/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "concurrent_copying.h" #include "art_field-inl.h" #include "barrier.h" #include "base/enums.h" #include "base/file_utils.h" #include "base/histogram-inl.h" #include "base/quasi_atomic.h" #include "base/stl_util.h" #include "base/systrace.h" #include "class_root-inl.h" #include "debugger.h" #include "gc/accounting/atomic_stack.h" #include "gc/accounting/heap_bitmap-inl.h" #include "gc/accounting/mod_union_table-inl.h" #include "gc/accounting/read_barrier_table.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/gc_pause_listener.h" #include "gc/reference_processor.h" #include "gc/space/image_space.h" #include "gc/space/space-inl.h" #include "gc/verification.h" #include "image-inl.h" #include "intern_table.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/object-refvisitor-inl.h" #include "mirror/object_reference.h" #include "scoped_thread_state_change-inl.h" #include "thread-inl.h" #include "thread_list.h" #include "well_known_classes.h" namespace art { namespace gc { namespace collector { static constexpr size_t kDefaultGcMarkStackSize = 2 * MB; // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod // union table. Disabled since it does not seem to help the pause much. static constexpr bool kFilterModUnionCards = kIsDebugBuild; // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any read barrier that // occur during ConcurrentCopying::Scan in GC thread. May be used to diagnose possibly unnecessary // read barriers. Only enabled for kIsDebugBuild to avoid performance hit. static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild; // Slow path mark stack size, increase this if the stack is getting full and it is causing // performance problems. static constexpr size_t kReadBarrierMarkStackSize = 512 * KB; // Size (in the number of objects) of the sweep array free buffer. static constexpr size_t kSweepArrayChunkFreeSize = 1024; // Verify that there are no missing card marks. static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild; ConcurrentCopying::ConcurrentCopying(Heap* heap, bool young_gen, bool use_generational_cc, const std::string& name_prefix, bool measure_read_barrier_slow_path) : GarbageCollector(heap, name_prefix + (name_prefix.empty() ? "" : " ") + "concurrent copying"), region_space_(nullptr), gc_barrier_(new Barrier(0)), gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack", kDefaultGcMarkStackSize, kDefaultGcMarkStackSize)), use_generational_cc_(use_generational_cc), young_gen_(young_gen), rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack", kReadBarrierMarkStackSize, kReadBarrierMarkStackSize)), rb_mark_bit_stack_full_(false), mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock), thread_running_gc_(nullptr), is_marking_(false), is_using_read_barrier_entrypoints_(false), is_active_(false), is_asserting_to_space_invariant_(false), region_space_bitmap_(nullptr), heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0), from_space_num_objects_at_first_pause_(0), from_space_num_bytes_at_first_pause_(0), mark_stack_mode_(kMarkStackModeOff), weak_ref_access_enabled_(true), copied_live_bytes_ratio_sum_(0.f), gc_count_(0), reclaimed_bytes_ratio_sum_(0.f), cumulative_bytes_moved_(0), cumulative_objects_moved_(0), skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock), measure_read_barrier_slow_path_(measure_read_barrier_slow_path), mark_from_read_barrier_measurements_(false), rb_slow_path_ns_(0), rb_slow_path_count_(0), rb_slow_path_count_gc_(0), rb_slow_path_histogram_lock_("Read barrier histogram lock"), rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32), rb_slow_path_count_total_(0), rb_slow_path_count_gc_total_(0), rb_table_(heap_->GetReadBarrierTable()), force_evacuate_all_(false), gc_grays_immune_objects_(false), immune_gray_stack_lock_("concurrent copying immune gray stack lock", kMarkSweepMarkStackLock), num_bytes_allocated_before_gc_(0) { static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize, "The region space size and the read barrier table region size must match"); CHECK(use_generational_cc_ || !young_gen_); Thread* self = Thread::Current(); { ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); // Cache this so that we won't have to lock heap_bitmap_lock_ in // Mark() which could cause a nested lock on heap_bitmap_lock_ // when GC causes a RB while doing GC or a lock order violation // (class_linker_lock_ and heap_bitmap_lock_). heap_mark_bitmap_ = heap->GetMarkBitmap(); } { MutexLock mu(self, mark_stack_lock_); for (size_t i = 0; i < kMarkStackPoolSize; ++i) { accounting::AtomicStack* mark_stack = accounting::AtomicStack::Create( "thread local mark stack", kMarkStackSize, kMarkStackSize); pooled_mark_stacks_.push_back(mark_stack); } } if (use_generational_cc_) { // Allocate sweep array free buffer. std::string error_msg; sweep_array_free_buffer_mem_map_ = MemMap::MapAnonymous( "concurrent copying sweep array free buffer", RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize), PROT_READ | PROT_WRITE, /*low_4gb=*/ false, &error_msg); CHECK(sweep_array_free_buffer_mem_map_.IsValid()) << "Couldn't allocate sweep array free buffer: " << error_msg; } // Return type of these functions are different. And even though the base class // is same, using ternary operator complains. metrics::ArtMetrics* metrics = GetMetrics(); are_metrics_initialized_ = true; if (young_gen_) { gc_time_histogram_ = metrics->YoungGcCollectionTime(); metrics_gc_count_ = metrics->YoungGcCount(); gc_throughput_histogram_ = metrics->YoungGcThroughput(); gc_tracing_throughput_hist_ = metrics->YoungGcTracingThroughput(); gc_throughput_avg_ = metrics->YoungGcThroughputAvg(); gc_tracing_throughput_avg_ = metrics->YoungGcTracingThroughputAvg(); } else { gc_time_histogram_ = metrics->FullGcCollectionTime(); metrics_gc_count_ = metrics->FullGcCount(); gc_throughput_histogram_ = metrics->FullGcThroughput(); gc_tracing_throughput_hist_ = metrics->FullGcTracingThroughput(); gc_throughput_avg_ = metrics->FullGcThroughputAvg(); gc_tracing_throughput_avg_ = metrics->FullGcTracingThroughputAvg(); } } void ConcurrentCopying::MarkHeapReference(mirror::HeapReference* field, bool do_atomic_update) { Thread* const self = Thread::Current(); if (UNLIKELY(do_atomic_update)) { // Used to mark the referent in DelayReferenceReferent in transaction mode. mirror::Object* from_ref = field->AsMirrorPtr(); if (from_ref == nullptr) { return; } mirror::Object* to_ref = Mark(self, from_ref); if (from_ref != to_ref) { do { if (field->AsMirrorPtr() != from_ref) { // Concurrently overwritten by a mutator. break; } } while (!field->CasWeakRelaxed(from_ref, to_ref)); } } else { // Used for preserving soft references, should be OK to not have a CAS here since there should be // no other threads which can trigger read barriers on the same referent during reference // processing. field->Assign(Mark(self, field->AsMirrorPtr())); } } ConcurrentCopying::~ConcurrentCopying() { STLDeleteElements(&pooled_mark_stacks_); } void ConcurrentCopying::RunPhases() { CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier); CHECK(!is_active_); is_active_ = true; Thread* self = Thread::Current(); thread_running_gc_ = self; Locks::mutator_lock_->AssertNotHeld(self); { ReaderMutexLock mu(self, *Locks::mutator_lock_); InitializePhase(); // In case of forced evacuation, all regions are evacuated and hence no // need to compute live_bytes. if (use_generational_cc_ && !young_gen_ && !force_evacuate_all_) { MarkingPhase(); } } if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) { // Switch to read barrier mark entrypoints before we gray the objects. This is required in case // a mutator sees a gray bit and dispatches on the entrypoint. (b/37876887). ActivateReadBarrierEntrypoints(); // Gray dirty immune objects concurrently to reduce GC pause times. We re-process gray cards in // the pause. ReaderMutexLock mu(self, *Locks::mutator_lock_); GrayAllDirtyImmuneObjects(); } FlipThreadRoots(); { ReaderMutexLock mu(self, *Locks::mutator_lock_); CopyingPhase(); } // Verify no from space refs. This causes a pause. if (kEnableNoFromSpaceRefsVerification) { TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings()); ScopedPause pause(this, false); CheckEmptyMarkStack(); if (kVerboseMode) { LOG(INFO) << "Verifying no from-space refs"; } VerifyNoFromSpaceReferences(); if (kVerboseMode) { LOG(INFO) << "Done verifying no from-space refs"; } CheckEmptyMarkStack(); } { ReaderMutexLock mu(self, *Locks::mutator_lock_); ReclaimPhase(); } FinishPhase(); CHECK(is_active_); is_active_ = false; thread_running_gc_ = nullptr; } class ConcurrentCopying::ActivateReadBarrierEntrypointsCheckpoint : public Closure { public: explicit ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying* concurrent_copying) : concurrent_copying_(concurrent_copying) {} void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS { // Note: self is not necessarily equal to thread since thread may be suspended. Thread* self = Thread::Current(); DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == ThreadState::kWaitingPerformingGc) << thread->GetState() << " thread " << thread << " self " << self; // Switch to the read barrier entrypoints. thread->SetReadBarrierEntrypoints(); // If thread is a running mutator, then act on behalf of the garbage collector. // See the code in ThreadList::RunCheckpoint. concurrent_copying_->GetBarrier().Pass(self); } private: ConcurrentCopying* const concurrent_copying_; }; class ConcurrentCopying::ActivateReadBarrierEntrypointsCallback : public Closure { public: explicit ActivateReadBarrierEntrypointsCallback(ConcurrentCopying* concurrent_copying) : concurrent_copying_(concurrent_copying) {} void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) { // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint() // to avoid a race with ThreadList::Register(). CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_); concurrent_copying_->is_using_read_barrier_entrypoints_ = true; } private: ConcurrentCopying* const concurrent_copying_; }; void ConcurrentCopying::ActivateReadBarrierEntrypoints() { Thread* const self = Thread::Current(); ActivateReadBarrierEntrypointsCheckpoint checkpoint(this); ThreadList* thread_list = Runtime::Current()->GetThreadList(); gc_barrier_->Init(self, 0); ActivateReadBarrierEntrypointsCallback callback(this); const size_t barrier_count = thread_list->RunCheckpoint(&checkpoint, &callback); // If there are no threads to wait which implies that all the checkpoint functions are finished, // then no need to release the mutator lock. if (barrier_count == 0) { return; } ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun); gc_barrier_->Increment(self, barrier_count); } void ConcurrentCopying::CreateInterRegionRefBitmaps() { DCHECK(use_generational_cc_); DCHECK(!region_space_inter_region_bitmap_.IsValid()); DCHECK(!non_moving_space_inter_region_bitmap_.IsValid()); DCHECK(region_space_ != nullptr); DCHECK(heap_->non_moving_space_ != nullptr); // Region-space region_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create( "region-space inter region ref bitmap", reinterpret_cast(region_space_->Begin()), region_space_->Limit() - region_space_->Begin()); CHECK(region_space_inter_region_bitmap_.IsValid()) << "Couldn't allocate region-space inter region ref bitmap"; // non-moving-space non_moving_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create( "non-moving-space inter region ref bitmap", reinterpret_cast(heap_->non_moving_space_->Begin()), heap_->non_moving_space_->Limit() - heap_->non_moving_space_->Begin()); CHECK(non_moving_space_inter_region_bitmap_.IsValid()) << "Couldn't allocate non-moving-space inter region ref bitmap"; } void ConcurrentCopying::BindBitmaps() { Thread* self = Thread::Current(); WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); // Mark all of the spaces we never collect as immune. for (const auto& space : heap_->GetContinuousSpaces()) { if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) { CHECK(space->IsZygoteSpace() || space->IsImageSpace()); immune_spaces_.AddSpace(space); } else { CHECK(!space->IsZygoteSpace()); CHECK(!space->IsImageSpace()); CHECK(space == region_space_ || space == heap_->non_moving_space_); if (use_generational_cc_) { if (space == region_space_) { region_space_bitmap_ = region_space_->GetMarkBitmap(); } else if (young_gen_ && space->IsContinuousMemMapAllocSpace()) { DCHECK_EQ(space->GetGcRetentionPolicy(), space::kGcRetentionPolicyAlwaysCollect); space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap(); } if (young_gen_) { // Age all of the cards for the region space so that we know which evac regions to scan. heap_->GetCardTable()->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor()); } else { // In a full-heap GC cycle, the card-table corresponding to region-space and // non-moving space can be cleared, because this cycle only needs to // capture writes during the marking phase of this cycle to catch // objects that skipped marking due to heap mutation. Furthermore, // if the next GC is a young-gen cycle, then it only needs writes to // be captured after the thread-flip of this GC cycle, as that is when // the young-gen for the next GC cycle starts getting populated. heap_->GetCardTable()->ClearCardRange(space->Begin(), space->Limit()); } } else { if (space == region_space_) { // It is OK to clear the bitmap with mutators running since the only place it is read is // VisitObjects which has exclusion with CC. region_space_bitmap_ = region_space_->GetMarkBitmap(); region_space_bitmap_->Clear(); } } } } if (use_generational_cc_ && young_gen_) { for (const auto& space : GetHeap()->GetDiscontinuousSpaces()) { CHECK(space->IsLargeObjectSpace()); space->AsLargeObjectSpace()->CopyLiveToMarked(); } } } void ConcurrentCopying::InitializePhase() { TimingLogger::ScopedTiming split("InitializePhase", GetTimings()); num_bytes_allocated_before_gc_ = static_cast(heap_->GetBytesAllocated()); if (kVerboseMode) { LOG(INFO) << "GC InitializePhase"; LOG(INFO) << "Region-space : " << reinterpret_cast(region_space_->Begin()) << "-" << reinterpret_cast(region_space_->Limit()); } CheckEmptyMarkStack(); rb_mark_bit_stack_full_ = false; mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_; if (measure_read_barrier_slow_path_) { rb_slow_path_ns_.store(0, std::memory_order_relaxed); rb_slow_path_count_.store(0, std::memory_order_relaxed); rb_slow_path_count_gc_.store(0, std::memory_order_relaxed); } immune_spaces_.Reset(); bytes_moved_.store(0, std::memory_order_relaxed); objects_moved_.store(0, std::memory_order_relaxed); bytes_moved_gc_thread_ = 0; objects_moved_gc_thread_ = 0; bytes_scanned_ = 0; GcCause gc_cause = GetCurrentIteration()->GetGcCause(); force_evacuate_all_ = false; if (!use_generational_cc_ || !young_gen_) { if (gc_cause == kGcCauseExplicit || gc_cause == kGcCauseCollectorTransition || GetCurrentIteration()->GetClearSoftReferences()) { force_evacuate_all_ = true; } } if (kUseBakerReadBarrier) { updated_all_immune_objects_.store(false, std::memory_order_relaxed); // GC may gray immune objects in the thread flip. gc_grays_immune_objects_ = true; if (kIsDebugBuild) { MutexLock mu(Thread::Current(), immune_gray_stack_lock_); DCHECK(immune_gray_stack_.empty()); } } if (use_generational_cc_) { done_scanning_.store(false, std::memory_order_release); } BindBitmaps(); if (kVerboseMode) { LOG(INFO) << "young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha; LOG(INFO) << "force_evacuate_all=" << std::boolalpha << force_evacuate_all_ << std::noboolalpha; LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin() << "-" << immune_spaces_.GetLargestImmuneRegion().End(); for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) { LOG(INFO) << "Immune space: " << *space; } LOG(INFO) << "GC end of InitializePhase"; } if (use_generational_cc_ && !young_gen_) { region_space_bitmap_->Clear(); } mark_stack_mode_.store(ConcurrentCopying::kMarkStackModeThreadLocal, std::memory_order_relaxed); // Mark all of the zygote large objects without graying them. MarkZygoteLargeObjects(); } // Used to switch the thread roots of a thread from from-space refs to to-space refs. class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor { public: ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab) : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) { } void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) { // Note: self is not necessarily equal to thread since thread may be suspended. Thread* self = Thread::Current(); CHECK(thread == self || thread->IsSuspended() || thread->GetState() == ThreadState::kWaitingPerformingGc) << thread->GetState() << " thread " << thread << " self " << self; thread->SetIsGcMarkingAndUpdateEntrypoints(true); if (use_tlab_ && thread->HasTlab()) { // We should not reuse the partially utilized TLABs revoked here as they // are going to be part of from-space. if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) { // This must come before the revoke. size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated(); concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread, /*reuse=*/ false); reinterpret_cast*>( &concurrent_copying_->from_space_num_objects_at_first_pause_)-> fetch_add(thread_local_objects, std::memory_order_relaxed); } else { concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread, /*reuse=*/ false); } } if (kUseThreadLocalAllocationStack) { thread->RevokeThreadLocalAllocationStack(); } ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots // only. thread->VisitRoots(this, kVisitRootFlagAllRoots); concurrent_copying_->GetBarrier().Pass(self); } void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) { Thread* self = Thread::Current(); for (size_t i = 0; i < count; ++i) { mirror::Object** root = roots[i]; mirror::Object* ref = *root; if (ref != nullptr) { mirror::Object* to_ref = concurrent_copying_->Mark(self, ref); if (to_ref != ref) { *root = to_ref; } } } } void VisitRoots(mirror::CompressedReference** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) { Thread* self = Thread::Current(); for (size_t i = 0; i < count; ++i) { mirror::CompressedReference* const root = roots[i]; if (!root->IsNull()) { mirror::Object* ref = root->AsMirrorPtr(); mirror::Object* to_ref = concurrent_copying_->Mark(self, ref); if (to_ref != ref) { root->Assign(to_ref); } } } } private: ConcurrentCopying* const concurrent_copying_; const bool use_tlab_; }; // Called back from Runtime::FlipThreadRoots() during a pause. class ConcurrentCopying::FlipCallback : public Closure { public: explicit FlipCallback(ConcurrentCopying* concurrent_copying) : concurrent_copying_(concurrent_copying) { } void Run(Thread* thread) override REQUIRES(Locks::mutator_lock_) { ConcurrentCopying* cc = concurrent_copying_; TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings()); // Note: self is not necessarily equal to thread since thread may be suspended. Thread* self = Thread::Current(); if (kVerifyNoMissingCardMarks && cc->young_gen_) { cc->VerifyNoMissingCardMarks(); } CHECK_EQ(thread, self); Locks::mutator_lock_->AssertExclusiveHeld(self); space::RegionSpace::EvacMode evac_mode = space::RegionSpace::kEvacModeLivePercentNewlyAllocated; if (cc->young_gen_) { CHECK(!cc->force_evacuate_all_); evac_mode = space::RegionSpace::kEvacModeNewlyAllocated; } else if (cc->force_evacuate_all_) { evac_mode = space::RegionSpace::kEvacModeForceAll; } { TimingLogger::ScopedTiming split2("(Paused)SetFromSpace", cc->GetTimings()); // Only change live bytes for 1-phase full heap CC, that is if we are either not running in // generational-mode, or it's an 'evacuate-all' mode GC. cc->region_space_->SetFromSpace( cc->rb_table_, evac_mode, /*clear_live_bytes=*/ !cc->use_generational_cc_ || cc->force_evacuate_all_); } cc->SwapStacks(); if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) { cc->RecordLiveStackFreezeSize(self); cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated(); cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated(); } cc->is_marking_ = true; if (kIsDebugBuild && !cc->use_generational_cc_) { cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared(); } if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) { CHECK(Runtime::Current()->IsAotCompiler()); TimingLogger::ScopedTiming split3("(Paused)VisitTransactionRoots", cc->GetTimings()); Runtime::Current()->VisitTransactionRoots(cc); } if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) { cc->GrayAllNewlyDirtyImmuneObjects(); if (kIsDebugBuild) { // Check that all non-gray immune objects only reference immune objects. cc->VerifyGrayImmuneObjects(); } } // May be null during runtime creation, in this case leave java_lang_Object null. // This is safe since single threaded behavior should mean FillWithFakeObject does not // happen when java_lang_Object_ is null. if (WellKnownClasses::java_lang_Object != nullptr) { cc->java_lang_Object_ = down_cast(cc->Mark(thread, WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object).Ptr())); } else { cc->java_lang_Object_ = nullptr; } } private: ConcurrentCopying* const concurrent_copying_; }; class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor { public: explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector) : collector_(collector) {} void operator()(ObjPtr obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES_SHARED(Locks::heap_bitmap_lock_) { CheckReference(obj->GetFieldObject(offset), obj, offset); } void operator()(ObjPtr klass, ObjPtr ref) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { CHECK(klass->IsTypeOfReferenceClass()); CheckReference(ref->GetReferent(), ref, mirror::Reference::ReferentOffset()); } void VisitRootIfNonNull(mirror::CompressedReference* root) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference* root) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0)); } private: ConcurrentCopying* const collector_; void CheckReference(ObjPtr ref, ObjPtr holder, MemberOffset offset) const REQUIRES_SHARED(Locks::mutator_lock_) { if (ref != nullptr) { if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) { // Not immune, must be a zygote large object. space::LargeObjectSpace* large_object_space = Runtime::Current()->GetHeap()->GetLargeObjectsSpace(); CHECK(large_object_space->Contains(ref.Ptr()) && large_object_space->IsZygoteLargeObject(Thread::Current(), ref.Ptr())) << "Non gray object references non immune, non zygote large object "<< ref << " " << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " " << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value(); } else { // Make sure the large object class is immune since we will never scan the large object. CHECK(collector_->immune_spaces_.ContainsObject( ref->GetClass())); } } } }; void ConcurrentCopying::VerifyGrayImmuneObjects() { TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); for (auto& space : immune_spaces_.GetSpaces()) { DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); VerifyGrayImmuneObjectsVisitor visitor(this); live_bitmap->VisitMarkedRange(reinterpret_cast(space->Begin()), reinterpret_cast(space->Limit()), [&visitor](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { // If an object is not gray, it should only have references to things in the immune spaces. if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) { obj->VisitReferences(visitor, visitor); } }); } } class ConcurrentCopying::VerifyNoMissingCardMarkVisitor { public: VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr holder) : cc_(cc), holder_(holder) {} void operator()(ObjPtr obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) { CheckReference(obj->GetFieldObject( offset), offset.Uint32Value()); } } void operator()(ObjPtr klass, ObjPtr ref) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { CHECK(klass->IsTypeOfReferenceClass()); this->operator()(ref, mirror::Reference::ReferentOffset(), false); } void VisitRootIfNonNull(mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { CheckReference(root->AsMirrorPtr()); } void CheckReference(mirror::Object* ref, int32_t offset = -1) const REQUIRES_SHARED(Locks::mutator_lock_) { if (ref != nullptr && cc_->region_space_->IsInNewlyAllocatedRegion(ref)) { LOG(FATAL_WITHOUT_ABORT) << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object " << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset; LOG(FATAL_WITHOUT_ABORT) << "time=" << cc_->region_space_->Time(); constexpr const char* kIndent = " "; LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(holder_.Ptr(), "holder_", kIndent); LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(ref, "ref", kIndent); LOG(FATAL) << "Unexpected reference to newly allocated region."; } } private: ConcurrentCopying* const cc_; const ObjPtr holder_; }; void ConcurrentCopying::VerifyNoMissingCardMarks() { auto visitor = [&](mirror::Object* obj) REQUIRES(Locks::mutator_lock_) REQUIRES(!mark_stack_lock_) { // Objects on clean cards should never have references to newly allocated regions. Note // that aged cards are also not clean. if (heap_->GetCardTable()->GetCard(obj) == gc::accounting::CardTable::kCardClean) { VerifyNoMissingCardMarkVisitor internal_visitor(this, /*holder=*/ obj); obj->VisitReferences( internal_visitor, internal_visitor); } }; TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); region_space_->Walk(visitor); { ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_); heap_->GetLiveBitmap()->Visit(visitor); } } // Switch threads that from from-space to to-space refs. Forward/mark the thread roots. void ConcurrentCopying::FlipThreadRoots() { TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings()); if (kVerboseMode || heap_->dump_region_info_before_gc_) { LOG(INFO) << "time=" << region_space_->Time(); region_space_->DumpNonFreeRegions(LOG_STREAM(INFO)); } Thread* self = Thread::Current(); Locks::mutator_lock_->AssertNotHeld(self); gc_barrier_->Init(self, 0); ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_); FlipCallback flip_callback(this); size_t barrier_count = Runtime::Current()->GetThreadList()->FlipThreadRoots( &thread_flip_visitor, &flip_callback, this, GetHeap()->GetGcPauseListener()); { ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun); gc_barrier_->Increment(self, barrier_count); } is_asserting_to_space_invariant_ = true; QuasiAtomic::ThreadFenceForConstructor(); if (kVerboseMode) { LOG(INFO) << "time=" << region_space_->Time(); region_space_->DumpNonFreeRegions(LOG_STREAM(INFO)); LOG(INFO) << "GC end of FlipThreadRoots"; } } template class ConcurrentCopying::GrayImmuneObjectVisitor { public: explicit GrayImmuneObjectVisitor(Thread* self) : self_(self) {} ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) { if (kUseBakerReadBarrier && obj->GetReadBarrierState() == ReadBarrier::NonGrayState()) { if (kConcurrent) { Locks::mutator_lock_->AssertSharedHeld(self_); obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState()); // Mod union table VisitObjects may visit the same object multiple times so we can't check // the result of the atomic set. } else { Locks::mutator_lock_->AssertExclusiveHeld(self_); obj->SetReadBarrierState(ReadBarrier::GrayState()); } } } static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) { reinterpret_cast*>(arg)->operator()(obj); } private: Thread* const self_; }; void ConcurrentCopying::GrayAllDirtyImmuneObjects() { TimingLogger::ScopedTiming split("GrayAllDirtyImmuneObjects", GetTimings()); accounting::CardTable* const card_table = heap_->GetCardTable(); Thread* const self = Thread::Current(); using VisitorType = GrayImmuneObjectVisitor; VisitorType visitor(self); WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) { DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); // Mark all the objects on dirty cards since these may point to objects in other space. // Once these are marked, the GC will eventually clear them later. // Table is non null for boot image and zygote spaces. It is only null for application image // spaces. if (table != nullptr) { table->ProcessCards(); table->VisitObjects(&VisitorType::Callback, &visitor); // Don't clear cards here since we need to rescan in the pause. If we cleared the cards here, // there would be races with the mutator marking new cards. } else { // Keep cards aged if we don't have a mod-union table since we may need to scan them in future // GCs. This case is for app images. card_table->ModifyCardsAtomic( space->Begin(), space->End(), [](uint8_t card) { return (card != gc::accounting::CardTable::kCardClean) ? gc::accounting::CardTable::kCardAged : card; }, /* card modified visitor */ VoidFunctor()); card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, gc::accounting::CardTable::kCardAged); } } } void ConcurrentCopying::GrayAllNewlyDirtyImmuneObjects() { TimingLogger::ScopedTiming split("(Paused)GrayAllNewlyDirtyImmuneObjects", GetTimings()); accounting::CardTable* const card_table = heap_->GetCardTable(); using VisitorType = GrayImmuneObjectVisitor; Thread* const self = Thread::Current(); VisitorType visitor(self); WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) { DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); // Don't need to scan aged cards since we did these before the pause. Note that scanning cards // also handles the mod-union table cards. card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, gc::accounting::CardTable::kCardDirty); if (table != nullptr) { // Add the cards to the mod-union table so that we can clear cards to save RAM. table->ProcessCards(); TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings()); card_table->ClearCardRange(space->Begin(), AlignDown(space->End(), accounting::CardTable::kCardSize)); } } // Since all of the objects that may point to other spaces are gray, we can avoid all the read // barriers in the immune spaces. updated_all_immune_objects_.store(true, std::memory_order_relaxed); } void ConcurrentCopying::SwapStacks() { heap_->SwapStacks(); } void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); } // Used to visit objects in the immune spaces. inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) { DCHECK(obj != nullptr); DCHECK(immune_spaces_.ContainsObject(obj)); // Update the fields without graying it or pushing it onto the mark stack. if (use_generational_cc_ && young_gen_) { // Young GC does not care about references to unevac space. It is safe to not gray these as // long as scan immune objects happens after scanning the dirty cards. Scan(obj); } else { Scan(obj); } } class ConcurrentCopying::ImmuneSpaceScanObjVisitor { public: explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc) : collector_(cc) {} ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) { if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) { // Only need to scan gray objects. if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) { collector_->ScanImmuneObject(obj); // Done scanning the object, go back to black (non-gray). bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(), ReadBarrier::NonGrayState()); CHECK(success) << Runtime::Current()->GetHeap()->GetVerification()->DumpObjectInfo(obj, "failed CAS"); } } else { collector_->ScanImmuneObject(obj); } } static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) { reinterpret_cast(arg)->operator()(obj); } private: ConcurrentCopying* const collector_; }; template class ConcurrentCopying::CaptureRootsForMarkingVisitor : public RootVisitor { public: explicit CaptureRootsForMarkingVisitor(ConcurrentCopying* cc, Thread* self) : collector_(cc), self_(self) {} void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) { for (size_t i = 0; i < count; ++i) { mirror::Object** root = roots[i]; mirror::Object* ref = *root; if (ref != nullptr && !collector_->TestAndSetMarkBitForRef(ref)) { collector_->PushOntoMarkStack(self_, ref); } } } void VisitRoots(mirror::CompressedReference** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) { for (size_t i = 0; i < count; ++i) { mirror::CompressedReference* const root = roots[i]; if (!root->IsNull()) { mirror::Object* ref = root->AsMirrorPtr(); if (!collector_->TestAndSetMarkBitForRef(ref)) { collector_->PushOntoMarkStack(self_, ref); } } } } private: ConcurrentCopying* const collector_; Thread* const self_; }; class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure { public: RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying, bool disable_weak_ref_access) : concurrent_copying_(concurrent_copying), disable_weak_ref_access_(disable_weak_ref_access) { } void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS { // Note: self is not necessarily equal to thread since thread may be suspended. Thread* const self = Thread::Current(); CHECK(thread == self || thread->IsSuspended() || thread->GetState() == ThreadState::kWaitingPerformingGc) << thread->GetState() << " thread " << thread << " self " << self; // Revoke thread local mark stacks. { MutexLock mu(self, concurrent_copying_->mark_stack_lock_); accounting::AtomicStack* tl_mark_stack = thread->GetThreadLocalMarkStack(); if (tl_mark_stack != nullptr) { concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack); thread->SetThreadLocalMarkStack(nullptr); } } // Disable weak