/* * Copyright (c) 2013, Google Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #ifndef USE_HOSTCC #include #include #include #include #include #include #include #include #include #include #include #else #include "fdt_host.h" #include "mkimage.h" #include #endif #include #include /* Default public exponent for backward compatibility */ #define RSA_DEFAULT_PUBEXP 65537 /** * rsa_verify_padding() - Verify RSA message padding is valid * * Verify a RSA message's padding is consistent with PKCS1.5 * padding as described in the RSA PKCS#1 v2.1 standard. * * @msg: Padded message * @pad_len: Number of expected padding bytes * @algo: Checksum algo structure having information on DER encoding etc. * @return 0 on success, != 0 on failure */ static int rsa_verify_padding(const uint8_t *msg, const int pad_len, struct checksum_algo *algo) { int ff_len; int ret; /* first byte must be 0x00 */ ret = *msg++; /* second byte must be 0x01 */ ret |= *msg++ ^ 0x01; /* next ff_len bytes must be 0xff */ ff_len = pad_len - algo->der_len - 3; ret |= *msg ^ 0xff; ret |= memcmp(msg, msg+1, ff_len-1); msg += ff_len; /* next byte must be 0x00 */ ret |= *msg++; /* next der_len bytes must match der_prefix */ ret |= memcmp(msg, algo->der_prefix, algo->der_len); return ret; } #if !defined(USE_HOSTCC) #if CONFIG_IS_ENABLED(FIT_HW_CRYPTO) static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int total_len, int convert_len) { int total_wd, convert_wd, i; if (total_len < convert_len) convert_len = total_len; total_wd = total_len / sizeof(uint32_t); convert_wd = convert_len / sizeof(uint32_t); for (i = 0; i < convert_wd; i++) dst[i] = fdt32_to_cpu(src[total_wd - 1 - i]); } static int rsa_mod_exp_hw(struct key_prop *prop, const uint8_t *sig, const uint32_t sig_len, const uint32_t key_len, uint8_t *output) { struct udevice *dev; uint8_t sig_reverse[sig_len]; uint8_t buf[sig_len]; rsa_key rsa_key; int i, ret; #ifdef CONFIG_FIT_ENABLE_RSA4096_SUPPORT if (key_len != RSA4096_BYTES) return -EINVAL; rsa_key.algo = CRYPTO_RSA4096; #else if (key_len != RSA2048_BYTES) return -EINVAL; rsa_key.algo = CRYPTO_RSA2048; #endif rsa_key.n = malloc(key_len); rsa_key.e = malloc(key_len); rsa_key.c = malloc(key_len); if (!rsa_key.n || !rsa_key.e || !rsa_key.c) return -ENOMEM; rsa_convert_big_endian(rsa_key.n, (uint32_t *)prop->modulus, key_len, key_len); rsa_convert_big_endian(rsa_key.e, (uint32_t *)prop->public_exponent_BN, key_len, key_len); #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 rsa_convert_big_endian(rsa_key.c, (uint32_t *)prop->factor_c, key_len, key_len); #else rsa_convert_big_endian(rsa_key.c, (uint32_t *)prop->factor_np, key_len, key_len); #endif #if defined(CONFIG_ROCKCHIP_PRELOADER_ATAGS) && defined(CONFIG_SPL_BUILD) char *rsa_key_data = malloc(3 * key_len); int flag = 0; if (rsa_key_data) { memcpy(rsa_key_data, rsa_key.n, key_len); memcpy(rsa_key_data + key_len, rsa_key.e, key_len); memcpy(rsa_key_data + 2 * key_len, rsa_key.c, key_len); if (fit_board_verify_required_sigs()) flag = PUBKEY_FUSE_PROGRAMMED; if (atags_set_pub_key(rsa_key_data, 3 * key_len, flag)) printf("Send public key through atags fail."); } #endif for (i = 0; i < sig_len; i++) sig_reverse[sig_len-1-i] = sig[i]; dev = crypto_get_device(rsa_key.algo); if (!dev) { printf("No crypto device for expected RSA\n"); return -ENODEV; } ret = crypto_rsa_verify(dev, &rsa_key, (u8 *)sig_reverse, buf); if (ret) goto out; for (i = 0; i < sig_len; i++) sig_reverse[sig_len-1-i] = buf[i]; memcpy(output, sig_reverse, sig_len); out: free(rsa_key.n); free(rsa_key.e); free(rsa_key.c); return ret; } #endif #endif int padding_pkcs_15_verify(struct image_sign_info *info, uint8_t *msg, int msg_len, const uint8_t *hash, int hash_len) { struct checksum_algo *checksum = info->checksum; int ret, pad_len = msg_len - checksum->checksum_len; /* Check pkcs1.5 padding bytes. */ ret = rsa_verify_padding(msg, pad_len, checksum); if (ret) { debug("In RSAVerify(): Padding check failed!