2008-2017 Fuzhou Rockchip Electronics Co., Ltd * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rockchip_display.h" #include "rockchip_crtc.h" #include "rockchip_connector.h" #include "dw_hdmi.h" #include "rockchip_phy.h" #define HDCP_PRIVATE_KEY_SIZE 280 #define HDCP_KEY_SHA_SIZE 20 #define HDMI_HDCP1X_ID 5 #define HDMI_EDID_BLOCK_LEN 128 /* * Unless otherwise noted, entries in this table are 100% optimization. * Values can be obtained from hdmi_compute_n() but that function is * slow so we pre-compute values we expect to see. * * All 32k and 48k values are expected to be the same (due to the way * the math works) for any rate that's an exact kHz. */ static const struct dw_hdmi_audio_tmds_n common_tmds_n_table[] = { { .tmds = 25175000, .n_32k = 4096, .n_44k1 = 12854, .n_48k = 6144, }, { .tmds = 25200000, .n_32k = 4096, .n_44k1 = 5656, .n_48k = 6144, }, { .tmds = 27000000, .n_32k = 4096, .n_44k1 = 5488, .n_48k = 6144, }, { .tmds = 28320000, .n_32k = 4096, .n_44k1 = 5586, .n_48k = 6144, }, { .tmds = 30240000, .n_32k = 4096, .n_44k1 = 5642, .n_48k = 6144, }, { .tmds = 31500000, .n_32k = 4096, .n_44k1 = 5600, .n_48k = 6144, }, { .tmds = 32000000, .n_32k = 4096, .n_44k1 = 5733, .n_48k = 6144, }, { .tmds = 33750000, .n_32k = 4096, .n_44k1 = 6272, .n_48k = 6144, }, { .tmds = 36000000, .n_32k = 4096, .n_44k1 = 5684, .n_48k = 6144, }, { .tmds = 40000000, .n_32k = 4096, .n_44k1 = 5733, .n_48k = 6144, }, { .tmds = 49500000, .n_32k = 4096, .n_44k1 = 5488, .n_48k = 6144, }, { .tmds = 50000000, .n_32k = 4096, .n_44k1 = 5292, .n_48k = 6144, }, { .tmds = 54000000, .n_32k = 4096, .n_44k1 = 5684, .n_48k = 6144, }, { .tmds = 65000000, .n_32k = 4096, .n_44k1 = 7056, .n_48k = 6144, }, { .tmds = 68250000, .n_32k = 4096, .n_44k1 = 5376, .n_48k = 6144, }, { .tmds = 71000000, .n_32k = 4096, .n_44k1 = 7056, .n_48k = 6144, }, { .tmds = 72000000, .n_32k = 4096, .n_44k1 = 5635, .n_48k = 6144, }, { .tmds = 73250000, .n_32k = 4096, .n_44k1 = 14112, .n_48k = 6144, }, { .tmds = 74250000, .n_32k = 4096, .n_44k1 = 6272, .n_48k = 6144, }, { .tmds = 75000000, .n_32k = 4096, .n_44k1 = 5880, .n_48k = 6144, }, { .tmds = 78750000, .n_32k = 4096, .n_44k1 = 5600, .n_48k = 6144, }, { .tmds = 78800000, .n_32k = 4096, .n_44k1 = 5292, .n_48k = 6144, }, { .tmds = 79500000, .n_32k = 4096, .n_44k1 = 4704, .n_48k = 6144, }, { .tmds = 83500000, .n_32k = 4096, .n_44k1 = 7056, .n_48k = 6144, }, { .tmds = 85500000, .n_32k = 4096, .n_44k1 = 5488, .n_48k = 6144, }, { .tmds = 88750000, .n_32k = 4096, .n_44k1 = 14112, .n_48k = 6144, }, { .tmds = 97750000, .n_32k = 4096, .n_44k1 = 14112, .n_48k = 6144, }, { .tmds = 101000000, .n_32k = 4096, .n_44k1 = 7056, .n_48k = 6144, }, { .tmds = 106500000, .n_32k = 4096, .n_44k1 = 4704, .n_48k = 6144, }, { .tmds = 108000000, .n_32k = 4096, .n_44k1 = 5684, .n_48k = 6144, }, { .tmds = 115500000, .n_32k = 4096, .n_44k1 = 5712, .n_48k = 6144, }, { .tmds = 119000000, .n_32k = 4096, .n_44k1 = 5544, .n_48k = 6144, }, { .tmds = 135000000, .n_32k = 4096, .n_44k1 = 5488, .n_48k = 6144, }, { .tmds = 146250000, .n_32k = 4096, .n_44k1 = 6272, .n_48k = 6144, }, { .tmds = 148500000, .n_32k = 4096, .n_44k1 = 5488, .n_48k = 6144, }, { .tmds = 154000000, .n_32k = 4096, .n_44k1 = 5544, .n_48k = 6144, }, { .tmds = 162000000, .n_32k = 4096, .n_44k1 = 5684, .n_48k = 6144, }, /* For 297 MHz+ HDMI spec have some other rule for setting N */ { .tmds = 297000000, .n_32k = 3073, .n_44k1 = 4704, .n_48k = 5120, }, { .tmds = 594000000, .n_32k = 3073, .n_44k1 = 9408, .n_48k = 10240, }, /* End of table */ { .tmds = 0, .n_32k = 0, .n_44k1 = 0, .n_48k = 0, }, }; static const u16 csc_coeff_default[3][4] = { { 0x2000, 0x0000, 0x0000, 0x0000 }, { 0x0000, 0x2000, 0x0000, 0x0000 }, { 0x0000, 0x0000, 0x2000, 0x0000 } }; static const u16 csc_coeff_rgb_out_eitu601[3][4] = { { 0x2000, 0x6926, 0x74fd, 0x010e }, { 0x2000, 0x2cdd, 0x0000, 0x7e9a }, { 0x2000, 0x0000, 0x38b4, 0x7e3b } }; static const u16 csc_coeff_rgb_out_eitu709[3][4] = { { 0x2000, 0x7106, 0x7a02, 0x00a7 }, { 0x2000, 0x3264, 0x0000, 0x7e6d }, { 0x2000, 0x0000, 0x3b61, 0x7e25 } }; static const u16 csc_coeff_rgb_in_eitu601[3][4] = { { 0x2591, 0x1322, 0x074b, 0x0000 }, { 0x6535, 0x2000, 0x7acc, 0x0200 }, { 0x6acd, 0x7534, 0x2000, 0x0200 } }; static const u16 csc_coeff_rgb_in_eitu709[3][4] = { { 0x2dc5, 0x0d9b, 0x049e, 0x0000 }, { 0x62f0, 0x2000, 0x7d11, 0x0200 }, { 0x6756, 0x78ab, 0x2000, 0x0200 } }; static const u16 csc_coeff_full_to_limited[3][4] = { { 0x36f7, 0x0000, 0x0000, 0x0040 }, { 0x0000, 0x36f7, 0x0000, 0x0040 }, { 0x0000, 0x0000, 0x36f7, 0x0040 } }; struct hdmi_vmode { bool mdataenablepolarity; unsigned int mpixelclock; unsigned int mpixelrepetitioninput; unsigned int mpixelrepetitionoutput; unsigned int mtmdsclock; }; struct hdmi_data_info { unsigned int enc_in_bus_format; unsigned int enc_out_bus_format; unsigned int enc_in_encoding; unsigned int enc_out_encoding; unsigned int quant_range; unsigned int pix_repet_factor; struct hdmi_vmode video_mode; }; struct dw_hdmi_phy_data { enum dw_hdmi_phy_type type; const char *name; unsigned int gen; bool has_svsret; int (*configure)(struct dw_hdmi *hdmi, const struct dw_hdmi_plat_data *pdata, unsigned long mpixelclock); }; struct hdcp_keys { u8 KSV[8]; u8 devicekey[HDCP_PRIVATE_KEY_SIZE]; u8 sha1[HDCP_KEY_SHA_SIZE]; u8 seeds[2]; }; struct dw_hdmi_i2c { u8 slave_reg; bool is_regaddr; bool is_segment; unsigned int scl_high_ns; unsigned int scl_low_ns; }; struct dw_hdmi { int id; enum dw_hdmi_devtype dev_type; unsigned int version; struct hdmi_data_info hdmi_data; struct hdmi_edid_data edid_data; const struct dw_hdmi_plat_data *plat_data; struct ddc_adapter adap; int vic; int io_width; unsigned long bus_format; bool cable_plugin; bool sink_is_hdmi; bool sink_has_audio; void *regs; void *grf; void *gpio_base; struct dw_hdmi_i2c *i2c; struct { const struct dw_hdmi_phy_ops *ops; const char *name; void *data; bool enabled; } phy; struct drm_display_mode previous_mode; unsigned int sample_rate; unsigned int audio_cts; unsigned int audio_n; bool audio_enable; bool scramble_low_rates; void (*write)(struct dw_hdmi *hdmi, u8 val, int offset); u8 (*read)(struct dw_hdmi *hdmi, int offset); bool hdcp1x_enable; bool output_bus_format_rgb; struct gpio_desc hpd_gpiod; }; static void dw_hdmi_writel(struct dw_hdmi *hdmi, u8 val, int offset) { writel(val, hdmi->regs + (offset << 2)); } static u8 dw_hdmi_readl(struct dw_hdmi *hdmi, int offset) { return readl(hdmi->regs + (offset << 2)); } static void dw_hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset) { writeb(val, hdmi->regs + offset); } static u8 dw_hdmi_readb(struct dw_hdmi *hdmi, int offset) { return readb(hdmi->regs + offset); } static inline void hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset) { hdmi->write(hdmi, val, offset); } static inline u8 hdmi_readb(struct dw_hdmi *hdmi, int offset) { return hdmi->read(hdmi, offset); } static void hdmi_modb(struct dw_hdmi *hdmi, u8 data, u8 mask, unsigned reg) { u8 val = hdmi_readb(hdmi, reg) & ~mask; val |= data & mask; hdmi_writeb(hdmi, val, reg); } static void hdmi_mask_writeb(struct dw_hdmi *hdmi, u8 data, unsigned int reg, u8 shift, u8 mask) { hdmi_modb(hdmi, data << shift, mask, reg); } static bool hdmi_bus_fmt_is_rgb(unsigned int bus_format) { switch (bus_format) { case MEDIA_BUS_FMT_RGB888_1X24: case MEDIA_BUS_FMT_RGB101010_1X30: case MEDIA_BUS_FMT_RGB121212_1X36: case MEDIA_BUS_FMT_RGB161616_1X48: return true; default: return false; } } static bool hdmi_bus_fmt_is_yuv444(unsigned int bus_format) { switch (bus_format) { case MEDIA_BUS_FMT_YUV8_1X24: case MEDIA_BUS_FMT_YUV10_1X30: case MEDIA_BUS_FMT_YUV12_1X36: case MEDIA_BUS_FMT_YUV16_1X48: return true; default: return false; } } static bool hdmi_bus_fmt_is_yuv422(unsigned int bus_format) { switch (bus_format) { case MEDIA_BUS_FMT_UYVY8_1X16: case MEDIA_BUS_FMT_UYVY10_1X20: case MEDIA_BUS_FMT_UYVY12_1X24: return true; default: return false; } } static bool hdmi_bus_fmt_is_yuv420(unsigned int bus_format) { switch (bus_format) { case MEDIA_BUS_FMT_UYYVYY8_0_5X24: case MEDIA_BUS_FMT_UYYVYY10_0_5X30: case MEDIA_BUS_FMT_UYYVYY12_0_5X36: case MEDIA_BUS_FMT_UYYVYY16_0_5X48: return true; default: return false; } } static int hdmi_bus_fmt_color_depth(unsigned int bus_format) { switch (bus_format) { case MEDIA_BUS_FMT_RGB888_1X24: case MEDIA_BUS_FMT_YUV8_1X24: case MEDIA_BUS_FMT_UYVY8_1X16: case MEDIA_BUS_FMT_UYYVYY8_0_5X24: return 8; case MEDIA_BUS_FMT_RGB101010_1X30: case MEDIA_BUS_FMT_YUV10_1X30: case MEDIA_BUS_FMT_UYVY10_1X20: case MEDIA_BUS_FMT_UYYVYY10_0_5X30: return 10; case MEDIA_BUS_FMT_RGB121212_1X36: case MEDIA_BUS_FMT_YUV12_1X36: case MEDIA_BUS_FMT_UYVY12_1X24: case MEDIA_BUS_FMT_UYYVYY12_0_5X36: return 12; case MEDIA_BUS_FMT_RGB161616_1X48: case MEDIA_BUS_FMT_YUV16_1X48: case MEDIA_BUS_FMT_UYYVYY16_0_5X48: return 16; default: return 0; } } static int is_color_space_conversion(struct dw_hdmi *hdmi) { struct drm_display_mode *mode = hdmi->edid_data.preferred_mode; bool is_cea_default; is_cea_default = (drm_match_cea_mode(mode) > 1) && (hdmi->hdmi_data.quant_range == HDMI_QUANTIZATION_RANGE_DEFAULT); /* * When output is rgb limited range or