ref access. if (disable_weak_ref_access_) { thread->SetWeakRefAccessEnabled(false); } // If thread is a running mutator, then act on behalf of the garbage collector. // See the code in ThreadList::RunCheckpoint. concurrent_copying_->GetBarrier().Pass(self); } protected: ConcurrentCopying* const concurrent_copying_; private: const bool disable_weak_ref_access_; }; class ConcurrentCopying::CaptureThreadRootsForMarkingAndCheckpoint : public RevokeThreadLocalMarkStackCheckpoint { public: explicit CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying* cc) : RevokeThreadLocalMarkStackCheckpoint(cc, /* disable_weak_ref_access */ false) {} void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) { Thread* const self = Thread::Current(); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots // only. CaptureRootsForMarkingVisitor visitor(concurrent_copying_, self); thread->VisitRoots(&visitor, kVisitRootFlagAllRoots); // If thread_running_gc_ performed the root visit then its thread-local // mark-stack should be null as we directly push to gc_mark_stack_. CHECK(self == thread || self->GetThreadLocalMarkStack() == nullptr); // Barrier handling is done in the base class' Run() below. RevokeThreadLocalMarkStackCheckpoint::Run(thread); } }; void ConcurrentCopying::CaptureThreadRootsForMarking() { TimingLogger::ScopedTiming split("CaptureThreadRootsForMarking", GetTimings()); if (kVerboseMode) { LOG(INFO) << "time=" << region_space_->Time(); region_space_->DumpNonFreeRegions(LOG_STREAM(INFO)); } Thread* const self = Thread::Current(); CaptureThreadRootsForMarkingAndCheckpoint check_point(this); ThreadList* thread_list = Runtime::Current()->GetThreadList(); gc_barrier_->Init(self, 0); size_t barrier_count = thread_list->RunCheckpoint(&check_point, /* callback */ nullptr); // If there are no threads to wait which implys that all the checkpoint functions are finished, // then no need to release the mutator lock. if (barrier_count == 0) { return; } Locks::mutator_lock_->SharedUnlock(self); { ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun); gc_barrier_->Increment(self, barrier_count); } Locks::mutator_lock_->SharedLock(self); if (kVerboseMode) { LOG(INFO) << "time=" << region_space_->Time(); region_space_->DumpNonFreeRegions(LOG_STREAM(INFO)); LOG(INFO) << "GC end of CaptureThreadRootsForMarking"; } } // Used to scan ref fields of an object. template class ConcurrentCopying::ComputeLiveBytesAndMarkRefFieldsVisitor { public: explicit ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying* collector, size_t obj_region_idx) : collector_(collector), obj_region_idx_(obj_region_idx), contains_inter_region_idx_(false) {} void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES_SHARED(Locks::heap_bitmap_lock_) { DCHECK_EQ(collector_->RegionSpace()->RegionIdxForRef(obj), obj_region_idx_); DCHECK(kHandleInterRegionRefs || collector_->immune_spaces_.ContainsObject(obj)); mirror::Object* ref = obj->GetFieldObject(offset); // TODO(lokeshgidra): Remove the following condition once b/173676071 is fixed. if (UNLIKELY(ref == nullptr && offset == mirror::Object::ClassOffset())) { // It has been verified as a race condition (see b/173676071)! After a small // wait when we reload the class pointer, it turns out to be a valid class // object. So as a workaround, we can continue execution and log an error // that this happened. for (size_t i = 0; i < 1000; i++) { // Wait for 1ms at a time. Don't wait for more than 1 second in total. usleep(1000); ref = obj->GetClass(); if (ref != nullptr) { LOG(ERROR) << "klass pointer for obj: " << obj << " (" << mirror::Object::PrettyTypeOf(obj) << ") found to be null first. Reloading after a small wait fetched klass: " << ref << " (" << mirror::Object::PrettyTypeOf(ref) << ")"; break; } } if (UNLIKELY(ref == nullptr)) { // It must be heap corruption. Remove memory protection and dump data. collector_->region_space_->Unprotect(); LOG(FATAL_WITHOUT_ABORT) << "klass pointer for ref: " << obj << " found to be null."; collector_->heap_->GetVerification()->LogHeapCorruption(obj, offset, ref, /* fatal */ true); } } CheckReference(ref); } void operator()(ObjPtr klass, ObjPtr ref) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { DCHECK(klass->IsTypeOfReferenceClass()); // If the referent is not null, then we must re-visit the object during // copying phase to enqueue it for delayed processing and setting // read-barrier state to gray to ensure that call to GetReferent() triggers // the read-barrier. We use same data structure that is used to remember // objects with inter-region refs for this purpose too. if (kHandleInterRegionRefs && !contains_inter_region_idx_ && ref->AsReference()->GetReferent() != nullptr) { contains_inter_region_idx_ = true; } } void VisitRootIfNonNull(mirror::CompressedReference* root) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference* root) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { CheckReference(root->AsMirrorPtr()); } bool ContainsInterRegionRefs() const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { return contains_inter_region_idx_; } private: void CheckReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) { if (ref == nullptr) { // Nothing to do. return; } if (!collector_->TestAndSetMarkBitForRef(ref)) { collector_->PushOntoLocalMarkStack(ref); } if (kHandleInterRegionRefs && !contains_inter_region_idx_) { size_t ref_region_idx = collector_->RegionSpace()->RegionIdxForRef(ref); // If a region-space object refers to an outside object, we will have a // mismatch of region idx, but the object need not be re-visited in // copying phase. if (ref_region_idx != static_cast(-1) && obj_region_idx_ != ref_region_idx) { contains_inter_region_idx_ = true; } } } ConcurrentCopying* const collector_; const size_t obj_region_idx_; mutable bool contains_inter_region_idx_; }; void ConcurrentCopying::AddLiveBytesAndScanRef(mirror::Object* ref) { DCHECK(ref != nullptr); DCHECK(!immune_spaces_.ContainsObject(ref)); DCHECK(TestMarkBitmapForRef(ref)); size_t obj_region_idx = static_cast(-1); if (LIKELY(region_space_->HasAddress(ref))) { obj_region_idx = region_space_->RegionIdxForRefUnchecked(ref); // Add live bytes to the corresponding region if (!region_space_->IsRegionNewlyAllocated(obj_region_idx)) { // Newly Allocated regions are always chosen for evacuation. So no need // to update live_bytes_. size_t obj_size = ref->SizeOf(); size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment); region_space_->AddLiveBytes(ref, alloc_size); } } ComputeLiveBytesAndMarkRefFieldsVisitor visitor(this, obj_region_idx); ref->VisitReferences( visitor, visitor); // Mark the corresponding card dirty if the object contains any // inter-region reference. if (visitor.ContainsInterRegionRefs()) { if (obj_region_idx == static_cast(-1)) { // If an inter-region ref has been found in a non-region-space, then it // must be non-moving-space. This is because this function cannot be // called on a immune-space object, and a large-object-space object has // only class object reference, which is either in some immune-space, or // in non-moving-space. DCHECK(heap_->non_moving_space_->HasAddress(ref)); non_moving_space_inter_region_bitmap_.Set(ref); } else { region_space_inter_region_bitmap_.Set(ref); } } } template bool ConcurrentCopying::TestAndSetMarkBitForRef(mirror::Object* ref) { accounting::ContinuousSpaceBitmap* bitmap = nullptr; accounting::LargeObjectBitmap* los_bitmap = nullptr; if (LIKELY(region_space_->HasAddress(ref))) { bitmap = region_space_bitmap_; } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) { bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap(); } else if (immune_spaces_.ContainsObject(ref)) { // References to immune space objects are always live. DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref)); return true; } else { // Should be a large object. Must be page aligned and the LOS must exist. if (kIsDebugBuild && (!IsAligned(ref) || heap_->GetLargeObjectsSpace() == nullptr)) { // It must be heap corruption. Remove memory protection and dump data. region_space_->Unprotect(); heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr, MemberOffset(0), ref, /* fatal */ true); } los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap(); } if (kAtomic) { return (bitmap != nullptr) ? bitmap->AtomicTestAndSet(ref) : los_bitmap->AtomicTestAndSet(ref); } else { return (bitmap != nullptr) ? bitmap->Set(ref) : los_bitmap->Set(ref); } } bool ConcurrentCopying::TestMarkBitmapForRef(mirror::Object* ref) { if (LIKELY(region_space_->HasAddress(ref))) { return region_space_bitmap_->Test(ref); } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) { return heap_->GetNonMovingSpace()->GetMarkBitmap()->Test(ref); } else if (immune_spaces_.ContainsObject(ref)) { // References to immune space objects are always live. DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref)); return true; } else { // Should be a large object. Must be page aligned and the LOS must exist. if (kIsDebugBuild && (!IsAligned(ref) || heap_->GetLargeObjectsSpace() == nullptr)) { // It must be heap corruption. Remove memory protection and dump data. region_space_->Unprotect(); heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr, MemberOffset(0), ref, /* fatal */ true); } return heap_->GetLargeObjectsSpace()->GetMarkBitmap()->Test(ref); } } void ConcurrentCopying::PushOntoLocalMarkStack(mirror::Object* ref) { if (kIsDebugBuild) { Thread *self = Thread::Current(); DCHECK_EQ(thread_running_gc_, self); DCHECK(self->GetThreadLocalMarkStack() == nullptr); } DCHECK_EQ(mark_stack_mode_.load(std::memory_order_relaxed), kMarkStackModeThreadLocal); if (UNLIKELY(gc_mark_stack_->IsFull())) { ExpandGcMarkStack(); } gc_mark_stack_->PushBack(ref); } void ConcurrentCopying::ProcessMarkStackForMarkingAndComputeLiveBytes() { // Process thread-local mark stack containing thread roots ProcessThreadLocalMarkStacks(/* disable_weak_ref_access */ false, /* checkpoint_callback */ nullptr, [this] (mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) { AddLiveBytesAndScanRef(ref); }); { MutexLock mu(thread_running_gc_, mark_stack_lock_); CHECK(revoked_mark_stacks_.empty()); CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize); } while (!gc_mark_stack_->IsEmpty()) { mirror::Object* ref = gc_mark_stack_->PopBack(); AddLiveBytesAndScanRef(ref); } } class ConcurrentCopying::ImmuneSpaceCaptureRefsVisitor { public: explicit ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying* cc) : collector_(cc) {} ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) { ComputeLiveBytesAndMarkRefFieldsVisitor visitor(collector_, /*obj_region_idx*/ static_cast(-1)); obj->VisitReferences( visitor, visitor); } static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) { reinterpret_cast(arg)->operator()(obj); } private: ConcurrentCopying* const collector_; }; /* Invariants for two-phase CC * =========================== * A) Definitions * --------------- * 1) Black: marked in bitmap, rb_state is non-gray, and not in mark stack * 2) Black-clean: marked in bitmap, and corresponding card is clean/aged * 3) Black-dirty: marked in bitmap, and corresponding card is dirty * 4) Gray: marked in bitmap, and exists in mark stack * 5) Gray-dirty: marked in bitmap, rb_state is gray, corresponding card is * dirty, and exists in mark stack * 6) White: unmarked in bitmap, rb_state is non-gray, and not in mark stack * * B) Before marking phase * ----------------------- * 1) All objects are white * 2) Cards are either clean or aged (cannot be asserted without a STW pause) * 3) Mark bitmap is cleared * 4) Mark stack is empty * * C) During marking phase * ------------------------ * 1) If a black object holds an inter-region or white reference, then its * corresponding card is dirty. In other words, it changes from being * black-clean to black-dirty * 2) No black-clean object points to a white object * * D) After marking phase * ----------------------- * 1) There are no gray objects * 2) All newly allocated objects are in from space * 3) No white object can be reachable, directly or otherwise, from a * black-clean object * * E) During copying phase * ------------------------ * 1) Mutators cannot observe white and black-dirty objects * 2) New allocations are in to-space (newly allocated regions are part of to-space) * 3) An object in mark stack must have its rb_state = Gray * * F) During card table scan * -------------------------- * 1) Referents corresponding to root references are gray or in to-space * 2) Every path from an object that is read or written by a mutator during * this period to a dirty black object goes through some gray object. * Mutators preserve this by graying black objects as needed during this * period. Ensures that a mutator never encounters a black dirty object. * * G) After card table scan * ------------------------ * 1) There are no black-dirty objects * 2) Referents corresponding to root references are gray, black-clean or in * to-space * * H) After copying phase * ----------------------- * 1) Mark stack is empty * 2) No references into evacuated from-space * 3) No reference to an object which is unmarked and is also not in newly * allocated region. In other words, no reference to white objects. */ void ConcurrentCopying::MarkingPhase() { TimingLogger::ScopedTiming split("MarkingPhase", GetTimings()); if (kVerboseMode) { LOG(INFO) << "GC MarkingPhase"; } accounting::CardTable* const card_table = heap_->GetCardTable(); Thread* const self = Thread::Current(); CHECK_EQ(self, thread_running_gc_); // Clear live_bytes_ of every non-free region, except the ones that are newly // allocated. region_space_->SetAllRegionLiveBytesZero(); if (kIsDebugBuild) { region_space_->AssertAllRegionLiveBytesZeroOrCleared(); } // Scan immune spaces { TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings()); for (auto& space : immune_spaces_.GetSpaces()) { DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); ImmuneSpaceCaptureRefsVisitor visitor(this); if (table != nullptr) { table->VisitObjects(ImmuneSpaceCaptureRefsVisitor::Callback, &visitor); } else { WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_); card_table->Scan( live_bitmap, space->Begin(), space->Limit(), visitor, accounting::CardTable::kCardDirty - 1); } } } // Scan runtime roots { TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings()); CaptureRootsForMarkingVisitor visitor(this, self); Runtime::Current()->VisitConcurrentRoots(&visitor, kVisitRootFlagAllRoots); } { // TODO: don't visit the transaction roots if it's not active. TimingLogger::ScopedTiming split2("VisitNonThreadRoots", GetTimings()); CaptureRootsForMarkingVisitor visitor(this, self); Runtime::Current()->VisitNonThreadRoots(&visitor); } // Capture thread roots CaptureThreadRootsForMarking(); // Process mark stack ProcessMarkStackForMarkingAndComputeLiveBytes(); if (kVerboseMode) { LOG(INFO) << "GC end of MarkingPhase"; } } template void ConcurrentCopying::ScanDirtyObject(mirror::Object* obj) { Scan(obj); // Set the read-barrier state of a reference-type object to gray if its // referent is not marked yet. This is to ensure that if GetReferent() is // called, it triggers the read-barrier to process the referent before use. if (UNLIKELY((obj->GetClass()->IsTypeOfReferenceClass()))) { mirror::Object* referent = obj->AsReference()->GetReferent(); if (referent != nullptr && !IsInToSpace(referent)) { obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState()); } } } // Concurrently mark roots that are guarded by read barriers and process the mark stack. void ConcurrentCopying::CopyingPhase() { TimingLogger::ScopedTiming split("CopyingPhase", GetTimings()); if (kVerboseMode) { LOG(INFO) << "GC CopyingPhase"; } Thread* self = Thread::Current(); accounting::CardTable* const card_table = heap_->GetCardTable(); if (kIsDebugBuild) { MutexLock mu(self, *Locks::thread_list_lock_); CHECK(weak_ref_access_enabled_); } // Scan immune spaces. // Update all the fields in the immune spaces first without graying the objects so that we // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some // of the objects. if (kUseBakerReadBarrier) { gc_grays_immune_objects_ = false; } if (use_generational_cc_) { if (kVerboseMode) { LOG(INFO) << "GC ScanCardsForSpace"; } TimingLogger::ScopedTiming split2("ScanCardsForSpace", GetTimings()); WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_); CHECK(!done_scanning_.load(std::memory_order_relaxed)); if (kIsDebugBuild) { // Leave some time for mutators to race ahead to try and find races between the GC card // scanning and mutators