\n"); return -EINVAL; } /* Check hash. */ if (memcmp((uint8_t *)msg + pad_len, hash, msg_len - pad_len)) { debug("In RSAVerify(): Hash check failed!\n"); return -EACCES; } return 0; } #ifdef CONFIG_FIT_ENABLE_RSASSA_PSS_SUPPORT static void u32_i2osp(uint32_t val, uint8_t *buf) { buf[0] = (uint8_t)((val >> 24) & 0xff); buf[1] = (uint8_t)((val >> 16) & 0xff); buf[2] = (uint8_t)((val >> 8) & 0xff); buf[3] = (uint8_t)((val >> 0) & 0xff); } /** * mask_generation_function1() - generate an octet string * * Generate an octet string used to check rsa signature. * It use an input octet string and a hash function. * * @checksum: A Hash function * @seed: Specifies an input variable octet string * @seed_len: Size of the input octet string * @output: Specifies the output octet string * @output_len: Size of the output octet string * @return 0 if the octet string was correctly generated, others on error */ static int mask_generation_function1(struct checksum_algo *checksum, uint8_t *seed, int seed_len, uint8_t *output, int output_len) { struct image_region region[2]; int ret = 0, i, i_output = 0, region_count = 2; uint32_t counter = 0; uint8_t buf_counter[4], *tmp; int hash_len = checksum->checksum_len; memset(output, 0, output_len); region[0].data = seed; region[0].size = seed_len; region[1].data = &buf_counter[0]; region[1].size = 4; tmp = malloc(hash_len); if (!tmp) { debug("%s: can't allocate array tmp\n", __func__); ret = -ENOMEM; goto out; } while (i_output < output_len) { u32_i2osp(counter, &buf_counter[0]); ret = checksum->calculate(checksum->name, region, region_count, tmp); if (ret < 0) { debug("%s: Error in checksum calculation\n", __func__); goto out; } i = 0; while ((i_output < output_len) && (i < hash_len)) { output[i_output] = tmp[i]; i_output++; i++; } counter++; } out: free(tmp); return ret; } static int compute_hash_prime(struct checksum_algo *checksum, uint8_t *pad, int pad_len, uint8_t *hash, int hash_len, uint8_t *salt, int salt_len, uint8_t *hprime) { struct image_region region[3]; int ret, region_count = 3; region[0].data = pad; region[0].size = pad_len; region[1].data = hash; region[1].size = hash_len; region[2].data = salt; region[2].size = salt_len; ret = checksum->calculate(checksum->name, region, region_count, hprime); if (ret < 0) { debug("%s: Error in checksum calculation\n", __func__); goto out; } out: return ret; } int padding_pss_verify(struct image_sign_info *info, uint8_t *msg, int msg_len, const uint8_t *hash, int hash_len) { uint8_t *masked_db = NULL; int masked_db_len = msg_len - hash_len - 1; uint8_t *h = NULL, *hprime = NULL; int h_len = hash_len; uint8_t *db_mask = NULL; int db_mask_len = masked_db_len; uint8_t *db = NULL, *salt = NULL; int db_len = masked_db_len, salt_len = msg_len - hash_len - 2; uint8_t pad_zero[8] = { 0 }; int ret, i, leftmost_bits = 1; uint8_t leftmost_mask; struct checksum_algo *checksum = info->checksum; /* first, allocate everything */ masked_db = malloc(masked_db_len); h = malloc(h_len); db_mask = malloc(db_mask_len); db = malloc(db_len); salt = malloc(salt_len); hprime = malloc(hash_len); if (!masked_db || !h || !db_mask || !db || !salt || !hprime) { printf("%s: can't allocate some buffer\n", __func__); ret = -ENOMEM; goto out; } /* step 4: check if the last byte is 0xbc */ if (msg[msg_len - 1] != 0xbc) { printf("%s: invalid pss padding (0xbc is missing)\n", __func__); ret = -EINVAL; goto out; } /* step 5 */ memcpy(masked_db, msg, masked_db_len); memcpy(h, msg + masked_db_len, h_len); /* step 6 */ leftmost_mask = (0xff >> (8 - leftmost_bits)) << (8 - leftmost_bits); if (masked_db[0] & leftmost_mask) { printf("%s: invalid pss padding ", __func__); printf("(leftmost bit of maskedDB not zero)\n"); ret = -EINVAL; goto out; } /* step 7 */ mask_generation_function1(checksum, h, h_len, db_mask, db_mask_len); /* step 8 */ for (i = 0; i < db_len; i++) db[i] = masked_db[i] ^ db_mask[i]; /* step 9 */ db[0] &= 0xff >> leftmost_bits; /* step 10 */ if (db[0] != 0x01) { printf("%s: invalid pss padding ", __func__); printf("(leftmost byte of db isn't 0x01)\n"); ret = EINVAL; goto out; } /* step 11 */ memcpy(salt, &db[1], salt_len); /* step 12 & 13 */ compute_hash_prime(checksum, pad_zero, 8, (uint8_t *)hash, hash_len, salt, salt_len, hprime); /* step 14 */ ret = memcmp(h, hprime, hash_len); out: free(hprime); free(salt); free(db); free(db_mask); free(h); free(masked_db); return ret; } #endif /** * rsa_verify_key() - Verify a signature against some data using RSA Key * * Verify a RSA PKCS1.5 signature against an expected hash using * the RSA Key properties in prop structure. * * @info: Specifies key and FIT information * @prop: Specifies key * @sig: Signature * @sig_len: Number of bytes in signature * @hash: Pointer to the expected hash * @key_len: Number of bytes in rsa key * @return 0 if verified, -ve on error */ static int rsa_verify_key(struct image_sign_info *info, struct key_prop *prop, const uint8_t *sig, const uint32_t sig_len, const uint8_t *hash, const uint32_t key_len) { int ret; struct checksum_algo *checksum = info->checksum; struct padding_algo *padding = info->padding; int hash_len = checksum->checksum_len; if (!prop || !sig || !hash || !checksum) return -EIO; if (sig_len != (prop->num_bits / 8)) { debug("Signature is of incorrect length %d\n", sig_len); return -EINVAL; } debug("Checksum algorithm: %s", checksum->name); /* Sanity check for stack size */ if (sig_len > RSA_MAX_SIG_BITS / 8) { debug("Signature length %u exceeds maximum %d\n", sig_len, RSA_MAX_SIG_BITS / 8); return -EINVAL; } uint8_t buf[sig_len]; #if !defined(USE_HOSTCC) #if CONFIG_IS_ENABLED(FIT_HW_CRYPTO) ret = rsa_mod_exp_hw(prop, sig, sig_len, key_len, buf); #else struct udevice *mod_exp_dev; ret = uclass_get_device(UCLASS_MOD_EXP, 0, &mod_exp_dev); if (ret) { printf("RSA: Can't find Modular Exp implementation\n"); return -EINVAL; } ret = rsa_mod_exp(mod_exp_dev, sig, sig_len, prop, buf); #endif #else ret = rsa_mod_exp_sw(sig, sig_len, prop, buf); #endif if (ret) { debug("Error in Modular exponentation\n"); return ret; } ret = padding->verify(info, buf, key_len, hash, hash_len); if (ret) { debug("In RSAVerify(): padding check failed!