default range with * cea mode, csc should be enabled. */ if (hdmi->hdmi_data.enc_in_bus_format != hdmi->hdmi_data.enc_out_bus_format || ((hdmi->hdmi_data.quant_range == HDMI_QUANTIZATION_RANGE_LIMITED || is_cea_default) && hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format))) return 1; return 0; } static int is_color_space_decimation(struct dw_hdmi *hdmi) { if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) return 0; if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format) || hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_in_bus_format)) return 1; return 0; } static inline void hdmi_phy_test_clear(struct dw_hdmi *hdmi, unsigned char bit) { hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLR_OFFSET, HDMI_PHY_TST0_TSTCLR_MASK, HDMI_PHY_TST0); } static inline void hdmi_phy_test_enable(struct dw_hdmi *hdmi, unsigned char bit) { hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTEN_OFFSET, HDMI_PHY_TST0_TSTEN_MASK, HDMI_PHY_TST0); } static inline void hdmi_phy_test_clock(struct dw_hdmi *hdmi, unsigned char bit) { hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLK_OFFSET, HDMI_PHY_TST0_TSTCLK_MASK, HDMI_PHY_TST0); } static inline void hdmi_phy_test_din(struct dw_hdmi *hdmi, unsigned char bit) { hdmi_writeb(hdmi, bit, HDMI_PHY_TST1); } static inline void hdmi_phy_test_dout(struct dw_hdmi *hdmi, unsigned char bit) { hdmi_writeb(hdmi, bit, HDMI_PHY_TST2); } static int dw_hdmi_i2c_read(struct dw_hdmi *hdmi, unsigned char *buf, unsigned int length) { struct dw_hdmi_i2c *i2c = hdmi->i2c; int interrupt = 0, i = 20; bool read_edid = false; if (!i2c->is_regaddr) { printf("set read register address to 0\n"); i2c->slave_reg = 0x00; i2c->is_regaddr = true; } /* edid reads are in 128 bytes. scdc reads are in 1 byte */ if (length == HDMI_EDID_BLOCK_LEN) read_edid = true; while (length > 0) { hdmi_writeb(hdmi, i2c->slave_reg, HDMI_I2CM_ADDRESS); if (read_edid) { i2c->slave_reg += 8; length -= 8; } else { i2c->slave_reg++; length--; } if (i2c->is_segment) { if (read_edid) hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ8_EXT, HDMI_I2CM_OPERATION); else hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ_EXT, HDMI_I2CM_OPERATION); } else { if (read_edid) hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ8, HDMI_I2CM_OPERATION); else hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ, HDMI_I2CM_OPERATION); } while (i--) { udelay(1000); interrupt = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0); if (interrupt) hdmi_writeb(hdmi, interrupt, HDMI_IH_I2CM_STAT0); if (interrupt & (m_SCDC_READREQ | m_I2CM_DONE | m_I2CM_ERROR)) break; } if (!interrupt) { printf("[%s] i2c read reg[0x%02x] no interrupt\n", __func__, i2c->slave_reg); hdmi_writeb(hdmi, 0, HDMI_I2CM_SOFTRSTZ); hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_BUS_CLEAR, HDMI_I2CM_OPERATION); udelay(1000); return -EAGAIN; } /* Check for error condition on the bus */ if (interrupt & HDMI_IH_I2CM_STAT0_ERROR) { printf("[%s] read reg[0x%02x] data error:0x%02x\n", __func__, i2c->slave_reg, interrupt); hdmi_writeb(hdmi, 0, HDMI_I2CM_SOFTRSTZ); hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_BUS_CLEAR, HDMI_I2CM_OPERATION); udelay(1000); return -EIO; } i = 20; if (read_edid) for (i = 0; i < 8; i++) *buf++ = hdmi_readb(hdmi, HDMI_I2CM_READ_BUFF0 + i); else *buf++ = hdmi_readb(hdmi, HDMI_I2CM_DATAI); } i2c->is_segment = false; return 0; } static int dw_hdmi_i2c_write(struct dw_hdmi *hdmi, unsigned char *buf, unsigned int length) { struct dw_hdmi_i2c *i2c = hdmi->i2c; int i = 20; u8 interrupt = 0; if (!i2c->is_regaddr) { /* Use the first write byte as register address */ i2c->slave_reg = buf[0]; length--; buf++; i2c->is_regaddr = true; } while (length--) { hdmi_writeb(hdmi, *buf++, HDMI_I2CM_DATAO); hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS); hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_WRITE, HDMI_I2CM_OPERATION); while (i--) { udelay(1000); interrupt = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0); if (interrupt) hdmi_writeb(hdmi, interrupt, HDMI_IH_I2CM_STAT0); if (interrupt & (m_SCDC_READREQ | m_I2CM_DONE | m_I2CM_ERROR)) break; } if (!interrupt) { printf("[%s] i2c write reg[0x%02x] no interrupt\n", __func__, i2c->slave_reg); hdmi_writeb(hdmi, 0, HDMI_I2CM_SOFTRSTZ); hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_BUS_CLEAR, HDMI_I2CM_OPERATION); udelay(1000); return -EAGAIN; } if ((interrupt & m_I2CM_ERROR) || (i == -1)) { printf("[%s] write data error\n", __func__); hdmi_writeb(hdmi, 0, HDMI_I2CM_SOFTRSTZ); hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_BUS_CLEAR, HDMI_I2CM_OPERATION); udelay(1000); return -EIO; } else if (interrupt & m_I2CM_DONE) { printf("[%s] write offset %02x success\n", __func__, i2c->slave_reg); return -EAGAIN; } i = 20; } return 0; } static int dw_hdmi_i2c_xfer(struct ddc_adapter *adap, struct i2c_msg *msgs, int num) { struct dw_hdmi *hdmi = container_of(adap, struct dw_hdmi, adap); struct dw_hdmi_i2c *i2c = hdmi->i2c; u8 addr = msgs[0].addr; int i, ret = 0; printf("xfer: num: %d, addr: %#x\n", num, addr); for (i = 0; i < num; i++) { if (msgs[i].len == 0) { printf("unsupported transfer %d/%d, no data\n", i + 1, num); return -EOPNOTSUPP; } } hdmi_writeb(hdmi, 0x00, HDMI_IH_MUTE_I2CM_STAT0); /* Set slave device address taken from the first I2C message */ if (addr == DDC_SEGMENT_ADDR && msgs[0].len == 1) addr = DDC_ADDR; hdmi_writeb(hdmi, addr, HDMI_I2CM_SLAVE); /* Set slave device register address on transfer */ i2c->is_regaddr = false; /* Set segment pointer for I2C extended read mode operation */ i2c->is_segment = false; for (i = 0; i < num; i++) { debug("xfer: num: %d/%d, len: %d, flags: %#x\n", i + 1, num, msgs[i].len, msgs[i].flags); if (msgs[i].addr == DDC_SEGMENT_ADDR && msgs[i].len == 1) { i2c->is_segment = true; hdmi_writeb(hdmi, DDC_SEGMENT_ADDR, HDMI_I2CM_SEGADDR); hdmi_writeb(hdmi, *msgs[i].buf, HDMI_I2CM_SEGPTR); } else { if (msgs[i].flags & I2C_M_RD) ret = dw_hdmi_i2c_read(hdmi, msgs[i].buf, msgs[i].len); else ret = dw_hdmi_i2c_write(hdmi, msgs[i].buf, msgs[i].len); } if (ret < 0) break; } if (!ret) ret = num; /* Mute DONE and ERROR interrupts */ hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE, HDMI_IH_MUTE_I2CM_STAT0); return ret; } static bool hdmi_phy_wait_i2c_done(struct dw_hdmi *hdmi, int msec) { u32 val; while ((val = hdmi_readb(hdmi, HDMI_IH_I2CMPHY_STAT0) & 0x3) == 0) { if (msec-- == 0) return false; udelay(1000); } hdmi_writeb(hdmi, val, HDMI_IH_I2CMPHY_STAT0); return true; } static void dw_hdmi_phy_i2c_write(struct dw_hdmi *hdmi, unsigned short data, unsigned char addr) { hdmi_writeb(hdmi, 0xFF, HDMI_IH_I2CMPHY_STAT0); hdmi_writeb(hdmi, addr, HDMI_PHY_I2CM_ADDRESS_ADDR); hdmi_writeb(hdmi, (unsigned char)(data >> 8), HDMI_PHY_I2CM_DATAO_1_ADDR); hdmi_writeb(hdmi, (unsigned char)(data >> 0), HDMI_PHY_I2CM_DATAO_0_ADDR); hdmi_writeb(hdmi, HDMI_PHY_I2CM_OPERATION_ADDR_WRITE, HDMI_PHY_I2CM_OPERATION_ADDR); hdmi_phy_wait_i2c_done(hdmi, 1000); } static void dw_hdmi_phy_enable_powerdown(struct dw_hdmi *hdmi, bool enable) { hdmi_mask_writeb(hdmi, !enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_PDZ_OFFSET, HDMI_PHY_CONF0_PDZ_MASK); } static void dw_hdmi_phy_enable_tmds(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_ENTMDS_OFFSET, HDMI_PHY_CONF0_ENTMDS_MASK); } static void dw_hdmi_phy_enable_svsret(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_SVSRET_OFFSET, HDMI_PHY_CONF0_SVSRET_MASK); } static void dw_hdmi_phy_gen2_pddq(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET, HDMI_PHY_CONF0_GEN2_PDDQ_MASK); } static void dw_hdmi_phy_gen2_txpwron(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET, HDMI_PHY_CONF0_GEN2_TXPWRON_MASK); } static void dw_hdmi_phy_sel_data_en_pol(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_SELDATAENPOL_OFFSET, HDMI_PHY_CONF0_SELDATAENPOL_MASK); } static void dw_hdmi_phy_sel_interface_control(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_SELDIPIF_OFFSET, HDMI_PHY_CONF0_SELDIPIF_MASK); } static void dw_hdmi_phy_power_off(struct dw_hdmi *hdmi) { const struct dw_hdmi_phy_data *phy = hdmi->phy.data; unsigned int i; u16 val; if (phy->gen == 1) { dw_hdmi_phy_enable_tmds(hdmi, 0); dw_hdmi_phy_enable_powerdown(hdmi, true); return; } dw_hdmi_phy_gen2_txpwron(hdmi, 0); /* * Wait for TX_PHY_LOCK to be deasserted to indicate that the PHY went * to low power mode. */ for (i = 0; i < 5; ++i) { val = hdmi_readb(hdmi, HDMI_PHY_STAT0); if (!