reading references. usleep(10 * 1000); } for (space::ContinuousSpace* space : GetHeap()->GetContinuousSpaces()) { if (space->IsImageSpace() || space->IsZygoteSpace()) { // Image and zygote spaces are already handled since we gray the objects in the pause. continue; } // Scan all of the objects on dirty cards in unevac from space, and non moving space. These // are from previous GCs (or from marking phase of 2-phase full GC) and may reference things // in the from space. // // Note that we do not need to process the large-object space (the only discontinuous space) // as it contains only large string objects and large primitive array objects, that have no // reference to other objects, except their class. There is no need to scan these large // objects, as the String class and the primitive array classes are expected to never move // during a collection: // - In the case where we run with a boot image, these classes are part of the image space, // which is an immune space. // - In the case where we run without a boot image, these classes are allocated in the // non-moving space (see art::ClassLinker::InitWithoutImage). card_table->Scan( space->GetMarkBitmap(), space->Begin(), space->End(), [this, space](mirror::Object* obj) REQUIRES(Locks::heap_bitmap_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { // TODO: This code may be refactored to avoid scanning object while // done_scanning_ is false by setting rb_state to gray, and pushing the // object on mark stack. However, it will also require clearing the // corresponding mark-bit and, for region space objects, // decrementing the object's size from the corresponding region's // live_bytes. if (young_gen_) { // Don't push or gray unevac refs. if (kIsDebugBuild && space == region_space_) { // We may get unevac large objects. if (!region_space_->IsInUnevacFromSpace(obj)) { CHECK(region_space_bitmap_->Test(obj)); region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj); LOG(FATAL) << "Scanning " << obj << " not in unevac space"; } } ScanDirtyObject(obj); } else if (space != region_space_) { DCHECK(space == heap_->non_moving_space_); // We need to process un-evac references as they may be unprocessed, // if they skipped the marking phase due to heap mutation. ScanDirtyObject(obj); non_moving_space_inter_region_bitmap_.Clear(obj); } else if (region_space_->IsInUnevacFromSpace(obj)) { ScanDirtyObject(obj); region_space_inter_region_bitmap_.Clear(obj); } }, accounting::CardTable::kCardAged); if (!young_gen_) { auto visitor = [this](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { // We don't need to process un-evac references as any unprocessed // ones will be taken care of in the card-table scan above. ScanDirtyObject(obj); }; if (space == region_space_) { region_space_->ScanUnevacFromSpace(®ion_space_inter_region_bitmap_, visitor); } else { DCHECK(space == heap_->non_moving_space_); non_moving_space_inter_region_bitmap_.VisitMarkedRange( reinterpret_cast(space->Begin()), reinterpret_cast(space->End()), visitor); } } } // Done scanning unevac space. done_scanning_.store(true, std::memory_order_release); // NOTE: inter-region-ref bitmaps can be cleared here to release memory, if needed. // Currently we do it in ReclaimPhase(). if (kVerboseMode) { LOG(INFO) << "GC end of ScanCardsForSpace"; } } { // For a sticky-bit collection, this phase needs to be after the card scanning since the // mutator may read an unevac space object out of an image object. If the image object is no // longer gray it will trigger a read barrier for the unevac space object. TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings()); for (auto& space : immune_spaces_.GetSpaces()) { DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); ImmuneSpaceScanObjVisitor visitor(this); if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) { table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor); } else { WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_); card_table->Scan( live_bitmap, space->Begin(), space->Limit(), visitor, accounting::CardTable::kCardDirty - 1); } } } if (kUseBakerReadBarrier) { // This release fence makes the field updates in the above loop visible before allowing mutator // getting access to immune objects without graying it first. updated_all_immune_objects_.store(true, std::memory_order_release); // Now "un-gray" (conceptually blacken) immune objects concurrently accessed and grayed by // mutators. We can't do this in the above loop because we would incorrectly disable the read // barrier by un-graying (conceptually blackening) an object which may point to an unscanned, // white object, breaking the to-space invariant (a mutator shall never observe a from-space // (white) object). // // Make sure no mutators are in the middle of marking an immune object before un-graying // (blackening) immune objects. IssueEmptyCheckpoint(); MutexLock mu(Thread::Current(), immune_gray_stack_lock_); if (kVerboseMode) { LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size(); } for (mirror::Object* obj : immune_gray_stack_) { DCHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::GrayState()); bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(), ReadBarrier::NonGrayState()); DCHECK(success); } immune_gray_stack_.clear(); } { TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings()); Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots); } { // TODO: don't visit the transaction roots if it's not active. TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings()); Runtime::Current()->VisitNonThreadRoots(this); } { TimingLogger::ScopedTiming split7("Process mark stacks and References", GetTimings()); // Process the mark stack once in the thread local stack mode. This marks most of the live // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and // system weaks) that may happen concurrently while we are processing the mark stack and newly // mark/gray objects and push refs on the mark stack. ProcessMarkStack(); ReferenceProcessor* rp = GetHeap()->GetReferenceProcessor(); bool clear_soft_references = GetCurrentIteration()->GetClearSoftReferences(); rp->Setup(self, this, /*concurrent=*/ true, clear_soft_references); if (!clear_soft_references) { // Forward as many SoftReferences as possible before inhibiting reference access. rp->ForwardSoftReferences(GetTimings()); } // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The // primary reasons are that we need to use a checkpoint to process thread-local mark // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock // issue because running threads potentially blocking at WaitHoldingLocks, and that once we // reach the point where we process weak references, we can avoid using a lock when accessing // the GC mark stack, which makes mark stack processing more efficient. // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks // for the last time before transitioning to the shared mark stack mode, which would process new // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack() // call above. At the same time, disable weak ref accesses using a per-thread flag. It's // important to do these together so that we can ensure that mutators won't // newly gray objects and push new refs onto the mark stack due to weak ref accesses and // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones. // We must use a stop-the-world pause to disable weak ref access. A checkpoint may lead to a // deadlock if one mutator acquires a low-level mutex and then gets blocked while accessing // a weak-ref (after participating in the checkpoint), and another mutator indefinitely waits // for the mutex before it participates in the checkpoint. Consequently, the gc-thread blocks // forever as the checkpoint never finishes (See runtime/mutator_gc_coord.md). SwitchToSharedMarkStackMode(); CHECK(!self->GetWeakRefAccessEnabled()); // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here // (which may be non-empty if there were refs found on thread-local mark stacks during the above // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators // (via read barriers) have no way to produce any more refs to process. Marking converges once // before we process weak refs below. ProcessMarkStack(); CheckEmptyMarkStack(); // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a // lock from this point on. SwitchToGcExclusiveMarkStackMode(); CheckEmptyMarkStack(); if (kVerboseMode) { LOG(INFO) << "ProcessReferences"; } // Process weak references. This also marks through finalizers. Although // reference processing is "disabled", some accesses will proceed once we've ensured that // objects directly reachable by the mutator are marked, i.e. before we mark through // finalizers. ProcessReferences(self); CheckEmptyMarkStack(); // JNI WeakGlobalRefs and most other system weaks cannot be processed until we're done marking // through finalizers, since such references to finalizer-reachable objects must be preserved. if (kVerboseMode) { LOG(INFO) << "SweepSystemWeaks"; } SweepSystemWeaks(self); CheckEmptyMarkStack(); ReenableWeakRefAccess(self); if (kVerboseMode) { LOG(INFO) << "SweepSystemWeaks done"; } // Free data for class loaders that we unloaded. Runtime::Current()->GetClassLinker()->CleanupClassLoaders(); // Marking is done. Disable marking. DisableMarking(); CheckEmptyMarkStack(); } if (kIsDebugBuild) { MutexLock mu(self, *Locks::thread_list_lock_); CHECK(weak_ref_access_enabled_); } if (kVerboseMode) { LOG(INFO) << "GC end of CopyingPhase"; } } void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) { if (kVerboseMode) { LOG(INFO) << "ReenableWeakRefAccess"; } // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access. { MutexLock mu(self, *Locks::thread_list_lock_); weak_ref_access_enabled_ = true; // This is for new threads. std::list thread_list = Runtime::Current()->GetThreadList()->GetList(); for (Thread* thread : thread_list) { thread->SetWeakRefAccessEnabled(true); } } // Unblock blocking threads. GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self); Runtime::Current()->BroadcastForNewSystemWeaks(); } class ConcurrentCopying::DisableMarkingCheckpoint : public Closure { public: explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying) : concurrent_copying_(concurrent_copying) { } void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS { // Note: self is not necessarily equal to thread since thread may be suspended. Thread* self = Thread::Current(); DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == ThreadState::kWaitingPerformingGc) << thread->GetState() << " thread " << thread << " self " << self; // Disable the thread-local is_gc_marking flag. // Note a thread that has just started right before this checkpoint may have already this flag // set to false, which is ok. thread->SetIsGcMarkingAndUpdateEntrypoints(false); // If thread is a running mutator, then act on behalf of the garbage collector. // See the code in ThreadList::RunCheckpoint. concurrent_copying_->GetBarrier().Pass(self); } private: ConcurrentCopying* const concurrent_copying_; }; class ConcurrentCopying::DisableMarkingCallback : public Closure { public: explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying) : concurrent_copying_(concurrent_copying) { } void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) { // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint() // to avoid a race with ThreadList::Register(). CHECK(concurrent_copying_->is_marking_); concurrent_copying_->is_marking_ = false; if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) { CHECK(concurrent_copying_->is_using_read_barrier_entrypoints_); concurrent_copying_->is_using_read_barrier_entrypoints_ = false; } else { CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_); } } private: ConcurrentCopying* const concurrent_copying_; }; void ConcurrentCopying::IssueDisableMarkingCheckpoint() { Thread* self = Thread::Current(); DisableMarkingCheckpoint check_point(this); ThreadList* thread_list = Runtime::Current()->GetThreadList(); gc_barrier_->Init(self, 0); DisableMarkingCallback dmc(this); size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc); // If there are no threads to wait which implies that all the checkpoint functions are finished, // then no need to release the mutator lock. if (barrier_count == 0) { return; } // Release locks then wait for all mutator threads to pass the barrier. Locks::mutator_lock_->SharedUnlock(self); { ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun); gc_barrier_->Increment(self, barrier_count); } Locks::mutator_lock_->SharedLock(self); } void ConcurrentCopying::DisableMarking() { // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and // to ensure no threads are still in the middle of a read barrier which may have a from-space ref // cached in a local variable. IssueDisableMarkingCheckpoint(); if (kUseTableLookupReadBarrier) { heap_->rb_table_->ClearAll(); DCHECK(heap_->rb_table_->IsAllCleared()); } is_mark_stack_push_disallowed_.store(1, std::memory_order_seq_cst); mark_stack_mode_.store(kMarkStackModeOff, std::memory_order_seq_cst); } void ConcurrentCopying::IssueEmptyCheckpoint() { Thread* self = Thread::Current(); ThreadList* thread_list = Runtime::Current()->GetThreadList(); // Release locks then wait for all mutator threads to pass the barrier. Locks::mutator_lock_->SharedUnlock(self); thread_list->RunEmptyCheckpoint(); Locks::mutator_lock_->SharedLock(self); } void ConcurrentCopying::ExpandGcMarkStack() { DCHECK(gc_mark_stack_->IsFull()); const size_t new_size = gc_mark_stack_->Capacity() * 2; std::vector> temp(gc_mark_stack_->Begin(), gc_mark_stack_->End()); gc_mark_stack_->Resize(new_size); for (auto& ref : temp) { gc_mark_stack_->PushBack(ref.AsMirrorPtr()); } DCHECK(!gc_mark_stack_->IsFull()); } void ConcurrentCopying::PushOntoMarkStack(Thread* const self, mirror::Object* to_ref) { CHECK_EQ(is_mark_stack_push_disallowed_.load(std::memory_order_relaxed), 0) << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref); CHECK(thread_running_gc_ != nullptr); MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed); if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) { if (LIKELY(self == thread_running_gc_)) { // If GC-running thread, use the GC mark stack instead of a thread-local mark stack. CHECK(self->GetThreadLocalMarkStack() == nullptr); if (UNLIKELY(gc_mark_stack_->IsFull())) { ExpandGcMarkStack(); } gc_mark_stack_->PushBack(to_ref); } else { // Otherwise, use a thread-local mark stack. accounting::AtomicStack* tl_mark_stack = self->GetThreadLocalMarkStack(); if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) { MutexLock mu(self, mark_stack_lock_); // Get a new thread local mark stack. accounting::AtomicStack* new_tl_mark_stack; if (!pooled_mark_stacks_.empty()) { // Use a pooled mark stack. new_tl_mark_stack = pooled_mark_stacks_.back(); pooled_mark_stacks_.pop_back(); } else { // None pooled. Create a new one. new_tl_mark_stack = accounting::AtomicStack::Create( "thread local mark stack", 4 * KB, 4 * KB); } DCHECK(new_tl_mark_stack != nullptr); DCHECK(new_tl_mark_stack->IsEmpty()); new_tl_mark_stack->PushBack(to_ref); self->SetThreadLocalMarkStack(new_tl_mark_stack); if (tl_mark_stack != nullptr) { // Store the old full stack into a vector. revoked_mark_stacks_.push_back(tl_mark_stack); } } else { tl_mark_stack->PushBack(to_ref); } } } else if (mark_stack_mode == kMarkStackModeShared) { // Access the shared GC mark stack with a lock. MutexLock mu(self, mark_stack_lock_); if (UNLIKELY(gc_mark_stack_->IsFull())) { ExpandGcMarkStack(); } gc_mark_stack_->PushBack(to_ref); } else { CHECK_EQ(static_cast(mark_stack_mode), static_cast(kMarkStackModeGcExclusive)) << "ref=" << to_ref << " self->gc_marking=" << self->GetIsGcMarking() << " cc->is_marking=" << is_marking_; CHECK(self == thread_running_gc_) << "Only GC-running thread should access the mark stack " << "in the GC exclusive mark stack mode"; // Access the GC mark stack without a lock. if (UNLIKELY(gc_mark_stack_->IsFull())) { ExpandGcMarkStack(); } gc_mark_stack_->PushBack(to_ref); } } accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() { return heap_->allocation_stack_.get(); } accounting::ObjectStack* ConcurrentCopying::GetLiveStack() { return heap_->live_stack_.get(); } // The following visitors are used to verify that there's no references to the from-space left after // marking. class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor { public: explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector) : collector_(collector) {} void operator()(mirror::Object* ref, MemberOffset