\n"); return ret; } return 0; } static int rsa_get_key_prop(struct key_prop *prop, struct image_sign_info *info, int node) { const void *blob = info->fdt_blob; int length; int hash_node; if (node < 0) { debug("%s: Skipping invalid node", __func__); return -EBADF; } if (!prop) { debug("%s: The prop is NULL", __func__); return -EBADF; } prop->burn_key = fdtdec_get_int(blob, node, "burn-key-hash", 0); prop->num_bits = fdtdec_get_int(blob, node, "rsa,num-bits", 0); prop->n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0); prop->public_exponent = fdt_getprop(blob, node, "rsa,exponent", &length); if (!prop->public_exponent || length < sizeof(uint64_t)) prop->public_exponent = NULL; prop->exp_len = sizeof(uint64_t); prop->modulus = fdt_getprop(blob, node, "rsa,modulus", NULL); prop->public_exponent_BN = fdt_getprop(blob, node, "rsa,exponent-BN", NULL); prop->rr = fdt_getprop(blob, node, "rsa,r-squared", NULL); #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 hash_node = fdt_subnode_offset(blob, node, "hash@c"); #else hash_node = fdt_subnode_offset(blob, node, "hash@np"); #endif if (hash_node >= 0) prop->hash = fdt_getprop(blob, hash_node, "value", NULL); if (!prop->num_bits || !prop->modulus) { debug("%s: Missing RSA key info", __func__); return -EFAULT; } #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 prop->factor_c = fdt_getprop(blob, node, "rsa,c", NULL); if (!prop.factor_c) return -EFAULT; #else prop->factor_np = fdt_getprop(blob, node, "rsa,np", NULL); if (!prop->factor_np) return -EFAULT; #endif return 0; } /** * rsa_verify_with_keynode() - Verify a signature against some data using * information in node with prperties of RSA Key like modulus, exponent etc. * * Parse sign-node and fill a key_prop structure with properties of the * key. Verify a RSA PKCS1.5 signature against an expected hash using * the properties parsed * * @info: Specifies key and FIT information * @hash: Pointer to the expected hash * @sig: Signature * @sig_len: Number of bytes in signature * @node: Node having the RSA Key properties * @return 0 if verified, -ve on error */ static int rsa_verify_with_keynode(struct image_sign_info *info, const void *hash, uint8_t *sig, uint sig_len, int node) { struct key_prop prop; if (rsa_get_key_prop(&prop, info, node)) return -EFAULT; return rsa_verify_key(info, &prop, sig, sig_len, hash, info->crypto->key_len); } int rsa_verify(struct image_sign_info *info, const struct image_region region[], int region_count, uint8_t *sig, uint sig_len) { const void *blob = info->fdt_blob; /* Reserve memory for maximum checksum-length */ uint8_t hash[info->crypto->key_len]; int ndepth, noffset; int sig_node, node; char name[100]; int ret; /* * Verify that the checksum-length does not exceed the * rsa-signature-length */ if (info->checksum->checksum_len > info->crypto->key_len) { debug("%s: invlaid checksum-algorithm %s for %s\n", __func__, info->checksum->name, info->crypto->name); return -EINVAL; } sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME); if (sig_node < 0) { debug("%s: No signature node found\n", __func__); return -ENOENT; } /* Calculate checksum with checksum-algorithm */ ret = info->checksum->calculate(info->checksum->name, region, region_count, hash); if (ret < 0) { debug("%s: Error in checksum calculation\n", __func__); return -EINVAL; } /* See if we must use a particular key */ if (info->required_keynode != -1) { ret = rsa_verify_with_keynode(info, hash, sig, sig_len, info->required_keynode); if (!ret) return ret; } /* Look for a key that matches our hint */ snprintf(name, sizeof(name), "key-%s", info->keyname); node = fdt_subnode_offset(blob, sig_node, name); ret = rsa_verify_with_keynode(info, hash, sig, sig_len, node); if (!ret) return ret; /* No luck, so try each of the keys in turn */ for (ndepth = 0, noffset = fdt_next_node(info->fit, sig_node, &ndepth); (noffset >= 0) && (ndepth > 0); noffset = fdt_next_node(info->fit, noffset, &ndepth)) { if (ndepth == 1 && noffset != node) { ret = rsa_verify_with_keynode(info, hash, sig, sig_len, noffset); if (!ret) break; } } return ret; } #if !defined(USE_HOSTCC) #if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_FIT_HW_CRYPTO) && \ defined(CONFIG_SPL_ROCKCHIP_SECURE_OTP) int rsa_burn_key_hash(struct image_sign_info *info) { char *rsa_key; void *n, *e, *c; uint32_t key_len; struct udevice *dev; struct key_prop prop; char name[100] = {0}; u16 secure_flags = 0; const void *blob = info->fdt_blob; uint8_t digest[FIT_MAX_HASH_LEN]; uint8_t digest_read[FIT_MAX_HASH_LEN]; int sig_node, node, digest_len, i, ret = 0; dev = misc_otp_get_device(OTP_S); if (!dev) return -ENODEV; ret = misc_otp_read(dev, OTP_SECURE_BOOT_ENABLE_ADDR, &secure_flags, OTP_SECURE_BOOT_ENABLE_SIZE); if (ret) return ret; if (secure_flags == 0xff) return 0; sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME); if (sig_node < 0) { debug("%s: No signature node found\n", __func__); return -ENOENT; } snprintf(name, sizeof(name), "key-%s", info->keyname); node = fdt_subnode_offset(blob, sig_node, name); if (rsa_get_key_prop(&prop, info, node)) return -1; if (!(prop.burn_key)) return -EPERM; if (!prop.hash || !prop.modulus || !prop.public_exponent_BN) return -ENOENT; #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 if (!prop.factor_c) return -ENOENT; #else if (!prop.factor_np) return -ENOENT; #endif key_len = info->crypto->key_len; if (info->crypto->key_len != RSA2048_BYTES) return -EINVAL; rsa_key = calloc(key_len * 3, sizeof(char)); if (!rsa_key) return -ENOMEM; n = rsa_key; e = rsa_key + CONFIG_RSA_N_SIZE; c = rsa_key + CONFIG_RSA_N_SIZE + CONFIG_RSA_E_SIZE; rsa_convert_big_endian(n, (uint32_t *)prop.modulus, key_len, CONFIG_RSA_N_SIZE); rsa_convert_big_endian(e, (uint32_t *)prop.public_exponent_BN, key_len, CONFIG_RSA_E_SIZE); #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 rsa_convert_big_endian(c, (uint32_t *)prop.factor_c, key_len, CONFIG_RSA_C_SIZE); #else rsa_convert_big_endian(c, (uint32_t *)prop.factor_np, key_len, CONFIG_RSA_C_SIZE); #endif ret = calculate_hash(rsa_key, CONFIG_RSA_N_SIZE + CONFIG_RSA_E_SIZE + CONFIG_RSA_C_SIZE, info->checksum->name, digest, &digest_len); if (ret) goto error; if (memcmp(digest, prop.hash, digest_len) != 0) { printf("RSA: Compare public key hash fail.\n"); goto error; } /* burn key hash here */ ret = misc_otp_read(dev, OTP_RSA_HASH_ADDR, digest_read, OTP_RSA_HASH_SIZE); if (ret) goto error; for (i = 0; i < OTP_RSA_HASH_SIZE; i++) { if (digest_read[i]) { printf("RSA: The secure region has been written.\n"); ret = -EIO; goto error; } } ret = misc_otp_write(dev, OTP_RSA_HASH_ADDR, digest, OTP_RSA_HASH_SIZE); if (ret) goto error; memset(digest_read, 0, FIT_MAX_HASH_LEN); ret = misc_otp_read(dev, OTP_RSA_HASH_ADDR, digest_read, OTP_RSA_HASH_SIZE); if (ret) goto error; if (memcmp(digest, digest_read, digest_len) != 0) { printf("RSA: Write public key hash fail.\n"); goto error; } secure_flags = 0xff; ret = misc_otp_write(dev, OTP_SECURE_BOOT_ENABLE_ADDR, &secure_flags, OTP_SECURE_BOOT_ENABLE_SIZE); if (ret) goto error; printf("RSA: Write key hash successfully\n"); error: free(rsa_key); return ret; } #endif #endif