(val & HDMI_PHY_TX_PHY_LOCK)) break; udelay(2000); } if (val & HDMI_PHY_TX_PHY_LOCK) printf("PHY failed to power down\n"); else printf("PHY powered down in %u iterations\n", i); dw_hdmi_phy_gen2_pddq(hdmi, 1); } static int dw_hdmi_phy_power_on(struct dw_hdmi *hdmi) { const struct dw_hdmi_phy_data *phy = hdmi->phy.data; unsigned int i; u8 val; if (phy->gen == 1) { dw_hdmi_phy_enable_powerdown(hdmi, false); /* Toggle TMDS enable. */ dw_hdmi_phy_enable_tmds(hdmi, 0); dw_hdmi_phy_enable_tmds(hdmi, 1); return 0; } dw_hdmi_phy_gen2_txpwron(hdmi, 1); dw_hdmi_phy_gen2_pddq(hdmi, 0); /* Wait for PHY PLL lock */ for (i = 0; i < 5; ++i) { val = hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK; if (val) break; udelay(2000); } if (!val) { printf("PHY PLL failed to lock\n"); return -ETIMEDOUT; } printf("PHY PLL locked %u iterations\n", i); return 0; } /* * PHY configuration function for the DWC HDMI 3D TX PHY. Based on the available * information the DWC MHL PHY has the same register layout and is thus also * supported by this function. */ static int hdmi_phy_configure_dwc_hdmi_3d_tx(struct dw_hdmi *hdmi, const struct dw_hdmi_plat_data *pdata, unsigned long mpixelclock) { const struct dw_hdmi_mpll_config *mpll_config = pdata->mpll_cfg; const struct dw_hdmi_curr_ctrl *curr_ctrl = pdata->cur_ctr; const struct dw_hdmi_phy_config *phy_config = pdata->phy_config; unsigned int tmdsclock = hdmi->hdmi_data.video_mode.mtmdsclock; unsigned int depth = hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format); if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format) && pdata->mpll_cfg_420) mpll_config = pdata->mpll_cfg_420; /* PLL/MPLL Cfg - always match on final entry */ for (; mpll_config->mpixelclock != ~0UL; mpll_config++) if (mpixelclock <= mpll_config->mpixelclock) break; for (; curr_ctrl->mpixelclock != ~0UL; curr_ctrl++) if (tmdsclock <= curr_ctrl->mpixelclock) break; for (; phy_config->mpixelclock != ~0UL; phy_config++) if (tmdsclock <= phy_config->mpixelclock) break; if (mpll_config->mpixelclock == ~0UL || curr_ctrl->mpixelclock == ~0UL || phy_config->mpixelclock == ~0UL) return -EINVAL; if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) depth = fls(depth - 8); else depth = 0; if (depth) depth--; dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[depth].cpce, HDMI_3D_TX_PHY_CPCE_CTRL); dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[depth].gmp, HDMI_3D_TX_PHY_GMPCTRL); dw_hdmi_phy_i2c_write(hdmi, curr_ctrl->curr[depth], HDMI_3D_TX_PHY_CURRCTRL); dw_hdmi_phy_i2c_write(hdmi, 0, HDMI_3D_TX_PHY_PLLPHBYCTRL); dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_MSM_CTRL_CKO_SEL_FB_CLK, HDMI_3D_TX_PHY_MSM_CTRL); dw_hdmi_phy_i2c_write(hdmi, phy_config->term, HDMI_3D_TX_PHY_TXTERM); dw_hdmi_phy_i2c_write(hdmi, phy_config->sym_ctr, HDMI_3D_TX_PHY_CKSYMTXCTRL); dw_hdmi_phy_i2c_write(hdmi, phy_config->vlev_ctr, HDMI_3D_TX_PHY_VLEVCTRL); return 0; } static const struct dw_hdmi_phy_data dw_hdmi_phys[] = { { .type = DW_HDMI_PHY_DWC_HDMI_TX_PHY, .name = "DWC HDMI TX PHY", .gen = 1, }, { .type = DW_HDMI_PHY_DWC_MHL_PHY_HEAC, .name = "DWC MHL PHY + HEAC PHY", .gen = 2, .has_svsret = true, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_DWC_MHL_PHY, .name = "DWC MHL PHY", .gen = 2, .has_svsret = true, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY_HEAC, .name = "DWC HDMI 3D TX PHY + HEAC PHY", .gen = 2, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY, .name = "DWC HDMI 3D TX PHY", .gen = 2, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_DWC_HDMI20_TX_PHY, .name = "DWC HDMI 2.0 TX PHY", .gen = 2, .has_svsret = true, .configure = hdmi_phy_configure_dwc_hdmi_3d_tx, }, { .type = DW_HDMI_PHY_VENDOR_PHY, .name = "Vendor PHY", } }; static int rockchip_dw_hdmi_scrambling_enable(struct dw_hdmi *hdmi, int enable) { u8 stat; drm_scdc_readb(&hdmi->adap, SCDC_TMDS_CONFIG, &stat); if (stat < 0) { debug("Failed to read tmds config\n"); return false; } if (enable == 1) { /* Write on Rx the bit Scrambling_Enable, register 0x20 */ stat |= SCDC_SCRAMBLING_ENABLE; drm_scdc_writeb(&hdmi->adap, SCDC_TMDS_CONFIG, stat); /* TMDS software reset request */ hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ); /* Enable/Disable Scrambling */ hdmi_writeb(hdmi, 1, HDMI_FC_SCRAMBLER_CTRL); } else { /* Enable/Disable Scrambling */ hdmi_writeb(hdmi, 0, HDMI_FC_SCRAMBLER_CTRL); /* TMDS software reset request */ hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ); /* Write on Rx the bit Scrambling_Enable, register 0x20 */ stat &= ~SCDC_SCRAMBLING_ENABLE; drm_scdc_writeb(&hdmi->adap, SCDC_TMDS_CONFIG, stat); } return 0; } static void rockchip_dw_hdmi_scdc_set_tmds_rate(struct dw_hdmi *hdmi) { u8 stat; drm_scdc_readb(&hdmi->adap, SCDC_TMDS_CONFIG, &stat); if (hdmi->hdmi_data.video_mode.mtmdsclock > 340000000) stat |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; else stat &= ~SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; drm_scdc_writeb(&hdmi->adap, SCDC_TMDS_CONFIG, stat); } static int hdmi_phy_configure(struct dw_hdmi *hdmi) { const struct dw_hdmi_phy_data *phy = hdmi->phy.data; const struct dw_hdmi_plat_data *pdata = hdmi->plat_data; unsigned long mpixelclock = hdmi->hdmi_data.video_mode.mpixelclock; unsigned long mtmdsclock = hdmi->hdmi_data.video_mode.mtmdsclock; int ret; dw_hdmi_phy_power_off(hdmi); /* Control for TMDS Bit Period/TMDS Clock-Period Ratio */ if (hdmi->edid_data.display_info.hdmi.scdc.supported) rockchip_dw_hdmi_scdc_set_tmds_rate(hdmi); /* Leave low power consumption mode by asserting SVSRET. */ if (phy->has_svsret) dw_hdmi_phy_enable_svsret(hdmi, 1); /* PHY reset. The reset signal is active high on Gen2 PHYs. */ hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_PHYRSTZ, HDMI_MC_PHYRSTZ); hdmi_writeb(hdmi, 0, HDMI_MC_PHYRSTZ); hdmi_writeb(hdmi, HDMI_MC_HEACPHY_RST_ASSERT, HDMI_MC_HEACPHY_RST); hdmi_phy_test_clear(hdmi, 1); hdmi_writeb(hdmi, HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2, HDMI_PHY_I2CM_SLAVE_ADDR); hdmi_phy_test_clear(hdmi, 0); /* Write to the PHY as configured by the platform */ if (pdata->configure_phy) ret = pdata->configure_phy(hdmi, pdata, mpixelclock); else ret = phy->configure(hdmi, pdata, mpixelclock); if (ret) { printf("PHY configuration failed (clock %lu)\n", mpixelclock); return ret; } /* Wait for resuming transmission of TMDS clock and data */ if (mtmdsclock > 340000000) mdelay(100); return dw_hdmi_phy_power_on(hdmi); } static int dw_hdmi_phy_init(struct rockchip_connector *conn, struct dw_hdmi *hdmi, void *data) { int i, ret; /* HDMI Phy spec says to do the phy initialization sequence twice */ for (i = 0; i < 2; i++) { dw_hdmi_phy_sel_data_en_pol(hdmi, 1); dw_hdmi_phy_sel_interface_control(hdmi, 0); ret = hdmi_phy_configure(hdmi); if (ret) return ret; } return 0; } static void dw_hdmi_phy_disable(struct rockchip_connector *conn, struct dw_hdmi *hdmi, void *data) { dw_hdmi_phy_power_off(hdmi); } static enum drm_connector_status dw_hdmi_phy_read_hpd(struct dw_hdmi *hdmi, void *data) { return hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_HPD ? connector_status_connected : connector_status_disconnected; } static const struct dw_hdmi_phy_ops dw_hdmi_synopsys_phy_ops = { .init = dw_hdmi_phy_init, .disable = dw_hdmi_phy_disable, .read_hpd = dw_hdmi_phy_read_hpd, }; static int dw_hdmi_detect_phy(struct dw_hdmi *hdmi) { unsigned int i; u8 phy_type; phy_type = hdmi_readb(hdmi, HDMI_CONFIG2_ID); /* * RK3228 and RK3328 phy_type is DW_HDMI_PHY_DWC_HDMI20_TX_PHY, * but it has a vedor phy. */ if (phy_type == DW_HDMI_PHY_VENDOR_PHY || hdmi->dev_type == RK3528_HDMI || hdmi->dev_type == RK3328_HDMI || hdmi->dev_type == RK3228_HDMI) { /* Vendor PHYs require support from the glue layer. */ if (!hdmi->plat_data->phy_ops || !hdmi->plat_data->phy_name) { printf( "Vendor HDMI PHY not supported by glue layer\n"); return -ENODEV; } hdmi->phy.ops = hdmi->plat_data->phy_ops; hdmi->phy.data = hdmi->plat_data->phy_data; hdmi->phy.name = hdmi->plat_data->phy_name; return 0; } /* Synopsys PHYs are handled internally. */ for (i = 0; i < ARRAY_SIZE(dw_hdmi_phys); ++i) { if (dw_hdmi_phys[i].type == phy_type) { hdmi->phy.ops = &dw_hdmi_synopsys_phy_ops; hdmi->phy.name = dw_hdmi_phys[i].name; hdmi->phy.data = (void *)&dw_hdmi_phys[i]; if (!dw_hdmi_phys[i].configure && !hdmi->plat_data->configure_phy) { printf("%s requires platform support\n", hdmi->phy.name); return -ENODEV; } return 0; } } printf("Unsupported HDMI PHY type (%02x)\n", phy_type); return -ENODEV; } static unsigned int hdmi_get_tmdsclock(struct dw_hdmi *hdmi, unsigned long mpixelclock) { unsigned int tmdsclock = mpixelclock; unsigned int depth = hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format); if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) { switch (depth) { case 16: tmdsclock = mpixelclock * 2; break; case 12: tmdsclock = mpixelclock * 3 / 2; break; case 10: tmdsclock = mpixelclock * 5 / 4; break; default: break; } } return tmdsclock; } static void hdmi_av_composer(struct dw_hdmi *hdmi, const struct drm_display_mode *mode) { u8 bytes = 0, inv_val = 0; struct hdmi_vmode *vmode = &hdmi->hdmi_data.video_mode; struct drm_hdmi_info *hdmi_info = &hdmi->edid_data.display_info.hdmi; int hblank, vblank, h_de_hs, v_de_vs, hsync_len, vsync_len; unsigned int hdisplay, vdisplay; vmode->mpixelclock = mode->crtc_clock * 1000; if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) vmode->mpixelclock *= 2; vmode->mtmdsclock = hdmi_get_tmdsclock(hdmi, vmode->mpixelclock); if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) vmode->mtmdsclock /= 2; printf("final pixclk = %d tmdsclk = %d\n", vmode->mpixelclock, vmode->mtmdsclock); /* Set up HDMI_FC_INVIDCONF * Some display equipments require that the interval * between Video Data and Data island must be at least 58 pixels, * and fc_invidconf.HDCP_keepout set (1'b1) can meet the requirement. */ inv_val = HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE; inv_val |= mode->flags & DRM_MODE_FLAG_PVSYNC ? HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH : HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW; inv_val |= mode->flags & DRM_MODE_FLAG_PHSYNC ? HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH : HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW; inv_val |= (vmode->mdataenablepolarity ? HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH : HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW); if (hdmi->vic == 39) inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH; else inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ? HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH : HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW; inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ? HDMI_FC_INVIDCONF_IN_I_P_INTERLACED : HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE; inv_val |= hdmi->sink_is_hdmi ? HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE : HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE; hdmi_writeb(hdmi, inv_val, HDMI_FC_INVIDCONF); hdisplay = mode->hdisplay; hblank = mode->htotal - mode->hdisplay; h_de_hs = mode->hsync_start - mode->hdisplay; hsync_len = mode->hsync_end - mode->hsync_start; /* * When we're setting a YCbCr420 mode, we need * to adjust the horizontal timing to suit. */ if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) { hdisplay /= 2; hblank /= 2; h_de_hs /= 2; hsync_len /= 2; } vdisplay = mode->vdisplay; vblank = mode->vtotal - mode->vdisplay; v_de_vs = mode->vsync_start - mode->vdisplay; vsync_len = mode->vsync_end - mode->vsync_start; /* * When we're setting an interlaced mode, we need * to adjust the vertical timing to suit. */ if (mode->flags & DRM_MODE_FLAG_INTERLACE) { vdisplay /= 2; vblank /= 2; v_de_vs /= 2; vsync_len /= 2; } else if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) { vdisplay += mode->vtotal; } /* Scrambling Control */ if (hdmi_info->scdc.supported) { if (vmode->mtmdsclock > 340000000 || (hdmi_info->scdc.scrambling.low_rates && hdmi->scramble_low_rates)) { drm_scdc_readb(&hdmi->adap, SCDC_SINK_VERSION, &bytes); drm_scdc_writeb(&hdmi->adap, SCDC_SOURCE_VERSION, bytes); rockchip_dw_hdmi_scrambling_enable(hdmi, 1); } else { rockchip_dw_hdmi_scrambling_enable(hdmi, 0); } } /* Set up horizontal active pixel width */ hdmi_writeb(hdmi, hdisplay >> 8, HDMI_FC_INHACTV1); hdmi_writeb(hdmi, hdisplay, HDMI_FC_INHACTV0); /* Set up vertical active lines */ hdmi_writeb(hdmi, vdisplay >> 8, HDMI_FC_INVACTV1); hdmi_writeb(hdmi, vdisplay, HDMI_FC_INVACTV0); /* Set up horizontal blanking pixel region width */ hdmi_writeb(hdmi, hblank >> 8, HDMI_FC_INHBLANK1); hdmi_writeb(hdmi, hblank, HDMI_FC_INHBLANK0); /* Set up vertical blanking pixel region width */ hdmi_writeb(hdmi, vblank, HDMI_FC_INVBLANK); /* Set up HSYNC active edge delay width (in pixel clks) */ hdmi_writeb(hdmi, h_de_hs >> 8, HDMI_FC_HSYNCINDELAY1); hdmi_writeb(hdmi, h_de_hs, HDMI_FC_HSYNCINDELAY0); /* Set up VSYNC active edge delay (in lines) */ hdmi_writeb(hdmi, v_de_vs, HDMI_FC_VSYNCINDELAY); /* Set up HSYNC active pulse width (in pixel clks) */ hdmi_writeb(hdmi, hsync_len >> 8, HDMI_FC_HSYNCINWIDTH1); hdmi_writeb(hdmi, hsync_len, HDMI_FC_HSYNCINWIDTH0); /* Set up VSYNC active edge delay (in lines) */ hdmi_writeb(hdmi, vsync_len, HDMI_FC_VSYNCINWIDTH); } static void dw_hdmi_update_csc_coeffs(struct dw_hdmi *hdmi) { const u16 (*csc_coeff)[3][4] = &csc_coeff_default; unsigned i; u32 csc_scale = 1; int enc_out_rgb, enc_in_rgb; enc_out_rgb = hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format); enc_in_rgb = hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format); if (is_color_space_conversion(hdmi)) { if (enc_out_rgb && enc_in_rgb) { csc_coeff = &csc_coeff_full_to_limited; csc_scale = 0; } else if (enc_out_rgb) { if (hdmi->hdmi_data.enc_out_encoding == V4L2_YCBCR_ENC_601) csc_coeff = &csc_coeff_rgb_out_eitu601; else csc_coeff = &csc_coeff_rgb_out_eitu709; } else if (enc_in_rgb) { if (hdmi->hdmi_data.enc_out_encoding == V4L2_YCBCR_ENC_601) csc_coeff = &csc_coeff_rgb_in_eitu601; else csc_coeff = &csc_coeff_rgb_in_eitu709; csc_scale = 0; } } /* The CSC registers are sequential, alternating MSB then LSB */ for (i = 0; i < ARRAY_SIZE(csc_coeff_default[0]); i++) { u16 coeff_a = (*csc_coeff)[0][i]; u16 coeff_b = (*csc_coeff)[1][i]; u16 coeff_c = (*csc_coeff)[2][i]; hdmi_writeb(hdmi, coeff_a & 0xff, HDMI_CSC_COEF_A1_LSB + i * 2); hdmi_writeb(hdmi, coeff_a >> 8, HDMI_CSC_COEF_A1_MSB + i * 2); hdmi_writeb(hdmi, coeff_b & 0xff, HDMI_CSC_COEF_B1_LSB + i * 2); hdmi_writeb(hdmi, coeff_b >> 8, HDMI_CSC_COEF_B1_MSB + i * 2); hdmi_writeb(hdmi, coeff_c & 0xff, HDMI_CSC_COEF_C1_LSB + i * 2); hdmi_writeb(hdmi, coeff_c >> 8, HDMI_CSC_COEF_C1_MSB + i * 2); } hdmi_modb(hdmi, csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK, HDMI_CSC_SCALE); } static int is_color_space_interpolation(struct dw_hdmi *hdmi) { if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_in_bus_format)) return 0; if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) || hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format)) return 1; return 0; } static void hdmi_video_csc(struct dw_hdmi *hdmi) { int color_depth = 0; int interpolation = HDMI_CSC_CFG_INTMODE_DISABLE; int decimation = 0; /* YCC422 interpolation to 444 mode */ if (is_color_space_interpolation(hdmi)) interpolation = HDMI_CSC_CFG_INTMODE_CHROMA_INT_FORMULA1; else if (is_color_space_decimation(hdmi)) decimation = HDMI_CSC_CFG_DECMODE_CHROMA_INT_FORMULA3; switch (hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format)) { case 8: color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP; break; case 10: color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_30BPP; break; case 12: color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_36BPP; break; case 16: color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_48BPP; break; default: return; } /* Configure the CSC registers */ hdmi_writeb(hdmi, interpolation | decimation, HDMI_CSC_CFG); hdmi_modb(hdmi, color_depth, HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK, HDMI_CSC_SCALE); dw_hdmi_update_csc_coeffs(hdmi); } static void dw_hdmi_enable_video_path(struct dw_hdmi *hdmi) { u8 clkdis; /* control period minimum duration */ hdmi_writeb(hdmi, 12, HDMI_FC_CTRLDUR); hdmi_writeb(hdmi, 32, HDMI_FC_EXCTRLDUR); hdmi_writeb(hdmi, 1, HDMI_FC_EXCTRLSPAC); /* Set to fill TMDS data channels */ hdmi_writeb(hdmi, 0x0B, HDMI_FC_CH0PREAM); hdmi_writeb(hdmi, 0x16, HDMI_FC_CH1PREAM); hdmi_writeb(hdmi, 0x21, HDMI_FC_CH2PREAM); /* Enable pixel clock and tmds data path */ clkdis = 0x7F; clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE; hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS); clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE; hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS); /* Enable csc path */ if (is_color_space_conversion(hdmi)) { clkdis &= ~HDMI_MC_CLKDIS_CSCCLK_DISABLE; hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS); } /* Enable pixel repetition path */ if (hdmi->hdmi_data.video_mode.mpixelrepetitioninput) { clkdis &= ~HDMI_MC_CLKDIS_PREPCLK_DISABLE; hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS); } /* Enable color space conversion if needed */ if (is_color_space_conversion(hdmi)) hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_IN_PATH, HDMI_MC_FLOWCTRL); else hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS, HDMI_MC_FLOWCTRL); } static void dw_hdmi_clear_overflow(struct dw_hdmi *hdmi) { unsigned int count; unsigned int i; u8 val; /* * Under some circumstances the Frame Composer arithmetic unit can miss * an FC register write due to being busy processing the previous one. * The issue can be worked around by issuing a TMDS software reset and * then write one of the FC registers several times. * * The number of iterations matters and depends on the HDMI TX revision * (and possibly on the platform). So far only i.MX6Q (v1.30a) and * i.MX6DL (v1.31a) have been identified as needing the workaround, with * 4 and 1 iterations respectively. */ switch (hdmi->version) { case 0x130a: count = 4; break; case 0x131a: case 0x200a: case 0x201a: case 0x211a: count = 1; break; default: return; } /* TMDS software reset */ hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ); val = hdmi_readb(hdmi, HDMI_FC_INVIDCONF); for (i = 0; i < count; i++) hdmi_writeb(hdmi, val, HDMI_FC_INVIDCONF); } static void hdmi_disable_overflow_interrupts(struct dw_hdmi *hdmi) { hdmi_writeb(hdmi, HDMI_IH_MUTE_FC_STAT2_OVERFLOW_MASK, HDMI_IH_MUTE_FC_STAT2); } static void hdmi_video_packetize(struct dw_hdmi *hdmi) { unsigned int color_depth = 0; unsigned int remap_size = HDMI_VP_REMAP_YCC422_16bit; unsigned int output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_PP; struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data; u8 val, vp_conf; if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) || hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format) || hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) { switch (hdmi_bus_fmt_color_depth( hdmi->hdmi_data.enc_out_bus_format)) { case 8: color_depth = 0; output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS; break; case 10: color_depth = 5; break; case 12: color_depth = 6; break; case 16: color_depth = 7; break; default: output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS; } } else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) { switch (hdmi_bus_fmt_color_depth( hdmi->hdmi_data.enc_out_bus_format)) { case 0: case 8: remap_size = HDMI_VP_REMAP_YCC422_16bit; break; case 10: remap_size = HDMI_VP_REMAP_YCC422_20bit; break; case 12: remap_size = HDMI_VP_REMAP_YCC422_24bit; break; default: return; } output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422; } else { return; } /* set the packetizer registers */ val = (color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) & HDMI_VP_PR_CD_COLOR_DEPTH_MASK; hdmi_writeb(hdmi, val, HDMI_VP_PR_CD); hdmi_modb(hdmi, HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE, HDMI_VP_STUFF_PR_STUFFING_MASK, HDMI_VP_STUFF); /* Data from pixel repeater block */ if (hdmi_data->pix_repet_factor > 0) { vp_conf = HDMI_VP_CONF_PR_EN_ENABLE | HDMI_VP_CONF_BYPASS_SELECT_PIX_REPEATER; } else { /* data from packetizer block */ vp_conf = HDMI_VP_CONF_PR_EN_DISABLE | HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER; } hdmi_modb(hdmi, vp_conf, HDMI_VP_CONF_PR_EN_MASK | HDMI_VP_CONF_BYPASS_SELECT_MASK, HDMI_VP_CONF); hdmi_modb(hdmi, 0, HDMI_VP_STUFF_IDEFAULT_PHASE_MASK, HDMI_VP_STUFF); hdmi_writeb(hdmi, remap_size, HDMI_VP_REMAP); if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_PP) { vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE | HDMI_VP_CONF_PP_EN_ENABLE | HDMI_VP_CONF_YCC422_EN_DISABLE; } else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422) { vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE | HDMI_VP_CONF_PP_EN_DISABLE | HDMI_VP_CONF_YCC422_EN_ENABLE; } else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS) { vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE | HDMI_VP_CONF_PP_EN_DISABLE | HDMI_VP_CONF_YCC422_EN_DISABLE; } else { return; } hdmi_modb(hdmi, vp_conf, HDMI_VP_CONF_BYPASS_EN_MASK | HDMI_VP_CONF_PP_EN_ENMASK | HDMI_VP_CONF_YCC422_EN_MASK, HDMI_VP_CONF); hdmi_modb(hdmi, HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE | HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE, HDMI_VP_STUFF_PP_STUFFING_MASK | HDMI_VP_STUFF_YCC422_STUFFING_MASK, HDMI_VP_STUFF); hdmi_modb(hdmi, output_select, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK, HDMI_VP_CONF); } static void hdmi_video_sample(struct dw_hdmi *hdmi) { int color_format = 0; u8 val; switch (hdmi->hdmi_data.enc_in_bus_format) { case MEDIA_BUS_FMT_RGB888_1X24: color_format = 0x01; break; case MEDIA_BUS_FMT_RGB101010_1X30: color_format = 0x03; break; case MEDIA_BUS_FMT_RGB121212_1X36: color_format = 0x05; break; case MEDIA_BUS_FMT_RGB161616_1X48: color_format = 0x07; break; case MEDIA_BUS_FMT_YUV8_1X24: case MEDIA_BUS_FMT_UYYVYY8_0_5X24: color_format = 0x09; break; case MEDIA_BUS_FMT_YUV10_1X30: case MEDIA_BUS_FMT_UYYVYY10_0_5X30: color_format = 0x0B; break; case MEDIA_BUS_FMT_YUV12_1X36: case MEDIA_BUS_FMT_UYYVYY12_0_5X36: color_format = 0x0D; break; case MEDIA_BUS_FMT_YUV16_1X48: case MEDIA_BUS_FMT_UYYVYY16_0_5X48: color_format = 0x0F; break; case MEDIA_BUS_FMT_UYVY8_1X16: color_format = 0x16; break; case MEDIA_BUS_FMT_UYVY10_1X20: color_format = 0x14; break; case MEDIA_BUS_FMT_UYVY12_1X24: color_format = 0x12; break; default: return; } val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE | ((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) & HDMI_TX_INVID0_VIDEO_MAPPING_MASK); hdmi_writeb(hdmi, val, HDMI_TX_INVID0); /* Enable TX stuffing: When DE is inactive, fix the output data to 0 */ val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE | HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE | HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE; hdmi_writeb(hdmi, val, HDMI_TX_INSTUFFING); hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA0); hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA1); hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA0); hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA1); hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA0); hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA1); } static void dw_hdmi_disable(struct rockchip_connector *conn, struct dw_hdmi *hdmi, struct display_state *state) { if (hdmi->phy.enabled) { hdmi->phy.ops->disable(conn, hdmi, state); hdmi->phy.enabled = false; } } static void hdmi_config_AVI(struct dw_hdmi *hdmi, struct drm_display_mode *mode) { struct hdmi_avi_infoframe frame; u8 val; bool is_hdmi2 = false; enum hdmi_quantization_range rgb_quant_range = hdmi->hdmi_data.quant_range; if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format) || hdmi->edid_data.display_info.hdmi.scdc.supported) is_hdmi2 = true; /* Initialise info frame from DRM mode */ drm_hdmi_avi_infoframe_from_display_mode(&frame, mode, is_hdmi2); /* * Ignore monitor selectable quantization, use quantization set * by the user */ drm_hdmi_avi_infoframe_quant_range(&frame, mode, rgb_quant_range, true); if (hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format)) frame.colorspace = HDMI_COLORSPACE_YUV444; else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) frame.colorspace = HDMI_COLORSPACE_YUV422; else if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) frame.colorspace = HDMI_COLORSPACE_YUV420; else frame.colorspace = HDMI_COLORSPACE_RGB; /* Set up colorimetry */ switch (hdmi->hdmi_data.enc_out_encoding) { case V4L2_YCBCR_ENC_601: if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV601) frame.colorimetry = HDMI_COLORIMETRY_EXTENDED; else frame.colorimetry = HDMI_COLORIMETRY_ITU_601; frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_601; break; case V4L2_YCBCR_ENC_709: if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV709) frame.colorimetry = HDMI_COLORIMETRY_EXTENDED; else frame.colorimetry = HDMI_COLORIMETRY_ITU_709; frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_709; break; default: /* Carries no data */ frame.colorimetry = HDMI_COLORIMETRY_ITU_601; frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_601; break; } frame.scan_mode = HDMI_SCAN_MODE_NONE; /* * The Designware IP uses a different byte format from standard * AVI info frames, though generally the bits are in the correct * bytes. */ /* * AVI data byte 1 differences: Colorspace in bits 0,1,7 rather than * 5,6,7, active aspect present in bit 6 rather than 4. */ val = (frame.scan_mode & 3) << 4 | (frame.colorspace & 0x3); if (frame.active_aspect & 15) val |= HDMI_FC_AVICONF0_ACTIVE_FMT_INFO_PRESENT; if (frame.top_bar || frame.bottom_bar) val |= HDMI_FC_AVICONF0_BAR_DATA_HORIZ_BAR; if (frame.left_bar || frame.right_bar) val |= HDMI_FC_AVICONF0_BAR_DATA_VERT_BAR; hdmi_writeb(hdmi, val, HDMI_FC_AVICONF0); /* AVI data byte 2 differences: none */ val = ((frame.colorimetry & 0x3) << 6) | ((frame.picture_aspect & 0x3) << 4) | (frame.active_aspect & 0xf); hdmi_writeb(hdmi, val, HDMI_FC_AVICONF1); /* AVI data byte 3 differences: none */ val = ((frame.extended_colorimetry & 0x7) << 4) | ((frame.quantization_range & 0x3) << 2) | (frame.nups & 0x3); if (frame.itc) val |= HDMI_FC_AVICONF2_IT_CONTENT_VALID; hdmi_writeb(hdmi, val, HDMI_FC_AVICONF2); /* AVI data byte 4 differences: none */ val = frame.video_code & 0x7f; hdmi_writeb(hdmi, val, HDMI_FC_AVIVID); /* AVI Data Byte 5- set up input and output pixel repetition */ val = (((hdmi->hdmi_data.video_mode.mpixelrepetitioninput + 1) << HDMI_FC_PRCONF_INCOMING_PR_FACTOR_OFFSET) & HDMI_FC_PRCONF_INCOMING_PR_FACTOR_MASK) | ((hdmi->hdmi_data.video_mode.mpixelrepetitionoutput << HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_OFFSET) & HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_MASK); hdmi_writeb(hdmi, val, HDMI_FC_PRCONF); /* * AVI data byte 5 differences: content type in 0,1 rather than 4,5, * ycc range in bits 2,3 rather than 6,7 */ val = ((frame.ycc_quantization_range & 0x3) << 2) | (frame.content_type & 0x3); hdmi_writeb(hdmi, val, HDMI_FC_AVICONF3); /* AVI Data Bytes 6-13 */ hdmi_writeb(hdmi, frame.top_bar & 0xff, HDMI_FC_AVIETB0); hdmi_writeb(hdmi, (frame.top_bar >> 8) & 0xff, HDMI_FC_AVIETB1); hdmi_writeb(hdmi, frame.bottom_bar & 0xff, HDMI_FC_AVISBB0); hdmi_writeb(hdmi, (frame.bottom_bar >> 8) & 0xff, HDMI_FC_AVISBB1); hdmi_writeb(hdmi, frame.left_bar & 0xff, HDMI_FC_AVIELB0); hdmi_writeb(hdmi, (frame.left_bar >> 8) & 0xff, HDMI_FC_AVIELB1); hdmi_writeb(hdmi, frame.right_bar & 0xff, HDMI_FC_AVISRB0); hdmi_writeb(hdmi, (frame.right_bar >> 8) & 0xff, HDMI_FC_AVISRB1); } static void hdmi_config_vendor_specific_infoframe(struct dw_hdmi *hdmi, struct drm_display_mode *mode) { struct hdmi_vendor_infoframe frame; u8 buffer[10]; ssize_t err; /* Disable HDMI vendor specific infoframe send */ hdmi_mask_writeb(hdmi, 0, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET, HDMI_FC_DATAUTO0_VSD_MASK); err = drm_hdmi_vendor_infoframe_from_display_mode(&frame, mode); if (err < 0) /* * Going into that statement does not means vendor infoframe * fails. It just informed us that vendor infoframe is not * needed for the selected mode. Only 4k or stereoscopic 3D * mode requires vendor infoframe. So just simply return. */ return; err = hdmi_vendor_infoframe_pack(&frame, buffer, sizeof(buffer)); if (err < 0) { printf("Failed to pack vendor infoframe: %zd\n", err); return; } /* Set the length of HDMI vendor specific InfoFrame payload */ hdmi_writeb(hdmi, buffer[2], HDMI_FC_VSDSIZE); /* Set 24bit IEEE Registration Identifier */ hdmi_writeb(hdmi, buffer[4], HDMI_FC_VSDIEEEID0); hdmi_writeb(hdmi, buffer[5], HDMI_FC_VSDIEEEID1); hdmi_writeb(hdmi, buffer[6], HDMI_FC_VSDIEEEID2); /* Set HDMI_Video_Format and HDMI_VIC/3D_Structure */ hdmi_writeb(hdmi, buffer[7], HDMI_FC_VSDPAYLOAD0); hdmi_writeb(hdmi, buffer[8], HDMI_FC_VSDPAYLOAD1); if (frame.s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF) hdmi_writeb(hdmi, buffer[9], HDMI_FC_VSDPAYLOAD2); /* Packet frame interpolation */ hdmi_writeb(hdmi, 1, HDMI_FC_DATAUTO1); /* Auto packets per frame and line spacing */ hdmi_writeb(hdmi, 0x11, HDMI_FC_DATAUTO2); /* Configures the Frame Composer On RDRB mode */ hdmi_mask_writeb(hdmi, 1, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET, HDMI_FC_DATAUTO0_VSD_MASK); } static void hdmi_set_cts_n(struct dw_hdmi *hdmi, unsigned int cts, unsigned int n) { /* Must be set/cleared first */ hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3); /* nshift factor = 0 */ hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_N_SHIFT_MASK, HDMI_AUD_CTS3); hdmi_writeb(hdmi, ((cts >> 16) & HDMI_AUD_CTS3_AUDCTS19_16_MASK) | HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3); hdmi_writeb(hdmi, (cts >> 8) & 0xff, HDMI_AUD_CTS2); hdmi_writeb(hdmi, cts & 0xff, HDMI_AUD_CTS1); hdmi_writeb(hdmi, (n >> 16) & 0x0f, HDMI_AUD_N3); hdmi_writeb(hdmi, (n >> 8) & 0xff, HDMI_AUD_N2); hdmi_writeb(hdmi, n & 0xff, HDMI_AUD_N1); } static int hdmi_match_tmds_n_table(struct dw_hdmi *hdmi, unsigned long pixel_clk, unsigned long freq) { const struct dw_hdmi_plat_data *plat_data = hdmi->plat_data; const struct dw_hdmi_audio_tmds_n *tmds_n = NULL; int i; if (plat_data->tmds_n_table) { for (i = 0; plat_data->tmds_n_table[i].tmds != 0; i++) { if (pixel_clk == plat_data->tmds_n_table[i].tmds) { tmds_n = &plat_data->tmds_n_table[i]; break; } } } if (!tmds_n) { for (i = 0; common_tmds_n_table[i].tmds != 0; i++) { if (pixel_clk == common_tmds_n_table[i].tmds) { tmds_n = &common_tmds_n_table[i]; break; } } } if (!tmds_n) return -ENOENT; switch (freq) { case 32000: return tmds_n->n_32k; case 44100: case 88200: case 176400: return (freq / 44100) * tmds_n->n_44k1; case 48000: case 96000: case 192000: return (freq / 48000) * tmds_n->n_48k; default: return -ENOENT; } } static u64 hdmi_audio_math_diff(unsigned int freq, unsigned int n, unsigned int pixel_clk) { u64 final, diff; u64 cts; final = (u64)pixel_clk * n; cts = final; do_div(cts, 128 * freq); diff = final - (u64)cts * (128 * freq); return diff; } static unsigned int hdmi_compute_n(struct dw_hdmi *hdmi, unsigned long pixel_clk, unsigned long freq) { unsigned int min_n = DIV_ROUND_UP((128 * freq), 1500); unsigned int max_n = (128 * freq) / 300; unsigned int ideal_n = (128 * freq) / 1000; unsigned int best_n_distance = ideal_n; unsigned int best_n = 0; u64 best_diff = U64_MAX; int n; /* If the ideal N could satisfy the audio math, then just take it */ if (hdmi_audio_math_diff(freq, ideal_n, pixel_clk) == 0) return ideal_n; for (n = min_n; n <= max_n; n++) { u64 diff = hdmi_audio_math_diff(freq, n, pixel_clk); if (diff < best_diff || (diff == best_diff && abs(n - ideal_n) < best_n_distance)) { best_n = n; best_diff = diff; best_n_distance = abs(best_n - ideal_n); } /* * The best N already satisfy the audio math, and also be * the closest value to ideal N, so just cut the loop. */ if ((best_diff == 0) && (abs(n - ideal_n) > best_n_distance)) break; } return best_n; } static unsigned int hdmi_find_n(struct dw_hdmi *hdmi, unsigned long pixel_clk, unsigned long sample_rate) { int n; n = hdmi_match_tmds_n_table(hdmi, pixel_clk, sample_rate); if (n > 0) return n; printf("Rate %lu missing; compute N dynamically\n", pixel_clk); return hdmi_compute_n(hdmi, pixel_clk, sample_rate); } static void hdmi_set_clk_regenerator(struct dw_hdmi *hdmi, unsigned long pixel_clk, unsigned int sample_rate) { unsigned long ftdms = pixel_clk; unsigned int n, cts; u64 tmp; n = hdmi_find_n(hdmi, pixel_clk, sample_rate); /* * Compute the CTS value from the N value. Note that CTS and N * can be up to 20 bits in total, so we need 64-bit math. Also * note that our TDMS clock is not fully accurate; it is accurate * to kHz. This can introduce an unnecessary remainder in the * calculation below, so we don't try to warn about that. */ tmp = (u64)ftdms * n; do_div(tmp, 128 * sample_rate); cts = tmp; printf("%s: fs=%uHz ftdms=%lu.%03luMHz N=%d cts=%d\n", __func__, sample_rate, ftdms / 1000000, (ftdms / 1000) % 1000, n, cts); hdmi->audio_n = n; hdmi->audio_cts = cts; hdmi_set_cts_n(hdmi, cts, hdmi->audio_enable ? n : 0); } static void hdmi_clk_regenerator_update_pixel_clock(struct dw_hdmi *hdmi) { hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mtmdsclock, hdmi->sample_rate); } static void hdmi_enable_audio_clk(struct dw_hdmi *hdmi) { hdmi_modb(hdmi, 0, HDMI_MC_CLKDIS_AUDCLK_DISABLE, HDMI_MC_CLKDIS); } void dw_hdmi_set_sample_rate(struct dw_hdmi *hdmi, unsigned int rate) { hdmi->sample_rate = rate; hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mtmdsclock, hdmi->sample_rate); } #ifndef CONFIG_SPL_BUILD static int dw_hdmi_hdcp_load_key(struct dw_hdmi *hdmi) { int i, j, ret, val; struct hdcp_keys *hdcp_keys; val = sizeof(*hdcp_keys); hdcp_keys = malloc(val); if (!hdcp_keys) return -ENOMEM; memset(hdcp_keys, 0, val); ret = vendor_storage_read(HDMI_HDCP1X_ID, hdcp_keys, val); if (ret < val) { printf("HDCP: read size %d\n", ret); free(hdcp_keys); return -EINVAL; } if (hdcp_keys->KSV[0] == 0x00 && hdcp_keys->KSV[1] == 0x00 && hdcp_keys->KSV[2] == 0x00 && hdcp_keys->KSV[3] == 0x00 && hdcp_keys->KSV[4] == 0x00) { printf("HDCP: Invalid hdcp key\n"); free(hdcp_keys); return -EINVAL; } /* Disable decryption logic */ hdmi_writeb(hdmi, 0, HDMI_HDCPREG_RMCTL); /* Poll untile DPK write is allowed */ do { val = hdmi_readb(hdmi, HDMI_HDCPREG_RMSTS); } while ((val & DPK_WR_OK_STS) == 0); hdmi_writeb(hdmi, 0, HDMI_HDCPREG_DPK6); hdmi_writeb(hdmi, 0, HDMI_HDCPREG_DPK5); /* The useful data in ksv should be 5 byte */ for (i = 4; i >= 0; i--) hdmi_writeb(hdmi, hdcp_keys->KSV[i], HDMI_HDCPREG_DPK0 + i); /* Poll untile DPK write is allowed */ do { val = hdmi_readb(hdmi, HDMI_HDCPREG_RMSTS); } while ((val & DPK_WR_OK_STS) == 0); /* Enable decryption logic */ hdmi_writeb(hdmi, 1, HDMI_HDCPREG_RMCTL); hdmi_writeb(hdmi, hdcp_keys->seeds[0], HDMI_HDCPREG_SEED1); hdmi_writeb(hdmi, hdcp_keys->seeds[1], HDMI_HDCPREG_SEED0); /* Write encrypt device private key */ for (i = 0; i < DW_HDMI_HDCP_DPK_LEN - 6; i += 7) { for (j = 6; j >= 0; j--) hdmi_writeb(hdmi, hdcp_keys->devicekey[i + j], HDMI_HDCPREG_DPK0 + j); do { val = hdmi_readb(hdmi, HDMI_HDCPREG_RMSTS); } while ((val & DPK_WR_OK_STS) == 0); } free(hdcp_keys); return 0; } #endif static void hdmi_tx_hdcp_config(struct dw_hdmi *hdmi, const struct drm_display_mode *mode) { u8 vsync_pol, hsync_pol, data_pol, hdmi_dvi; if (!hdmi->hdcp1x_enable) return; /* Configure the video polarity */ vsync_pol = mode->flags & DRM_MODE_FLAG_PVSYNC ? HDMI_A_VIDPOLCFG_VSYNCPOL_ACTIVE_HIGH : HDMI_A_VIDPOLCFG_VSYNCPOL_ACTIVE_LOW; hsync_pol = mode->flags & DRM_MODE_FLAG_PHSYNC ? HDMI_A_VIDPOLCFG_HSYNCPOL_ACTIVE_HIGH : HDMI_A_VIDPOLCFG_HSYNCPOL_ACTIVE_LOW; data_pol = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_HIGH; hdmi_modb(hdmi, vsync_pol | hsync_pol | data_pol, HDMI_A_VIDPOLCFG_VSYNCPOL_MASK | HDMI_A_VIDPOLCFG_HSYNCPOL_MASK | HDMI_A_VIDPOLCFG_DATAENPOL_MASK, HDMI_A_VIDPOLCFG); /* Config the display mode */ hdmi_dvi = hdmi->sink_is_hdmi ? HDMI_A_HDCPCFG0_HDMIDVI_HDMI : HDMI_A_HDCPCFG0_HDMIDVI_DVI; hdmi_modb(hdmi, hdmi_dvi, HDMI_A_HDCPCFG0_HDMIDVI_MASK, HDMI_A_HDCPCFG0); #ifndef CONFIG_SPL_BUILD if (!(hdmi_readb(hdmi, HDMI_HDCPREG_RMSTS) & 0x3f)) dw_hdmi_hdcp_load_key(hdmi); #endif hdmi_modb(hdmi, HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE, HDMI_FC_INVIDCONF_HDCP_KEEPOUT_MASK, HDMI_FC_INVIDCONF); if (hdmi_readb(hdmi, HDMI_CONFIG1_ID) & HDMI_A_HDCP22_MASK) { hdmi_modb(hdmi, HDMI_HDCP2_OVR_ENABLE | HDMI_HDCP2_FORCE_DISABLE, HDMI_HDCP2_OVR_EN_MASK | HDMI_HDCP2_FORCE_MASK, HDMI_HDCP2REG_CTRL); hdmi_writeb(hdmi, 0xff, HDMI_HDCP2REG_MASK); hdmi_writeb(hdmi, 0xff, HDMI_HDCP2REG_MUTE); } hdmi_writeb(hdmi, 0x40, HDMI_A_OESSWCFG); hdmi_modb(hdmi, HDMI_A_HDCPCFG0_BYPENCRYPTION_DISABLE | HDMI_A_HDCPCFG0_EN11FEATURE_DISABLE | HDMI_A_HDCPCFG0_SYNCRICHECK_ENABLE, HDMI_A_HDCPCFG0_BYPENCRYPTION_MASK | HDMI_A_HDCPCFG0_EN11FEATURE_MASK | HDMI_A_HDCPCFG0_SYNCRICHECK_MASK, HDMI_A_HDCPCFG0); hdmi_modb(hdmi, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_ENABLE | HDMI_A_HDCPCFG1_PH2UPSHFTENC_ENABLE, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_MASK | HDMI_A_HDCPCFG1_PH2UPSHFTENC_MASK, HDMI_A_HDCPCFG1); /* Reset HDCP Engine */ if (hdmi_readb(hdmi, HDMI_MC_CLKDIS) & HDMI_MC_CLKDIS_HDCPCLK_MASK) { hdmi_modb(hdmi, HDMI_A_HDCPCFG1_SWRESET_ASSERT, HDMI_A_HDCPCFG1_SWRESET_MASK, HDMI_A_HDCPCFG1); } hdmi_writeb(hdmi, 0x00, HDMI_A_APIINTMSK); hdmi_modb(hdmi, HDMI_A_HDCPCFG0_RXDETECT_ENABLE, HDMI_A_HDCPCFG0_RXDETECT_MASK, HDMI_A_HDCPCFG0); hdmi_modb(hdmi, HDMI_MC_CLKDIS_HDCPCLK_ENABLE, HDMI_MC_CLKDIS_HDCPCLK_MASK, HDMI_MC_CLKDIS); printf("%s success\n", __func__); } static int dw_hdmi_setup(struct dw_hdmi *hdmi, struct rockchip_connector *conn, struct drm_display_mode *mode, struct display_state *state) { int ret; void *data = hdmi->plat_data->phy_data; hdmi_disable_overflow_interrupts(hdmi); if (!hdmi->vic) printf("Non-CEA mode used in HDMI\n"); else printf("CEA mode used vic=%d\n", hdmi->vic); if (hdmi->plat_data->get_enc_out_encoding) hdmi->hdmi_data.enc_out_encoding = hdmi->plat_data->get_enc_out_encoding(data); else if (hdmi->vic == 6 || hdmi->vic == 7 || hdmi->vic == 21 || hdmi->vic == 22 || hdmi->vic == 2 || hdmi->vic == 3 || hdmi->vic == 17 || hdmi->vic == 18) hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_601; else hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_709; if (mode->flags & DRM_MODE_FLAG_DBLCLK) { hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 1; hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 1; } else { hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 0; hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 0; } /* TOFIX: Get input encoding from plat data or fallback to none */ if (hdmi->plat_data->get_enc_in_encoding) hdmi->hdmi_data.enc_in_encoding = hdmi->plat_data->get_enc_in_encoding(data); else if (hdmi->plat_data->input_bus_encoding) hdmi->hdmi_data.enc_in_encoding = hdmi->plat_data->input_bus_encoding; else hdmi->hdmi_data.enc_in_encoding = V4L2_YCBCR_ENC_DEFAULT; if (hdmi->plat_data->get_quant_range) hdmi->hdmi_data.quant_range = hdmi->plat_data->get_quant_range(data); else hdmi->hdmi_data.quant_range = HDMI_QUANTIZATION_RANGE_DEFAULT; /* * According to the dw-hdmi specification 6.4.2 * vp_pr_cd[3:0]: * 0000b: No pixel repetition (pixel sent only once) * 0001b: Pixel sent two times (pixel repeated once) */ hdmi->hdmi_data.pix_repet_factor = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 1 : 0; hdmi->hdmi_data.video_mode.mdataenablepolarity = true; /* HDMI Initialization Step B.1 */ hdmi_av_composer(hdmi, mode); /* HDMI Initialization Step B.2 */ ret = hdmi->phy.ops->init(conn, hdmi, state); if (ret) return ret; hdmi->phy.enabled = true; /* HDMI Initializateion Step B.3 */ dw_hdmi_enable_video_path(hdmi); /* HDMI Initialization Step E - Configure audio */ if (hdmi->sink_has_audio) { printf("sink has audio support\n"); hdmi_clk_regenerator_update_pixel_clock(hdmi); hdmi_enable_audio_clk(hdmi); } /* not for DVI mode */ if (hdmi->sink_is_hdmi) { /* HDMI Initialization Step F - Configure AVI InfoFrame */ hdmi_config_AVI(hdmi, mode); hdmi_config_vendor_specific_infoframe(hdmi, mode); hdmi_modb(hdmi, HDMI_A_HDCPCFG0_HDMIDVI_HDMI, HDMI_A_HDCPCFG0_HDMIDVI_MASK, HDMI_A_HDCPCFG0); } else { hdmi_modb(hdmi, HDMI_A_HDCPCFG0_HDMIDVI_DVI, HDMI_A_HDCPCFG0_HDMIDVI_MASK, HDMI_A_HDCPCFG0); printf("%s DVI mode\n", __func__); } hdmi_video_packetize(hdmi); hdmi_video_csc(hdmi); hdmi_video_sample(hdmi); hdmi_tx_hdcp_config(hdmi, mode); dw_hdmi_clear_overflow(hdmi); return 0; } int dw_hdmi_detect_hotplug(struct dw_hdmi *hdmi, struct display_state *state) { return hdmi->phy.ops->read_hpd(hdmi, state); } static int dw_hdmi_set_reg_wr(struct dw_hdmi *hdmi) { switch (hdmi->io_width) { case 4: hdmi->write = dw_hdmi_writel; hdmi->read = dw_hdmi_readl; break; case 1: hdmi->write = dw_hdmi_writeb; hdmi->read = dw_hdmi_readb; break; default: printf("reg-io-width must be 1 or 4\n"); return -EINVAL; } return 0; } static void initialize_hdmi_mutes(struct dw_hdmi *hdmi) { /*mute unnecessary interrupt, only enable hpd */ hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK0); hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK1); hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK2); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT1); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT2); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AS_STAT0); hdmi_writeb(hdmi, 0xfe, HDMI_IH_MUTE_PHY_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CM_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_CEC_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_VP_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CMPHY_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AHBDMAAUD_STAT0); hdmi_writeb(hdmi, 0xf1, HDMI_PHY_MASK0); /*Force output black*/ dw_hdmi_writel(hdmi, 0x00, HDMI_FC_DBGTMDS2); dw_hdmi_writel(hdmi, 0x00, HDMI_FC_DBGTMDS1); dw_hdmi_writel(hdmi, 0x00, HDMI_FC_DBGTMDS0); } static void dw_hdmi_dev_init(struct dw_hdmi *hdmi) { hdmi->version = (hdmi_readb(hdmi, HDMI_DESIGN_ID) << 8) | (hdmi_readb(hdmi, HDMI_REVISION_ID) << 0); initialize_hdmi_mutes(hdmi); } static void dw_hdmi_i2c_set_divs(struct dw_hdmi *hdmi) { unsigned long low_ns, high_ns; unsigned long div_low, div_high; /* Standard-mode */ if (hdmi->i2c->scl_high_ns < 4000) high_ns = 4708; else high_ns = hdmi->i2c->scl_high_ns; if (hdmi->i2c->scl_low_ns < 4700) low_ns = 4916; else low_ns = hdmi->i2c->scl_low_ns; div_low = (24000 * low_ns) / 1000000; if ((24000 * low_ns) % 1000000) div_low++; div_high = (24000 * high_ns) / 1000000; if ((24000 * high_ns) % 1000000) div_high++; /* Maximum divider supported by hw is 0xffff */ if (div_low > 0xffff) div_low = 0xffff; if (div_high > 0xffff) div_high = 0xffff; hdmi_writeb(hdmi, div_high & 0xff, HDMI_I2CM_SS_SCL_HCNT_0_ADDR); hdmi_writeb(hdmi, (div_high >> 8) & 0xff, HDMI_I2CM_SS_SCL_HCNT_1_ADDR); hdmi_writeb(hdmi, div_low & 0xff, HDMI_I2CM_SS_SCL_LCNT_0_ADDR); hdmi_writeb(hdmi, (div_low >> 8) & 0xff, HDMI_I2CM_SS_SCL_LCNT_1_ADDR); } static void dw_hdmi_i2c_init(struct dw_hdmi *hdmi) { /* Software reset */ hdmi_writeb(hdmi, 0x00, HDMI_I2CM_SOFTRSTZ); /* Set Standard Mode speed */ hdmi_modb(hdmi, HDMI_I2CM_DIV_STD_MODE, HDMI_I2CM_DIV_FAST_STD_MODE, HDMI_I2CM_DIV); /* Set done, not acknowledged and arbitration interrupt polarities */ hdmi_writeb(hdmi, HDMI_I2CM_INT_DONE_POL, HDMI_I2CM_INT); hdmi_writeb(hdmi, HDMI_I2CM_CTLINT_NAC_POL | HDMI_I2CM_CTLINT_ARB_POL, HDMI_I2CM_CTLINT); /* Clear DONE and ERROR interrupts */ hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE, HDMI_IH_I2CM_STAT0); /* Mute DONE and ERROR interrupts */ hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE, HDMI_IH_MUTE_I2CM_STAT0); /* set SDA high level holding time */ hdmi_writeb(hdmi, 0x48, HDMI_I2CM_SDA_HOLD); dw_hdmi_i2c_set_divs(hdmi); } void dw_hdmi_audio_enable(struct dw_hdmi *hdmi) { hdmi->audio_enable = true; hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n); } void dw_hdmi_audio_disable(struct dw_hdmi *hdmi) { hdmi->audio_enable = false; hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0); } int rockchip_dw_hdmi_init(struct rockchip_connector *conn, struct display_state *state) { struct connector_state *conn_state = &state->conn_state; const struct dw_hdmi_plat_data *pdata = #ifdef CONFIG_SPL_BUILD (const struct dw_hdmi_plat_data *)conn->data; #else (const struct dw_hdmi_plat_data *)dev_get_driver_data(conn->dev); ofnode hdmi_node = conn->dev->node; struct device_node *ddc_node; int ret; #endif struct crtc_state *crtc_state = &state->crtc_state; struct dw_hdmi *hdmi; struct drm_display_mode *mode_buf; u32 val; hdmi = malloc(sizeof(struct dw_hdmi)); if (!hdmi) return -ENOMEM; memset(hdmi, 0, sizeof(struct dw_hdmi)); mode_buf = malloc(MODE_LEN * sizeof(struct drm_display_mode)); if (!mode_buf) return -ENOMEM; #ifdef CONFIG_SPL_BUILD hdmi->id = 0; hdmi->regs = (void *)RK3528_HDMI_BASE; hdmi->io_width = 4; hdmi->scramble_low_rates = false; hdmi->hdcp1x_enable = false; hdmi->output_bus_format_rgb = false; conn_state->type = DRM_MODE_CONNECTOR_HDMIA; #else hdmi->id = of_alias_get_id(ofnode_to_np(hdmi_node), "hdmi"); if (hdmi->id < 0) hdmi->id = 0; conn_state->disp_info = rockchip_get_disp_info(conn_state->type, hdmi->id); #endif memset(mode_buf, 0, MODE_LEN * sizeof(struct drm_display_mode)); hdmi->dev_type = pdata->dev_type; hdmi->plat_data = pdata; #ifndef CONFIG_SPL_BUILD hdmi->regs = dev_read_addr_ptr(conn->dev); hdmi->io_width = ofnode_read_s32_default(hdmi_node, "reg-io-width", -1); if (ofnode_read_bool(hdmi_node, "scramble-low-rates")) hdmi->scramble_low_rates = true; if (ofnode_read_bool(hdmi_node, "hdcp1x-enable")) hdmi->hdcp1x_enable = true; else hdmi->hdcp1x_enable = false; if (ofnode_read_bool(hdmi_node, "force_output_bus_format_RGB") || ofnode_read_bool(hdmi_node, "unsupported-yuv-input")) hdmi->output_bus_format_rgb = true; else hdmi->output_bus_format_rgb = false; ret = dev_read_size(conn->dev, "rockchip,phy-table"); if (ret > 0 && hdmi->plat_data->phy_config) { u32 phy_config[ret / 4]; int i; dev_read_u32_array(conn->dev, "rockchip,phy-table", phy_config, ret / 4); for (i = 0; i < ret / 16; i++) { if (phy_config[i * 4] != 0) hdmi->plat_data->phy_config[i].mpixelclock = (u64)phy_config[i * 4]; else hdmi->plat_data->phy_config[i].mpixelclock = ~0UL; hdmi->plat_data->phy_config[i].sym_ctr = (u16)phy_config[i * 4 + 1]; hdmi->plat_data->phy_config[i].term = (u16)phy_config[i * 4 + 2]; hdmi->plat_data->phy_config[i].vlev_ctr = (u16)phy_config[i * 4 + 3]; } } ddc_node = of_parse_phandle(ofnode_to_np(hdmi_node), "ddc-i2c-bus", 0); if (ddc_node) { uclass_get_device_by_ofnode(UCLASS_I2C, np_to_ofnode(ddc_node), &hdmi->adap.i2c_bus); if (hdmi->adap.i2c_bus) hdmi->adap.ops = i2c_get_ops(hdmi->adap.i2c_bus); } #endif hdmi->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF); if (hdmi->grf <= 0) { printf("%s: Get syscon grf failed (ret=%p)\n", __func__, hdmi->grf); return -ENXIO; } #ifdef CONFIG_SPL_BUILD hdmi->gpio_base = (void *)RK3528_GPIO_BASE; #else ret = gpio_request_by_name(conn->dev, "hpd-gpios", 0, &hdmi->hpd_gpiod, GPIOD_IS_IN); if (ret && ret != -ENOENT) { printf("%s: Cannot get HPD GPIO: %d\n", __func__, ret); return ret; } hdmi->gpio_base = (void *)dev_read_addr_index(conn->dev, 1); #endif if (!hdmi->gpio_base) return -ENODEV; dw_hdmi_set_reg_wr(hdmi); if (pdata->grf_vop_sel_reg) { if (crtc_state->crtc_id) val = ((1 << pdata->vop_sel_bit) | (1 << (16 + pdata->vop_sel_bit))); else val = ((0 << pdata->vop_sel_bit) | (1 << (16 + pdata->vop_sel_bit))); writel(val, hdmi->grf + pdata->grf_vop_sel_reg); } hdmi->i2c = malloc(sizeof(struct dw_hdmi_i2c)); if (!hdmi->i2c) return -ENOMEM; hdmi->adap.ddc_xfer = dw_hdmi_i2c_xfer; /* * Read high and low time from device tree. If not available use * the default timing scl clock rate is about 99.6KHz. */ #ifdef CONFIG_SPL_BUILD hdmi->i2c->scl_high_ns = 9625; hdmi->i2c->scl_low_ns = 10000; #else hdmi->i2c->scl_high_ns = ofnode_read_s32_default(hdmi_node, "ddc-i2c-scl-high-time-ns", 4708); hdmi->i2c->scl_low_ns = ofnode_read_s32_default(hdmi_node, "ddc-i2c-scl-low-time-ns", 4916); #endif dw_hdmi_i2c_init(hdmi); conn_state->output_if |= VOP_OUTPUT_IF_HDMI0; conn_state->output_mode = ROCKCHIP_OUT_MODE_AAAA; hdmi->edid_data.mode_buf = mode_buf; hdmi->sample_rate = 48000; conn->data = hdmi; dw_hdmi_set_iomux(hdmi->grf, hdmi->gpio_base, &hdmi->hpd_gpiod, hdmi->dev_type); dw_hdmi_detect_phy(hdmi); dw_hdmi_dev_init(hdmi); return 0; } void rockchip_dw_hdmi_deinit(struct rockchip_connector *conn, struct display_state *state) { struct dw_hdmi *hdmi = conn->data; if (hdmi->i2c) free(hdmi->i2c); if (hdmi->edid_data.mode_buf) free(hdmi->edid_data.mode_buf); if (hdmi) free(hdmi); } int rockchip_dw_hdmi_prepare(struct rockchip_connector *conn, struct display_state *state) { return 0; } int rockchip_dw_hdmi_enable(struct rockchip_connector *conn, struct display_state *state) { struct connector_state *conn_state = &state->conn_state; struct drm_display_mode *mode = &conn_state->mode; struct dw_hdmi *hdmi = conn->data; if (!hdmi) return -EFAULT; /* Store the display mode for plugin/DKMS poweron events */ memcpy(&hdmi->previous_mode, mode, sizeof(hdmi->previous_mode)); dw_hdmi_setup(hdmi, conn, mode, state); return 0; } int rockchip_dw_hdmi_disable(struct rockchip_connector *conn, struct display_state *state) { struct dw_hdmi *hdmi = conn->data; dw_hdmi_disable(conn, hdmi, state); return 0; } int rockchip_dw_hdmi_get_timing(struct rockchip_connector *conn, struct display_state *state) { int ret, i, vic; struct connector_state *conn_state = &state->conn_state; struct drm_display_mode *mode = &conn_state->mode; struct dw_hdmi *hdmi = conn->data; struct edid *edid = (struct edid *)conn_state->edid; unsigned int bus_format; unsigned long enc_out_encoding; struct overscan *overscan = &conn_state->overscan; const u8 def_modes_vic[6] = {4, 16, 2, 17, 31, 19}; if (!hdmi) return -EFAULT; ret = drm_do_get_edid(&hdmi->adap, conn_state->edid); if (!ret) { hdmi->sink_is_hdmi = drm_detect_hdmi_monitor(edid); hdmi->sink_has_audio = drm_detect_monitor_audio(edid); ret = drm_add_edid_modes(&hdmi->edid_data, conn_state->edid); } if (ret < 0) { hdmi->sink_is_hdmi = true; hdmi->sink_has_audio = true; do_cea_modes(&hdmi->edid_data, def_modes_vic, sizeof(def_modes_vic)); hdmi->edid_data.mode_buf[0].type |= DRM_MODE_TYPE_PREFERRED; hdmi->edid_data.preferred_mode = &hdmi->edid_data.mode_buf[0]; printf("failed to get edid\n"); } #ifdef CONFIG_SPL_BUILD conn_state->disp_info = rockchip_get_disp_info(conn_state->type, hdmi->id); #endif drm_rk_filter_whitelist(&hdmi->edid_data); if (hdmi->phy.ops->mode_valid) hdmi->phy.ops->mode_valid(conn, hdmi, state); drm_mode_max_resolution_filter(&hdmi->edid_data, &state->crtc_state.max_output); if (!drm_mode_prune_invalid(&hdmi->edid_data)) { printf("can't find valid hdmi mode\n"); return -EINVAL; } for (i = 0; i < hdmi->edid_data.modes; i++) { hdmi->edid_data.mode_buf[i].vrefresh = drm_mode_vrefresh(&hdmi->edid_data.mode_buf[i]); vic = drm_match_cea_mode(&hdmi->edid_data.mode_buf[i]); if (hdmi->edid_data.mode_buf[i].picture_aspect_ratio == HDMI_PICTURE_ASPECT_NONE) { if (vic >= 93 && vic <= 95) hdmi->edid_data.mode_buf[i].picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9; else if (vic == 98) hdmi->edid_data.mode_buf[i].picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135; } } drm_mode_sort(&hdmi->edid_data); drm_rk_selete_output(&hdmi->edid_data, conn_state, &bus_format, overscan, hdmi->dev_type, hdmi->output_bus_format_rgb); *mode = *hdmi->edid_data.preferred_mode; hdmi->vic = drm_match_cea_mode(mode); if (state->force_output) bus_format = state->force_bus_format; conn_state->bus_format = bus_format; hdmi->hdmi_data.enc_in_bus_format = bus_format; hdmi->hdmi_data.enc_out_bus_format = bus_format; switch (bus_format) { case MEDIA_BUS_FMT_UYVY10_1X20: conn_state->bus_format = MEDIA_BUS_FMT_YUV10_1X30; hdmi->hdmi_data.enc_in_bus_format = MEDIA_BUS_FMT_YUV10_1X30; break; case MEDIA_BUS_FMT_UYVY8_1X16: conn_state->bus_format = MEDIA_BUS_FMT_YUV8_1X24; hdmi->hdmi_data.enc_in_bus_format = MEDIA_BUS_FMT_YUV8_1X24; break; case MEDIA_BUS_FMT_UYYVYY8_0_5X24: case MEDIA_BUS_FMT_UYYVYY10_0_5X30: conn_state->output_mode = ROCKCHIP_OUT_MODE_YUV420; break; } if (hdmi->vic == 6 || hdmi->vic == 7 || hdmi->vic == 21 || hdmi->vic == 22 || hdmi->vic == 2 || hdmi->vic == 3 || hdmi->vic == 17 || hdmi->vic == 18) enc_out_encoding = V4L2_YCBCR_ENC_601; else enc_out_encoding = V4L2_YCBCR_ENC_709; if (enc_out_encoding == V4L2_YCBCR_ENC_BT2020) conn_state->color_space = V4L2_COLORSPACE_BT2020; else if (bus_format == MEDIA_BUS_FMT_RGB888_1X24 || bus_format == MEDIA_BUS_FMT_RGB101010_1X30) conn_state->color_space = V4L2_COLORSPACE_DEFAULT; else if (enc_out_encoding == V4L2_YCBCR_ENC_709) conn_state->color_space = V4L2_COLORSPACE_REC709; else conn_state->color_space = V4L2_COLORSPACE_SMPTE170M; return 0; } int rockchip_dw_hdmi_detect(struct rockchip_connector *conn, struct display_state *state) { int ret; struct dw_hdmi *hdmi = conn->data; if (!hdmi) return -EFAULT; ret = dw_hdmi_detect_hotplug(hdmi, state); return ret; } int rockchip_dw_hdmi_get_edid(struct rockchip_connector *conn, struct display_state *state) { int ret; struct connector_state *conn_state = &state->conn_state; struct dw_hdmi *hdmi = conn->data; ret = drm_do_get_edid(&hdmi->adap, conn_state->edid); return ret; } int inno_dw_hdmi_phy_init(struct rockchip_connector *conn, struct dw_hdmi *hdmi, void *data) { struct display_state *state = (struct display_state *)data; struct connector_state *conn_state = &state->conn_state; u32 color_depth, bus_width; color_depth = hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format); if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) bus_width = color_depth / 2; else if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) bus_width = color_depth; else bus_width = 8; rockchip_phy_set_bus_width(conn->phy, bus_width); rockchip_phy_set_pll(conn->phy, conn_state->mode.crtc_clock * 1000); if (hdmi->edid_data.display_info.hdmi.scdc.supported) rockchip_dw_hdmi_scdc_set_tmds_rate(hdmi); rockchip_phy_power_on(conn->phy); return 0; } void inno_dw_hdmi_phy_disable(struct rockchip_connector *conn, struct dw_hdmi *hdmi, void *data) { } enum drm_connector_status inno_dw_hdmi_phy_read_hpd(struct dw_hdmi *hdmi, void *data) { enum drm_connector_status status; struct display_state *state = (struct display_state *)data; status = dw_hdmi_phy_read_hpd(hdmi, state); if (hdmi->dev_type == RK3328_HDMI) { if (status == connector_status_connected) inno_dw_hdmi_set_domain(hdmi->grf, 1); else inno_dw_hdmi_set_domain(hdmi->grf, 0); } return status; } void inno_dw_hdmi_mode_valid(struct rockchip_connector *conn, struct dw_hdmi *hdmi, void *data) { struct hdmi_edid_data *edid_data = &hdmi->edid_data; unsigned long rate; int i, ret; struct drm_display_mode *mode_buf = edid_data->mode_buf; for (i = 0; i < edid_data->modes; i++) { if (edid_data->mode_buf[i].invalid) continue; if (edid_data->mode_buf[i].flags & DRM_MODE_FLAG_DBLCLK) rate = mode_buf[i].clock * 1000 * 2; else rate = mode_buf[i].clock * 1000; /* Check whether mode is out of phy cfg range. */ ret = rockchip_phy_round_rate(conn->phy, rate); if (ret < 0) edid_data->mode_buf[i].invalid = true; } }