offset = MemberOffset(0), mirror::Object* holder = nullptr) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { if (ref == nullptr) { // OK. return; } collector_->AssertToSpaceInvariant(holder, offset, ref); if (kUseBakerReadBarrier) { CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState()) << "Ref " << ref << " " << ref->PrettyTypeOf() << " has gray rb_state"; } } void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(root != nullptr); operator()(root); } private: ConcurrentCopying* const collector_; }; class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor { public: explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector) : collector_(collector) {} void operator()(ObjPtr obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { mirror::Object* ref = obj->GetFieldObject(offset); VerifyNoFromSpaceRefsVisitor visitor(collector_); visitor(ref, offset, obj.Ptr()); } void operator()(ObjPtr klass, ObjPtr ref) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { CHECK(klass->IsTypeOfReferenceClass()); this->operator()(ref, mirror::Reference::ReferentOffset(), false); } void VisitRootIfNonNull(mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { VerifyNoFromSpaceRefsVisitor visitor(collector_); visitor(root->AsMirrorPtr()); } private: ConcurrentCopying* const collector_; }; // Verify there's no from-space references left after the marking phase. void ConcurrentCopying::VerifyNoFromSpaceReferences() { Thread* self = Thread::Current(); DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self)); // Verify all threads have is_gc_marking to be false { MutexLock mu(self, *Locks::thread_list_lock_); std::list thread_list = Runtime::Current()->GetThreadList()->GetList(); for (Thread* thread : thread_list) { CHECK(!thread->GetIsGcMarking()); } } auto verify_no_from_space_refs_visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(obj != nullptr); space::RegionSpace* region_space = RegionSpace(); CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space"; VerifyNoFromSpaceRefsFieldVisitor visitor(this); obj->VisitReferences( visitor, visitor); if (kUseBakerReadBarrier) { CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::NonGrayState()) << "obj=" << obj << " has gray rb_state " << obj->GetReadBarrierState(); } }; // Roots. { ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); VerifyNoFromSpaceRefsVisitor ref_visitor(this); Runtime::Current()->VisitRoots(&ref_visitor); } // The to-space. region_space_->WalkToSpace(verify_no_from_space_refs_visitor); // Non-moving spaces. { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); heap_->GetMarkBitmap()->Visit(verify_no_from_space_refs_visitor); } // The alloc stack. { VerifyNoFromSpaceRefsVisitor ref_visitor(this); for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End(); it < end; ++it) { mirror::Object* const obj = it->AsMirrorPtr(); if (obj != nullptr && obj->GetClass() != nullptr) { // TODO: need to call this only if obj is alive? ref_visitor(obj); verify_no_from_space_refs_visitor(obj); } } } // TODO: LOS. But only refs in LOS are classes. } // The following visitors are used to assert the to-space invariant. class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor { public: explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector) : collector_(collector) {} void operator()(ObjPtr obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { mirror::Object* ref = obj->GetFieldObject(offset); collector_->AssertToSpaceInvariant(obj.Ptr(), offset, ref); } void operator()(ObjPtr klass, ObjPtr ref ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { CHECK(klass->IsTypeOfReferenceClass()); } void VisitRootIfNonNull(mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { mirror::Object* ref = root->AsMirrorPtr(); collector_->AssertToSpaceInvariant(/* obj */ nullptr, MemberOffset(0), ref); } private: ConcurrentCopying* const collector_; }; void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access, Closure* checkpoint_callback) { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertSharedHeld(self); ThreadList* thread_list = Runtime::Current()->GetThreadList(); RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access); if (disable_weak_ref_access) { // We're the only thread that could possibly ask for exclusive access here. Locks::mutator_lock_->SharedUnlock(self); { ScopedPause pause(this); MutexLock mu(self, *Locks::thread_list_lock_); checkpoint_callback->Run(self); for (Thread* thread : thread_list->GetList()) { check_point.Run(thread); } } Locks::mutator_lock_->SharedLock(self); } else { gc_barrier_->Init(self, 0); size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback); // If there are no threads to wait which implys that all the checkpoint functions are finished, // then no need to release the mutator lock. if (barrier_count == 0) { return; } Locks::mutator_lock_->SharedUnlock(self); { ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun); gc_barrier_->Increment(self, barrier_count); } Locks::mutator_lock_->SharedLock(self); } } void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) { Thread* self = Thread::Current(); CHECK_EQ(self, thread); MutexLock mu(self, mark_stack_lock_); accounting::AtomicStack* tl_mark_stack = thread->GetThreadLocalMarkStack(); if (tl_mark_stack != nullptr) { CHECK(is_marking_); revoked_mark_stacks_.push_back(tl_mark_stack); thread->SetThreadLocalMarkStack(nullptr); } } void ConcurrentCopying::ProcessMarkStack() { if (kVerboseMode) { LOG(INFO) << "ProcessMarkStack. "; } bool empty_prev = false; while (true) { bool empty = ProcessMarkStackOnce(); if (empty_prev && empty) { // Saw empty mark stack for a second time, done. break; } empty_prev = empty; } } bool ConcurrentCopying::ProcessMarkStackOnce() { DCHECK(thread_running_gc_ != nullptr); Thread* const self = Thread::Current(); DCHECK(self == thread_running_gc_); DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr); size_t count = 0; MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed); if (mark_stack_mode == kMarkStackModeThreadLocal) { // Process the thread-local mark stacks and the GC mark stack. count += ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ false, /* checkpoint_callback= */ nullptr, [this] (mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) { ProcessMarkStackRef(ref); }); while (!gc_mark_stack_->IsEmpty()) { mirror::Object* to_ref = gc_mark_stack_->PopBack(); ProcessMarkStackRef(to_ref); ++count; } gc_mark_stack_->Reset(); } else if (mark_stack_mode == kMarkStackModeShared) { // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is // disabled at this point. IssueEmptyCheckpoint(); // Process the shared GC mark stack with a lock. { MutexLock mu(thread_running_gc_, mark_stack_lock_); CHECK(revoked_mark_stacks_.empty()); CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize); } while (true) { std::vector refs; { // Copy refs with lock. Note the number of refs should be small. MutexLock mu(thread_running_gc_, mark_stack_lock_); if (gc_mark_stack_->IsEmpty()) { break; } for (StackReference* p = gc_mark_stack_->Begin(); p != gc_mark_stack_->End(); ++p) { refs.push_back(p->AsMirrorPtr()); } gc_mark_stack_->Reset(); } for (mirror::Object* ref : refs) { ProcessMarkStackRef(ref); ++count; } } } else { CHECK_EQ(static_cast(mark_stack_mode), static_cast(kMarkStackModeGcExclusive)); { MutexLock mu(thread_running_gc_, mark_stack_lock_); CHECK(revoked_mark_stacks_.empty()); CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize); } // Process the GC mark stack in the exclusive mode. No need to take the lock. while (!gc_mark_stack_->IsEmpty()) { mirror::Object* to_ref = gc_mark_stack_->PopBack(); ProcessMarkStackRef(to_ref); ++count; } gc_mark_stack_->Reset(); } // Return true if the stack was empty. return count == 0; } template size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access, Closure* checkpoint_callback, const Processor& processor) { // Run a checkpoint to collect all thread local mark stacks and iterate over them all. RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback); if (disable_weak_ref_access) { CHECK_EQ(static_cast(mark_stack_mode_.load(std::memory_order_relaxed)), static_cast(kMarkStackModeShared)); } size_t count = 0; std::vector*> mark_stacks; { MutexLock mu(thread_running_gc_, mark_stack_lock_); // Make a copy of the mark stack vector. mark_stacks = revoked_mark_stacks_; revoked_mark_stacks_.clear(); } for (accounting::AtomicStack* mark_stack : mark_stacks) { for (StackReference* p = mark_stack->Begin(); p != mark_stack->End(); ++p) { mirror::Object* to_ref = p->AsMirrorPtr(); processor(to_ref); ++count; } { MutexLock mu(thread_running_gc_, mark_stack_lock_); if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) { // The pool has enough. Delete it. delete mark_stack; } else { // Otherwise, put it into the pool for later reuse. mark_stack->Reset(); pooled_mark_stacks_.push_back(mark_stack); } } } if (disable_weak_ref_access) { MutexLock mu(thread_running_gc_, mark_stack_lock_); CHECK(revoked_mark_stacks_.empty()); CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize); } return count; } inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) { DCHECK(!region_space_->IsInFromSpace(to_ref)); size_t obj_size = 0; space::RegionSpace::RegionType rtype = region_space_->GetRegionType(to_ref); if (kUseBakerReadBarrier) { DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState()) << " to_ref=" << to_ref << " rb_state=" << to_ref->GetReadBarrierState() << " is_marked=" << IsMarked(to_ref) << " type=" << to_ref->PrettyTypeOf() << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha << " space=" << heap_->DumpSpaceNameFromAddress(to_ref) << " region_type=" << rtype; } bool add_to_live_bytes = false; // Invariant: There should be no object from a newly-allocated // region (either large or non-large) on the mark stack. DCHECK(!region_space_->IsInNewlyAllocatedRegion(to_ref)) << to_ref; bool perform_scan = false; switch (rtype) { case space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace: // Mark the bitmap only in the GC thread here so that we don't need a CAS. if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) { // It may be already marked if we accidentally pushed the same object twice due to the racy // bitmap read in MarkUnevacFromSpaceRegion. if (use_generational_cc_ && young_gen_) { CHECK(region_space_->IsLargeObject(to_ref)); region_space_->ZeroLiveBytesForLargeObject(to_ref); } perform_scan = true; // Only add to the live bytes if the object was not already marked and we are not the young // GC. // Why add live bytes even after 2-phase GC? // We need to ensure that if there is a unevac region with any live // objects, then its live_bytes must be non-zero. Otherwise, // ClearFromSpace() will clear the region. Considering, that we may skip // live objects during marking phase of 2-phase GC, we have to take care // of such objects here. add_to_live_bytes = true; } break; case space::RegionSpace::RegionType::kRegionTypeToSpace: if (use_generational_cc_) { // Copied to to-space, set the bit so that the next GC can scan objects. region_space_bitmap_->Set(to_ref); } perform_scan = true; break; default: DCHECK(!region_space_->HasAddress(to_ref)) << to_ref; DCHECK(!immune_spaces_.ContainsObject(to_ref)); // Non-moving or large-object space. if (kUseBakerReadBarrier) { accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap(); const bool is_los = !mark_bitmap->HasAddress(to_ref); if (is_los) { if (!IsAligned(to_ref)) { // Ref is a large object that is not aligned, it must be heap // corruption. Remove memory protection and dump data before // AtomicSetReadBarrierState since it will fault if the address is not // valid. region_space_->Unprotect(); heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr, MemberOffset(0), to_ref, /* fatal */ true); } DCHECK(heap_->GetLargeObjectsSpace()) << "ref=" << to_ref << " doesn't belong to non-moving space and large object space doesn't exist"; accounting::LargeObjectBitmap* los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap(); DCHECK(los_bitmap->HasAddress(to_ref)); // Only the GC thread could be setting the LOS bit map hence doesn't // need to be atomically done. perform_scan = !los_bitmap->Set(to_ref); } else { // Only the GC thread could be setting the non-moving space bit map // hence doesn't need to be atomically done. perform_scan = !mark_bitmap->Set(to_ref); } } else { perform_scan = true; } } if (perform_scan) { obj_size = to_ref->SizeOf(); if (use_generational_cc_ && young_gen_) { Scan(to_ref, obj_size); } else { Scan(to_ref, obj_size); } } if (kUseBakerReadBarrier) { DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState()) << " to_ref=" << to_ref << " rb_state=" << to_ref->GetReadBarrierState() << " is_marked=" << IsMarked(to_ref) << " type=" << to_ref->PrettyTypeOf() << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha << " space=" << heap_->DumpSpaceNameFromAddress(to_ref) << " region_type=" << rtype // TODO: Temporary; remove this when this is no longer needed (b/116087961). << " runtime->sentinel=" << Runtime::Current()->GetSentinel().Read(); } #ifdef USE_BAKER_READ_BARRIER mirror::Object* referent = nullptr; if (UNLIKELY((to_ref->GetClass()->IsTypeOfReferenceClass() && (referent = to_ref->AsReference()->GetReferent()) != nullptr && !IsInToSpace(referent)))) { // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We // will change it to non-gray later in ReferenceQueue::DisableReadBarrierForReference. DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr) << "Left unenqueued ref gray " << to_ref; } else { // We may occasionally leave a reference non-gray in the queue if its referent happens to be // concurrently marked after the Scan() call above has enqueued the Reference, in which case the // above IsInToSpace() evaluates to true and we change the color from gray to non-gray here in // this else block. if (kUseBakerReadBarrier) { bool success = to_ref->AtomicSetReadBarrierState( ReadBarrier::GrayState(), ReadBarrier::NonGrayState()); DCHECK(success) << "Must succeed as we won the race."; } } #else DCHECK(!kUseBakerReadBarrier); #endif if (add_to_live_bytes) { // Add to the live bytes per unevacuated from-space. Note this code is always run by the // GC-running thread (no synchronization required). DCHECK(region_space_bitmap_->Test(to_ref)); if (obj_size == 0) { obj_size = to_ref->SizeOf(); } region_space_->AddLiveBytes(to_ref, RoundUp(obj_size, space::RegionSpace::kAlignment)); } if (ReadBarrier::kEnableToSpaceInvariantChecks) { CHECK(to_ref != nullptr); space::RegionSpace* region_space = RegionSpace(); CHECK(!region_space->IsInFromSpace(to_ref)) << "Scanning object " << to_ref << " in from space"; AssertToSpaceInvariant(nullptr, MemberOffset(0), to_ref); AssertToSpaceInvariantFieldVisitor visitor(this); to_ref->VisitReferences( visitor, visitor); } } class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure { public: explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying) : concurrent_copying_(concurrent_copying) { } void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) { // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint() // to avoid a deadlock b/31500969. CHECK(concurrent_copying_->weak_ref_access_enabled_); concurrent_copying_->weak_ref_access_enabled_ = false; } private: ConcurrentCopying* const concurrent_copying_; }; void ConcurrentCopying::SwitchToSharedMarkStackMode() { Thread* self = Thread::Current(); DCHECK(thread_running_gc_ != nullptr); DCHECK(self == thread_running_gc_); DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr); MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed); CHECK_EQ(static_cast(before_mark_stack_mode), static_cast(kMarkStackModeThreadLocal)); mark_stack_mode_.store(kMarkStackModeShared, std::memory_order_relaxed); DisableWeakRefAccessCallback dwrac(this); // Process the thread local mark stacks one last time after switching to the shared mark stack // mode and disable weak ref accesses. ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ true, &dwrac, [this] (mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) { ProcessMarkStackRef(ref); }); if (kVerboseMode) { LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access"; } } void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() { Thread* self = Thread::Current(); DCHECK(thread_running_gc_ != nullptr); DCHECK(self == thread_running_gc_); DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr); MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed); CHECK_EQ(static_cast(before_mark_stack_mode), static_cast(kMarkStackModeShared)); mark_stack_mode_.store(kMarkStackModeGcExclusive, std::memory_order_relaxed); QuasiAtomic::ThreadFenceForConstructor(); if (kVerboseMode) { LOG(INFO) << "Switched to GC exclusive mark stack mode"; } } void ConcurrentCopying::CheckEmptyMarkStack() { Thread* self = Thread::Current(); DCHECK(thread_running_gc_ != nullptr); DCHECK(self == thread_running_gc_); DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr); MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed); if (mark_stack_mode == kMarkStackModeThreadLocal) { // Thread-local mark stack mode. RevokeThreadLocalMarkStacks(false, nullptr); MutexLock mu(thread_running_gc_, mark_stack_lock_); if (!revoked_mark_stacks_.empty()) { for (accounting::AtomicStack* mark_stack : revoked_mark_stacks_) { while (!mark_stack->IsEmpty()) { mirror::Object* obj = mark_stack->PopBack(); if (kUseBakerReadBarrier) { uint32_t rb_state = obj->GetReadBarrierState(); LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state=" << rb_state << " is_marked=" << IsMarked(obj); } else { LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " is_marked=" << IsMarked(obj); } } } LOG(FATAL) << "mark stack is not empty"; } } else { // Shared, GC-exclusive, or off. MutexLock mu(thread_running_gc_, mark_stack_lock_); CHECK(gc_mark_stack_->IsEmpty()); CHECK(revoked_mark_stacks_.empty()); CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize); } } void ConcurrentCopying::SweepSystemWeaks(Thread* self) { TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings()); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); Runtime::Current()->SweepSystemWeaks(this); } void ConcurrentCopying::Sweep(bool swap_bitmaps) { if (use_generational_cc_ && young_gen_) { // Only sweep objects on the live stack. SweepArray(heap_->GetLiveStack(), /* swap_bitmaps= */ false); } else { { TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings()); accounting::ObjectStack* live_stack = heap_->GetLiveStack(); if (kEnableFromSpaceAccountingCheck) { // Ensure that nobody inserted items in the live stack after we swapped the stacks. CHECK_GE(live_stack_freeze_size_, live_stack->Size()); } heap_->MarkAllocStackAsLive(live_stack); live_stack->Reset(); } CheckEmptyMarkStack(); TimingLogger::ScopedTiming split("Sweep", GetTimings()); for (const auto& space : GetHeap()->GetContinuousSpaces()) { if (space->IsContinuousMemMapAllocSpace() && space != region_space_ && !immune_spaces_.ContainsSpace(space)) { space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); TimingLogger::ScopedTiming split2( alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings()); RecordFree(alloc_space->Sweep(swap_bitmaps)); } } SweepLargeObjects(swap_bitmaps); } } // Copied and adapted from MarkSweep::SweepArray. void ConcurrentCopying::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) { // This method is only used when Generational CC collection is enabled. DCHECK(use_generational_cc_); CheckEmptyMarkStack(); TimingLogger::ScopedTiming t("SweepArray", GetTimings()); Thread* self = Thread::Current(); mirror::Object** chunk_free_buffer = reinterpret_cast( sweep_array_free_buffer_mem_map_.BaseBegin()); size_t chunk_free_pos = 0; ObjectBytePair freed; ObjectBytePair freed_los; // How many objects are left in the array, modified after each space is swept. StackReference* objects = allocations->Begin(); size_t count = allocations->Size(); // Start by sweeping the continuous spaces. for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) { if (!space->IsAllocSpace() || space == region_space_ || immune_spaces_.ContainsSpace(space) || space->GetLiveBitmap() == nullptr) { continue; } space::AllocSpace* alloc_space = space->AsAllocSpace(); accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); if (swap_bitmaps) { std::swap(live_bitmap, mark_bitmap); } StackReference* out = objects; for (size_t i = 0; i < count; ++i) { mirror::Object* const obj = objects[i].AsMirrorPtr(); if (kUseThreadLocalAllocationStack && obj == nullptr) { continue; } if (space->HasAddress(obj)) { // This object is in the space, remove it from the array and add it to the sweep buffer // if needed. if (!mark_bitmap->Test(obj)) { if (chunk_free_pos >= kSweepArrayChunkFreeSize) { TimingLogger::ScopedTiming t2("FreeList", GetTimings()); freed.objects += chunk_free_pos; freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); chunk_free_pos = 0; } chunk_free_buffer[chunk_free_pos++] = obj; } } else { (out++)->Assign(obj); } } if (chunk_free_pos > 0) { TimingLogger::ScopedTiming t2("FreeList", GetTimings()); freed.objects += chunk_free_pos; freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); chunk_free_pos = 0; } // All of the references which space contained are no longer in the allocation stack, update // the count. count = out - objects; } // Handle the large object space. space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); if (large_object_space != nullptr) { accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap(); accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap(); if (swap_bitmaps) { std::swap(large_live_objects, large_mark_objects); } for (size_t i = 0; i < count; ++i) { mirror::Object* const obj = objects[i].AsMirrorPtr(); // Handle large objects. if (kUseThreadLocalAllocationStack && obj == nullptr) { continue; } if (!large_mark_objects->Test(obj)) { ++freed_los.objects; freed_los.bytes += large_object_space->Free(self, obj); } } } { TimingLogger::ScopedTiming t2("RecordFree", GetTimings()); RecordFree(freed); RecordFreeLOS(freed_los); t2.NewTiming("ResetStack"); allocations->Reset(); } sweep_array_free_buffer_mem_map_.MadviseDontNeedAndZero(); } void ConcurrentCopying::MarkZygoteLargeObjects() { TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); Thread* const self = Thread::Current(); WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_); space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace(); if (los != nullptr) { // Pick the current live bitmap (mark bitmap if swapped). accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap(); accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap(); // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept. std::pair range = los->GetBeginEndAtomic(); live_bitmap->VisitMarkedRange(reinterpret_cast(range.first), reinterpret_cast(range.second), [mark_bitmap, los, self](mirror::Object* obj) REQUIRES(Locks::heap_bitmap_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { if (los->IsZygoteLargeObject(self, obj)) { mark_bitmap->Set(obj); } }); } } void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) { TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings()); if (heap_->GetLargeObjectsSpace() != nullptr) { RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps)); } } void ConcurrentCopying::CaptureRssAtPeak() { using range_t = std::pair; // This operation is expensive as several calls to mincore() are performed. // Also, this must be called before clearing regions in ReclaimPhase(). // Therefore, we make it conditional on the flag that enables dumping GC // performance info on shutdown. if (Runtime::Current()->GetDumpGCPerformanceOnShutdown()) { std::list gc_ranges; auto add_gc_range = [&gc_ranges](void* start, size_t size) { void* end = static_cast(start) + RoundUp(size, kPageSize); gc_ranges.emplace_back(range_t(start, end)); }; // region space DCHECK(IsAligned(region_space_->Limit())); gc_ranges.emplace_back(range_t(region_space_->Begin(), region_space_->Limit())); // mark bitmap add_gc_range(region_space_bitmap_->Begin(), region_space_bitmap_->Size()); // non-moving space { DCHECK(IsAligned(heap_->non_moving_space_->Limit())); gc_ranges.emplace_back(range_t(heap_->non_moving_space_->Begin(), heap_->non_moving_space_->Limit())); // mark bitmap accounting::ContinuousSpaceBitmap *bitmap = heap_->non_moving_space_->GetMarkBitmap(); add_gc_range(bitmap->Begin(), bitmap->Size()); // live bitmap. Deal with bound bitmaps. ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); if (heap_->non_moving_space_->HasBoundBitmaps()) { DCHECK_EQ(bitmap, heap_->non_moving_space_->GetLiveBitmap()); bitmap = heap_->non_moving_space_->GetTempBitmap(); } else { bitmap = heap_->non_moving_space_->GetLiveBitmap(); } add_gc_range(bitmap->Begin(), bitmap->Size()); } // large-object space if (heap_->GetLargeObjectsSpace()) { heap_->GetLargeObjectsSpace()->ForEachMemMap([&add_gc_range](const MemMap& map) { DCHECK(IsAligned(map.BaseSize())); add_gc_range(map.BaseBegin(), map.BaseSize()); }); // mark bitmap accounting::LargeObjectBitmap* bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap(); add_gc_range(bitmap->Begin(), bitmap->Size()); // live bitmap bitmap = heap_->GetLargeObjectsSpace()->GetLiveBitmap(); add_gc_range(bitmap->Begin(), bitmap->Size()); } // card table add_gc_range(heap_->GetCardTable()->MemMapBegin(), heap_->GetCardTable()->MemMapSize()); // inter-region refs if (use_generational_cc_ && !young_gen_) { // region space add_gc_range(region_space_inter_region_bitmap_.Begin(), region_space_inter_region_bitmap_.Size()); // non-moving space add_gc_range(non_moving_space_inter_region_bitmap_.Begin(), non_moving_space_inter_region_bitmap_.Size()); } // Extract RSS using mincore(). Updates the cummulative RSS counter. ExtractRssFromMincore(&gc_ranges); } } void ConcurrentCopying::ReclaimPhase() { TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings()); if (kVerboseMode) { LOG(INFO) << "GC ReclaimPhase"; } Thread* self = Thread::Current(); { // Double-check that the mark stack is empty. // Note: need to set this after VerifyNoFromSpaceRef(). is_asserting_to_space_invariant_ = false; QuasiAtomic::ThreadFenceForConstructor(); if (kVerboseMode) { LOG(INFO) << "Issue an empty check point. "; } IssueEmptyCheckpoint(); // Disable the check. is_mark_stack_push_disallowed_.store(0, std::memory_order_seq_cst); if (kUseBakerReadBarrier) { updated_all_immune_objects_.store(false, std::memory_order_seq_cst); } CheckEmptyMarkStack(); } // Capture RSS at the time when memory usage is at its peak. All GC related // memory ranges like java heap, card table, bitmap etc. are taken into // account. // TODO: We can fetch resident memory for region space directly by going // through list of allocated regions. This way we can avoid calling mincore on // the biggest memory range, thereby reducing the cost of this function. CaptureRssAtPeak(); // Sweep the malloc spaces before clearing the from space since the memory tool mode might // access the object classes in the from space for dead objects. { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); Sweep(/* swap_bitmaps= */ false); SwapBitmaps(); heap_->UnBindBitmaps(); // The bitmap was cleared at the start of the GC, there is nothing we need to do here. DCHECK(region_space_bitmap_ != nullptr); region_space_bitmap_ = nullptr; } { // Record freed objects. TimingLogger::ScopedTiming split2("RecordFree", GetTimings()); // Don't include thread-locals that are in the to-space. const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace(); const uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace(); const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace(); const uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace(); uint64_t to_bytes = bytes_moved_.load(std::memory_order_relaxed) + bytes_moved_gc_thread_; cumulative_bytes_moved_ += to_bytes; uint64_t to_objects = objects_moved_.load(std::memory_order_relaxed) + objects_moved_gc_thread_; cumulative_objects_moved_ += to_objects; if (kEnableFromSpaceAccountingCheck) { CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects); CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes); } CHECK_LE(to_objects, from_objects); // to_bytes <= from_bytes is only approximately true, because objects expand a little when // copying to non-moving space in near-OOM situations. if (from_bytes > 0) { copied_live_bytes_ratio_sum_ += static_cast(to_bytes) / from_bytes; gc_count_++; } // Cleared bytes and objects, populated by the call to RegionSpace::ClearFromSpace below. uint64_t cleared_bytes; uint64_t cleared_objects; { TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings()); region_space_->ClearFromSpace(&cleared_bytes, &cleared_objects, /*clear_bitmap*/ !young_gen_); // `cleared_bytes` and `cleared_objects` may be greater than the from space equivalents since // RegionSpace::ClearFromSpace may clear empty unevac regions. CHECK_GE(cleared_bytes, from_bytes); CHECK_GE(cleared_objects, from_objects); } // freed_bytes could conceivably be negative if we fall back to nonmoving space and have to // pad to a larger size. int64_t freed_bytes = (int64_t)cleared_bytes - (int64_t)to_bytes; uint64_t freed_objects = cleared_objects - to_objects; if (kVerboseMode) { LOG(INFO) << "RecordFree:" << " from_bytes=" << from_bytes << " from_objects=" << from_objects << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects << " to_bytes=" << to_bytes << " to_objects=" << to_objects << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects << " from_space size=" << region_space_->FromSpaceSize() << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize() << " to_space size=" << region_space_->ToSpaceSize(); LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.load(); } RecordFree(ObjectBytePair(freed_objects, freed_bytes)); GetCurrentIteration()->SetScannedBytes(bytes_scanned_); if (kVerboseMode) { LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.load(); } float reclaimed_bytes_ratio = static_cast(freed_bytes) / num_bytes_allocated_before_gc_; reclaimed_bytes_ratio_sum_ += reclaimed_bytes_ratio; } CheckEmptyMarkStack(); if (heap_->dump_region_info_after_gc_) { LOG(INFO) << "time=" << region_space_->Time(); region_space_->DumpNonFreeRegions(LOG_STREAM(INFO)); } if (kVerboseMode) { LOG(INFO) << "GC end of ReclaimPhase"; } } std::string ConcurrentCopying::DumpReferenceInfo(mirror::Object* ref, const char* ref_name, const char* indent) { std::ostringstream oss; oss << indent << heap_->GetVerification()->DumpObjectInfo(ref, ref_name) << '\n'; if (ref != nullptr) { if (kUseBakerReadBarrier) { oss << indent << ref_name << "->GetMarkBit()=" << ref->GetMarkBit() << '\n'; oss << indent << ref_name << "->GetReadBarrierState()=" << ref->GetReadBarrierState() << '\n'; } } if (region_space_->HasAddress(ref)) { oss << indent << "Region containing " << ref_name << ":" << '\n'; region_space_->DumpRegionForObject(oss, ref); if (region_space_bitmap_ != nullptr) { oss << indent << "region_space_bitmap_->Test(" << ref_name << ")=" << std::boolalpha << region_space_bitmap_->Test(ref) << std::noboolalpha; } } return oss.str(); } std::string ConcurrentCopying::DumpHeapReference(mirror::Object* obj, MemberOffset offset, mirror::Object* ref) { std::ostringstream oss; constexpr const char* kIndent = " "; oss << kIndent << "Invalid reference: ref=" << ref << " referenced from: object=" << obj << " offset= " << offset << '\n'; // Information about `obj`. oss << DumpReferenceInfo(obj, "obj", kIndent) << '\n'; // Information about `ref`. oss << DumpReferenceInfo(ref, "ref", kIndent); return oss.str(); } void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset, mirror::Object* ref) { CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast(heap_->collector_type_); if (is_asserting_to_space_invariant_) { if (ref == nullptr) { // OK. return; } else if (region_space_->HasAddress(ref)) { // Check to-space invariant in region space (moving space). using RegionType = space::RegionSpace::RegionType; space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref); if (type == RegionType::kRegionTypeToSpace) { // OK. return; } else if (type == RegionType::kRegionTypeUnevacFromSpace) { if (!IsMarkedInUnevacFromSpace(ref)) { LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:"; // Remove memory protection from the region space and log debugging information. region_space_->Unprotect(); LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref); Thread::Current()->DumpJavaStack(LOG_STREAM(FATAL_WITHOUT_ABORT)); } CHECK(IsMarkedInUnevacFromSpace(ref)) << ref; } else { // Not OK: either a from-space ref or a reference in an unused region. if (type == RegionType::kRegionTypeFromSpace) { LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:"; } else { LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":"; } // Remove memory protection from the region space and log debugging information. region_space_->Unprotect(); LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref); if (obj != nullptr) { LogFromSpaceRefHolder(obj, offset); LOG(FATAL_WITHOUT_ABORT) << "UNEVAC " << region_space_->IsInUnevacFromSpace(obj) << " " << obj << " " << obj->GetMarkBit(); if (region_space_->HasAddress(obj)) { region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj); } LOG(FATAL_WITHOUT_ABORT) << "CARD " << static_cast( *Runtime::Current()->GetHeap()->GetCardTable()->CardFromAddr( reinterpret_cast(obj))); if (region_space_->HasAddress(obj)) { LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << region_space_bitmap_->Test(obj); } else { accounting::ContinuousSpaceBitmap* mark_bitmap = heap_mark_bitmap_->GetContinuousSpaceBitmap(obj); if (mark_bitmap != nullptr) { LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << mark_bitmap->Test(obj); } else { accounting::LargeObjectBitmap* los_bitmap = heap_mark_bitmap_->GetLargeObjectBitmap(obj); LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << los_bitmap->Test(obj); } } } ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT)); LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:"; region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT)); PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT); MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true); LOG(FATAL) << "Invalid reference " << ref << " referenced from object " << obj << " at offset " << offset; } } else { // Check to-space invariant in non-moving space. AssertToSpaceInvariantInNonMovingSpace(obj, ref); } } } class RootPrinter { public: RootPrinter() { } template ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference* root) REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } template void VisitRoot(mirror::Object** root) REQUIRES_SHARED(Locks::mutator_lock_) { LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root; } template void VisitRoot(mirror::CompressedReference* root) REQUIRES_SHARED(Locks::mutator_lock_) { LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr(); } }; std::string ConcurrentCopying::DumpGcRoot(mirror::Object* ref) { std::ostringstream oss; constexpr const char* kIndent = " "; oss << kIndent << "Invalid GC root: ref=" << ref << '\n'; // Information about `ref`. oss << DumpReferenceInfo(ref, "ref", kIndent); return oss.str(); } void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source, mirror::Object* ref) { CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast(heap_->collector_type_); if (is_asserting_to_space_invariant_) { if (ref == nullptr) { // OK. return; } else if (region_space_->HasAddress(ref)) { // Check to-space invariant in region space (moving space). using RegionType = space::RegionSpace::RegionType; space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref); if (type == RegionType::kRegionTypeToSpace) { // OK. return; } else if (type == RegionType::kRegionTypeUnevacFromSpace) { if (!IsMarkedInUnevacFromSpace(ref)) { LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:"; // Remove memory protection from the region space and log debugging information. region_space_->Unprotect(); LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref); } CHECK(IsMarkedInUnevacFromSpace(ref)) << ref; } else { // Not OK: either a from-space ref or a reference in an unused region. if (type == RegionType::kRegionTypeFromSpace) { LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:"; } else { LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":"; } // Remove memory protection from the region space and log debugging information. region_space_->Unprotect(); LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref); if (gc_root_source == nullptr) { // No info. } else if (gc_root_source->HasArtField()) { ArtField* field = gc_root_source->GetArtField(); LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " " << ArtField::PrettyField(field); RootPrinter root_printer; field->VisitRoots(root_printer); } else if (gc_root_source->HasArtMethod()) { ArtMethod* method = gc_root_source->GetArtMethod(); LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " " << ArtMethod::PrettyMethod(method); RootPrinter root_printer; method->VisitRoots(root_printer, kRuntimePointerSize); } ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT)); LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:"; region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT)); PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT); MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true); LOG(FATAL) << "Invalid reference " << ref; } } else { // Check to-space invariant in non-moving space. AssertToSpaceInvariantInNonMovingSpace(/* obj= */ nullptr, ref); } } } void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) { if (kUseBakerReadBarrier) { LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf() << " holder rb_state=" << obj->GetReadBarrierState(); } else { LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf(); } if (region_space_->IsInFromSpace(obj)) { LOG(INFO) << "holder is in the from-space."; } else if (region_space_->IsInToSpace(obj)) { LOG(INFO) << "holder is in the to-space."; } else if (region_space_->IsInUnevacFromSpace(obj)) { LOG(INFO) << "holder is in the unevac from-space."; if (IsMarkedInUnevacFromSpace(obj)) { LOG(INFO) << "holder is marked in the region space bitmap."; } else { LOG(INFO) << "holder is not marked in the region space bitmap."; } } else { // In a non-moving space. if (immune_spaces_.ContainsObject(obj)) { LOG(INFO) << "holder is in an immune image or the zygote space."; } else { LOG(INFO) << "holder is in a non-immune, non-moving (or main) space."; accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap(); accounting::LargeObjectBitmap* los_bitmap = nullptr; const bool is_los = !mark_bitmap->HasAddress(obj); if (is_los) { DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(obj)) << "obj=" << obj << " LOS bit map covers the entire lower 4GB address range"; los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap(); } if (!is_los && mark_bitmap->Test(obj)) { LOG(INFO) << "holder is marked in the non-moving space mark bit map."; } else if (is_los && los_bitmap->Test(obj)) { LOG(INFO) << "holder is marked in the los bit map."; } else { // If ref is on the allocation stack, then it is considered // mark/alive (but not necessarily on the live stack.) if (IsOnAllocStack(obj)) { LOG(INFO) << "holder is on the alloc stack."; } else { LOG(INFO) << "holder is not marked or on the alloc stack."; } } } } LOG(INFO) << "offset=" << offset.SizeValue(); } bool ConcurrentCopying::IsMarkedInNonMovingSpace(mirror::Object* from_ref) { DCHECK(!region_space_->HasAddress(from_ref)) << "ref=" << from_ref; DCHECK(!immune_spaces_.ContainsObject(from_ref)) << "ref=" << from_ref; if (kUseBakerReadBarrier && from_ref->GetReadBarrierStateAcquire() == ReadBarrier::GrayState()) { return true; } else if (!use_generational_cc_ || done_scanning_.load(std::memory_order_acquire)) { // Read the comment in IsMarkedInUnevacFromSpace() accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap(); accounting::LargeObjectBitmap* los_bitmap = nullptr; const bool is_los = !mark_bitmap->HasAddress(from_ref); if (is_los) { DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(from_ref)) << "ref=" << from_ref << " doesn't belong to non-moving space and large object space doesn't exist"; los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap(); } if (is_los ? los_bitmap->Test(from_ref) : mark_bitmap->Test(from_ref)) { return true; } } return IsOnAllocStack(from_ref); } void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj, mirror::Object* ref) { CHECK(ref != nullptr); CHECK(!region_space_->HasAddress(ref)) << "obj=" << obj << " ref=" << ref; // In a non-moving space. Check that the ref is marked. if (immune_spaces_.ContainsObject(ref)) { // Immune space case. if (kUseBakerReadBarrier) { // Immune object may not be gray if called from the GC. if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) { return; } bool updated_all_immune_objects = updated_all_immune_objects_.load(std::memory_order_seq_cst); CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState()) << "Unmarked immune space ref. obj=" << obj << " rb_state=" << (obj != nullptr ? obj->GetReadBarrierState() : 0U) << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState() << " updated_all_immune_objects=" << updated_all_immune_objects; } } else { // Non-moving space and large-object space (LOS) cases. // If `ref` is on the allocation stack, then it may not be // marked live, but considered marked/alive (but not // necessarily on the live stack). CHECK(IsMarkedInNonMovingSpace(ref)) << "Unmarked ref that's not on the allocation stack." << " obj=" << obj << " ref=" << ref << " rb_state=" << ref->GetReadBarrierState() << " is_marking=" << std::boolalpha << is_marking_ << std::noboolalpha << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha << " done_scanning=" << std::boolalpha << done_scanning_.load(std::memory_order_acquire) << std::noboolalpha << " self=" << Thread::Current(); } } // Used to scan ref fields of an object. template class ConcurrentCopying::RefFieldsVisitor { public: explicit RefFieldsVisitor(ConcurrentCopying* collector, Thread* const thread) : collector_(collector), thread_(thread) { // Cannot have `kNoUnEvac` when Generational CC collection is disabled. DCHECK_IMPLIES(kNoUnEvac, collector_->use_generational_cc_); } void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES_SHARED(Locks::heap_bitmap_lock_) { collector_->Process(obj, offset); } void operator()(ObjPtr klass, ObjPtr ref) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE { CHECK(klass->IsTypeOfReferenceClass()); collector_->DelayReferenceReferent(klass, ref); } void VisitRootIfNonNull(mirror::CompressedReference* root) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference* root) const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) { collector_->MarkRoot(thread_, root); } private: ConcurrentCopying* const collector_; Thread* const thread_; }; template inline void ConcurrentCopying::Scan(mirror::Object* to_ref, size_t obj_size) { // Cannot have `kNoUnEvac` when Generational CC collection is disabled. DCHECK_IMPLIES(kNoUnEvac, use_generational_cc_); if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) { // Avoid all read barriers during visit references to help performance. // Don't do this in transaction mode because we may read the old value of an field which may // trigger read barriers. Thread::Current()->ModifyDebugDisallowReadBarrier(1); } if (obj_size == 0) { obj_size = to_ref->SizeOf(); } bytes_scanned_ += obj_size; DCHECK(!region_space_->IsInFromSpace(to_ref)); DCHECK_EQ(Thread::Current(), thread_running_gc_); RefFieldsVisitor visitor(this, thread_running_gc_); // Disable the read barrier for a performance reason. to_ref->VisitReferences( visitor, visitor); if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) { thread_running_gc_->ModifyDebugDisallowReadBarrier(-1); } } template inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) { // Cannot have `kNoUnEvac` when Generational CC collection is disabled. DCHECK_IMPLIES(kNoUnEvac, use_generational_cc_); DCHECK_EQ(Thread::Current(), thread_running_gc_); mirror::Object* ref = obj->GetFieldObject< mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset); mirror::Object* to_ref = Mark( thread_running_gc_, ref, /*holder=*/ obj, offset); if (to_ref == ref) { return; } // This may fail if the mutator writes to the field at the same time. But it's ok. mirror::Object* expected_ref = ref; mirror::Object* new_ref = to_ref; do { if (expected_ref != obj->GetFieldObject(offset)) { // It was updated by the mutator. break; } // Use release CAS to make sure threads reading the reference see contents of copied objects. } while (!obj->CasFieldObjectWithoutWriteBarrier( offset, expected_ref, new_ref, CASMode::kWeak, std::memory_order_release)); } // Process some roots. inline void ConcurrentCopying::VisitRoots( mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) { Thread* const self = Thread::Current(); for (size_t i = 0; i < count; ++i) { mirror::Object** root = roots[i]; mirror::Object* ref = *root; mirror::Object* to_ref = Mark(self, ref); if (to_ref == ref) { continue; } Atomic* addr = reinterpret_cast*>(root); mirror::Object* expected_ref = ref; mirror::Object* new_ref = to_ref; do { if (expected_ref != addr->load(std::memory_order_relaxed)) { // It was updated by the mutator. break; } } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref)); } } template inline void ConcurrentCopying::MarkRoot(Thread* const self, mirror::CompressedReference* root) { DCHECK(!root->IsNull()); mirror::Object* const ref = root->AsMirrorPtr(); mirror::Object* to_ref = Mark(self, ref); if (to_ref != ref) { auto* addr = reinterpret_cast>*>(root); auto expected_ref = mirror::CompressedReference::FromMirrorPtr(ref); auto new_ref = mirror::CompressedReference::FromMirrorPtr(to_ref); // If the cas fails, then it was updated by the mutator. do { if (ref != addr->load(std::memory_order_relaxed).AsMirrorPtr()) { // It was updated by the mutator. break; } } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref)); } } inline void ConcurrentCopying::VisitRoots( mirror::CompressedReference** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) { Thread* const self = Thread::Current(); for (size_t i = 0; i < count; ++i) { mirror::CompressedReference* const root = roots[i]; if (!root->IsNull()) { // kGrayImmuneObject is true because this is used for the thread flip. MarkRoot(self, root); } } } // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC. class ConcurrentCopying::ScopedGcGraysImmuneObjects { public: explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector) : collector_(collector), enabled_(false) { if (kUseBakerReadBarrier && collector_->thread_running_gc_ == Thread::Current() && !collector_->gc_grays_immune_objects_) { collector_->gc_grays_immune_objects_ = true; enabled_ = true; } } ~ScopedGcGraysImmuneObjects() { if (kUseBakerReadBarrier && collector_->thread_running_gc_ == Thread::Current() && enabled_) { DCHECK(collector_->gc_grays_immune_objects_); collector_->gc_grays_immune_objects_ = false; } } private: ConcurrentCopying* const collector_; bool enabled_; }; // Fill the given memory block with a fake object. Used to fill in a // copy of objects that was lost in race. void ConcurrentCopying::FillWithFakeObject(Thread* const self, mirror::Object* fake_obj, size_t byte_size) { // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read // barriers here because we need the updated reference to the int array class, etc. Temporary set // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace(). ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this); CHECK_ALIGNED(byte_size, kObjectAlignment); memset(fake_obj, 0, byte_size); // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled. // Explicitly mark to make sure to get an object in the to-space. mirror::Class* int_array_class = down_cast( Mark(self, GetClassRoot().Ptr())); CHECK(int_array_class != nullptr); if (ReadBarrier::kEnableToSpaceInvariantChecks) { AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class); } size_t component_size = int_array_class->GetComponentSize(); CHECK_EQ(component_size, sizeof(int32_t)); size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue(); if (data_offset > byte_size) { // An int array is too big. Use java.lang.Object. CHECK(java_lang_Object_ != nullptr); if (ReadBarrier::kEnableToSpaceInvariantChecks) { AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_); } CHECK_EQ(byte_size, java_lang_Object_->GetObjectSize()); fake_obj->SetClass(java_lang_Object_); CHECK_EQ(byte_size, (fake_obj->SizeOf())); } else { // Use an int array. fake_obj->SetClass(int_array_class); CHECK(fake_obj->IsArrayInstance()); int32_t length = (byte_size - data_offset) / component_size; ObjPtr fake_arr = fake_obj->AsArray(); fake_arr->SetLength(length); CHECK_EQ(fake_arr->GetLength(), length) << "byte_size=" << byte_size << " length=" << length << " component_size=" << component_size << " data_offset=" << data_offset; CHECK_EQ(byte_size, (fake_obj->SizeOf())) << "byte_size=" << byte_size << " length=" << length << " component_size=" << component_size << " data_offset=" << data_offset; } } // Reuse the memory blocks that were copy of objects that were lost in race. mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(Thread* const self, size_t alloc_size) { // Try to reuse the blocks that were unused due to CAS failures. CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment); size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment); size_t byte_size; uint8_t* addr; { MutexLock mu(self, skipped_blocks_lock_); auto it = skipped_blocks_map_.lower_bound(alloc_size); if (it == skipped_blocks_map_.end()) { // Not found. return nullptr; } byte_size = it->first; CHECK_GE(byte_size, alloc_size); if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) { // If remainder would be too small for a fake object, retry with a larger request size. it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size); if (it == skipped_blocks_map_.end()) { // Not found. return nullptr; } CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment); CHECK_GE(it->first - alloc_size, min_object_size) << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size; } // Found a block. CHECK(it != skipped_blocks_map_.end()); byte_size = it->first; addr = it->second; CHECK_GE(byte_size, alloc_size); CHECK(region_space_->IsInToSpace(reinterpret_cast(addr))); CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment); if (kVerboseMode) { LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast(addr) << ", " << byte_size; } skipped_blocks_map_.erase(it); } memset(addr, 0, byte_size); if (byte_size > alloc_size) { // Return the remainder to the map. CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment); CHECK_GE(byte_size - alloc_size, min_object_size); // FillWithFakeObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock // violation and possible deadlock. The deadlock case is a recursive case: // FillWithFakeObject -> Mark(IntArray.class) -> Copy -> AllocateInSkippedBlock. FillWithFakeObject(self, reinterpret_cast(addr + alloc_size), byte_size - alloc_size); CHECK(region_space_->IsInToSpace(reinterpret_cast(addr + alloc_size))); { MutexLock mu(self, skipped_blocks_lock_); skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size)); } } return reinterpret_cast(addr); } mirror::Object* ConcurrentCopying::Copy(Thread* const self, mirror::Object* from_ref, mirror::Object* holder, MemberOffset offset) { DCHECK(region_space_->IsInFromSpace(from_ref)); // If the class pointer is null, the object is invalid. This could occur for a dangling pointer // from a previous GC that is either inside or outside the allocated region. mirror::Class* klass = from_ref->GetClass(); if (UNLIKELY(klass == nullptr)) { // Remove memory protection from the region space and log debugging information. region_space_->Unprotect(); heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal= */ true); } // There must not be a read barrier to avoid nested RB that might violate the to-space invariant. // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta // objects, but it's ok and necessary. size_t obj_size = from_ref->SizeOf(); size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment); // Large objects are never evacuated. CHECK_LE(region_space_alloc_size, space::RegionSpace::kRegionSize); size_t region_space_bytes_allocated = 0U; size_t non_moving_space_bytes_allocated = 0U; size_t bytes_allocated = 0U; size_t unused_size; bool fall_back_to_non_moving = false; mirror::Object* to_ref = region_space_->AllocNonvirtual( region_space_alloc_size, ®ion_space_bytes_allocated, nullptr, &unused_size); bytes_allocated = region_space_bytes_allocated; if (LIKELY(to_ref != nullptr)) { DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated); } else { // Failed to allocate in the region space. Try the skipped blocks. to_ref = AllocateInSkippedBlock(self, region_space_alloc_size); if (to_ref != nullptr) { // Succeeded to allocate in a skipped block. if (heap_->use_tlab_) { // This is necessary for the tlab case as it's not accounted in the space. region_space_->RecordAlloc(to_ref); } bytes_allocated = region_space_alloc_size; heap_->num_bytes_allocated_.fetch_sub(bytes_allocated, std::memory_order_relaxed); to_space_bytes_skipped_.fetch_sub(bytes_allocated, std::memory_order_relaxed); to_space_objects_skipped_.fetch_sub(1, std::memory_order_relaxed); } else { // Fall back to the non-moving space. fall_back_to_non_moving = true; if (kVerboseMode) { LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes=" << to_space_bytes_skipped_.load(std::memory_order_relaxed) << " skipped_objects=" << to_space_objects_skipped_.load(std::memory_order_relaxed); } to_ref = heap_->non_moving_space_->Alloc( self, obj_size, &non_moving_space_bytes_allocated, nullptr, &unused_size); if (UNLIKELY(to_ref == nullptr)) { LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a " << obj_size << " byte object in region type " << region_space_->GetRegionType(from_ref); LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf(); } bytes_allocated = non_moving_space_bytes_allocated; } } DCHECK(to_ref != nullptr); // Copy the object excluding the lock word since that is handled in the loop. to_ref->SetClass(klass); const size_t kObjectHeaderSize = sizeof(mirror::Object); DCHECK_GE(obj_size, kObjectHeaderSize); static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference) + sizeof(LockWord), "Object header size does not match"); // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the // object in the from space is immutable other than the lock word. b/31423258 memcpy(reinterpret_cast(to_ref) + kObjectHeaderSize, reinterpret_cast(from_ref) + kObjectHeaderSize, obj_size - kObjectHeaderSize); // Attempt to install the forward pointer. This is in a loop as the // lock word atomic write can fail. while (true) { LockWord old_lock_word = from_ref->GetLockWord(false); if (old_lock_word.GetState() == LockWord::kForwardingAddress) { // Lost the race. Another thread (either GC or mutator) stored // the forwarding pointer first. Make the lost copy (to_ref) // look like a valid but dead (fake) object and keep it for // future reuse. FillWithFakeObject(self, to_ref, bytes_allocated); if (!fall_back_to_non_moving) { DCHECK(region_space_->IsInToSpace(to_ref)); // Record the lost copy for later reuse. heap_->num_bytes_allocated_.fetch_add(bytes_allocated, std::memory_order_relaxed); to_space_bytes_skipped_.fetch_add(bytes_allocated, std::memory_order_relaxed); to_space_objects_skipped_.fetch_add(1, std::memory_order_relaxed); MutexLock mu(self, skipped_blocks_lock_); skipped_blocks_map_.insert(std::make_pair(bytes_allocated, reinterpret_cast(to_ref))); } else { DCHECK(heap_->non_moving_space_->HasAddress(to_ref)); DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated); // Free the non-moving-space chunk. heap_->non_moving_space_->Free(self, to_ref); } // Get the winner's forward ptr. mirror::Object* lost_fwd_ptr = to_ref; to_ref = reinterpret_cast(old_lock_word.ForwardingAddress()); CHECK(to_ref != nullptr); CHECK_NE(to_ref, lost_fwd_ptr); CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref)) << "to_ref=" << to_ref << " " << heap_->DumpSpaces(); CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress); return to_ref; } // Copy the old lock word over since we did not copy it yet. to_ref->SetLockWord(old_lock_word, false); // Set the gray ptr. if (kUseBakerReadBarrier) { to_ref->SetReadBarrierState(ReadBarrier::GrayState()); } LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast(to_ref)); // Try to atomically write the fwd ptr. Make sure that the copied object is visible to any // readers of the fwd pointer. bool success = from_ref->CasLockWord(old_lock_word, new_lock_word, CASMode::kWeak, std::memory_order_release); if (LIKELY(success)) { // The CAS succeeded. DCHECK(thread_running_gc_ != nullptr); if (LIKELY(self == thread_running_gc_)) { objects_moved_gc_thread_ += 1; bytes_moved_gc_thread_ += bytes_allocated; } else { objects_moved_.fetch_add(1, std::memory_order_relaxed); bytes_moved_.fetch_add(bytes_allocated, std::memory_order_relaxed); } if (LIKELY(!fall_back_to_non_moving)) { DCHECK(region_space_->IsInToSpace(to_ref)); } else { DCHECK(heap_->non_moving_space_->HasAddress(to_ref)); DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated); if (!use_generational_cc_ || !young_gen_) { // Mark it in the live bitmap. CHECK(!heap_->non_moving_space_->GetLiveBitmap()->AtomicTestAndSet(to_ref)); } if (!kUseBakerReadBarrier) { // Mark it in the mark bitmap. CHECK(!heap_->non_moving_space_->GetMarkBitmap()->AtomicTestAndSet(to_ref)); } } if (kUseBakerReadBarrier) { DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState()); } DCHECK(GetFwdPtr(from_ref) == to_ref); CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress); // Make sure that anyone who sees to_ref also sees both the object contents and the // fwd pointer. QuasiAtomic::ThreadFenceForConstructor(); PushOntoMarkStack(self, to_ref); return to_ref; } else { // The CAS failed. It may have lost the race or may have failed // due to monitor/hashcode ops. Either way, retry. } } } mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) { DCHECK(from_ref != nullptr); space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref); if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) { // It's already marked. return from_ref; } mirror::Object* to_ref; if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) { to_ref = GetFwdPtr(from_ref); DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref)) << "from_ref=" << from_ref << " to_ref=" << to_ref; } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) { if (IsMarkedInUnevacFromSpace(from_ref)) { to_ref = from_ref; } else { to_ref = nullptr; } } else { // At this point, `from_ref` should not be in the region space // (i.e. within an "unused" region). DCHECK(!region_space_->HasAddress(from_ref)) << from_ref; // from_ref is in a non-moving space. if (immune_spaces_.ContainsObject(from_ref)) { // An immune object is alive. to_ref = from_ref; } else { // Non-immune non-moving space. Use the mark bitmap. if (IsMarkedInNonMovingSpace(from_ref)) { // Already marked. to_ref = from_ref; } else { to_ref = nullptr; } } } return to_ref; } bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) { // TODO: Explain why this is here. What release operation does it pair with? std::atomic_thread_fence(std::memory_order_acquire); accounting::ObjectStack* alloc_stack = GetAllocationStack(); return alloc_stack->Contains(ref); } mirror::Object* ConcurrentCopying::MarkNonMoving(Thread* const self, mirror::Object* ref, mirror::Object* holder, MemberOffset offset) { // ref is in a non-moving space (from_ref == to_ref). DCHECK(!region_space_->HasAddress(ref)) << ref; DCHECK(!immune_spaces_.ContainsObject(ref)); // Use the mark bitmap. accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap(); accounting::LargeObjectBitmap* los_bitmap = nullptr; const bool is_los = !mark_bitmap->HasAddress(ref); if (is_los) { if (!IsAligned(ref)) { // Ref is a large object that is not aligned, it must be heap // corruption. Remove memory protection and dump data before // AtomicSetReadBarrierState since it will fault if the address is not // valid. region_space_->Unprotect(); heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal= */ true); } DCHECK(heap_->GetLargeObjectsSpace()) << "ref=" << ref << " doesn't belong to non-moving space and large object space doesn't exist"; los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap(); DCHECK(los_bitmap->HasAddress(ref)); } if (use_generational_cc_) { // The sticky-bit CC collector is only compatible with Baker-style read barriers. DCHECK(kUseBakerReadBarrier); // Not done scanning, use AtomicSetReadBarrierPointer. if (!done_scanning_.load(std::memory_order_acquire)) { // Since the mark bitmap is still filled in from last GC, we can not use that or else the // mutator may see references to the from space. Instead, use the Baker pointer itself as // the mark bit. // // We need to avoid marking objects that are on allocation stack as that will lead to a // situation (after this GC cycle is finished) where some object(s) are on both allocation // stack and live bitmap. This leads to visiting the same object(s) twice during a heapdump // (b/117426281). if (!IsOnAllocStack(ref) && ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState())) { // TODO: We don't actually need to scan this object later, we just need to clear the gray // bit. // We don't need to mark newly allocated objects (those in allocation stack) as they can // only point to to-space objects. Also, they are considered live till the next GC cycle. PushOntoMarkStack(self, ref); } return ref; } } if (!is_los && mark_bitmap->Test(ref)) { // Already marked. } else if (is_los && los_bitmap->Test(ref)) { // Already marked in LOS. } else if (IsOnAllocStack(ref)) { // If it's on the allocation stack, it's considered marked. Keep it white (non-gray). // Objects on the allocation stack need not be marked. if (!is_los) { DCHECK(!mark_bitmap->Test(ref)); } else { DCHECK(!los_bitmap->Test(ref)); } if (kUseBakerReadBarrier) { DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState()); } } else { // Not marked nor on the allocation stack. Try to mark it. // This may or may not succeed, which is ok. bool success = false; if (kUseBakerReadBarrier) { success = ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState()); } else { success = is_los ? !los_bitmap->AtomicTestAndSet(ref) : !mark_bitmap->AtomicTestAndSet(ref); } if (success) { if (kUseBakerReadBarrier) { DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState()); } PushOntoMarkStack(self, ref); } } return ref; } void ConcurrentCopying::FinishPhase() { Thread* const self = Thread::Current(); { MutexLock mu(self, mark_stack_lock_); CHECK(revoked_mark_stacks_.empty()); CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize); } // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false // positives. if (!kVerifyNoMissingCardMarks && !use_generational_cc_) { TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings()); // We do not currently use the region space cards at all, madvise them away to save ram. heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit()); } else if (use_generational_cc_ && !young_gen_) { region_space_inter_region_bitmap_.Clear(); non_moving_space_inter_region_bitmap_.Clear(); } { MutexLock mu(self, skipped_blocks_lock_); skipped_blocks_map_.clear(); } { ReaderMutexLock mu(self, *Locks::mutator_lock_); { WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_); heap_->ClearMarkedObjects(); } if (kUseBakerReadBarrier && kFilterModUnionCards) { TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings()); ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_); for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) { DCHECK(space->IsImageSpace() || space->IsZygoteSpace()); accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space); // Filter out cards that don't need to be set. if (table != nullptr) { table->FilterCards(); } } } if (kUseBakerReadBarrier) { TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings()); DCHECK(rb_mark_bit_stack_ != nullptr); const auto* limit = rb_mark_bit_stack_->End(); for (StackReference* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) { CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0)) << "rb_mark_bit_stack_->Begin()" << rb_mark_bit_stack_->Begin() << '\n' << "rb_mark_bit_stack_->End()" << rb_mark_bit_stack_->End() << '\n' << "rb_mark_bit_stack_->IsFull()" << std::boolalpha << rb_mark_bit_stack_->IsFull() << std::noboolalpha << '\n' << DumpReferenceInfo(it->AsMirrorPtr(), "*it"); } rb_mark_bit_stack_->Reset(); } } if (measure_read_barrier_slow_path_) { MutexLock mu(self, rb_slow_path_histogram_lock_); rb_slow_path_time_histogram_.AdjustAndAddValue( rb_slow_path_ns_.load(std::memory_order_relaxed)); rb_slow_path_count_total_ += rb_slow_path_count_.load(std::memory_order_relaxed); rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.load(std::memory_order_relaxed); } } bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference* field, bool do_atomic_update) { mirror::Object* from_ref = field->AsMirrorPtr(); if (from_ref == nullptr) { return true; } mirror::Object* to_ref = IsMarked(from_ref); if (to_ref == nullptr) { return false; } if (from_ref != to_ref) { if (do_atomic_update) { do { if (field->AsMirrorPtr() != from_ref) { // Concurrently overwritten by a mutator. break; } } while (!field->CasWeakRelaxed(from_ref, to_ref)); } else { field->Assign(to_ref); } } return true; } mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) { return Mark(Thread::Current(), from_ref); } void ConcurrentCopying::DelayReferenceReferent(ObjPtr klass, ObjPtr reference) { heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this); } void ConcurrentCopying::ProcessReferences(Thread* self) { // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps. WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); GetHeap()->GetReferenceProcessor()->ProcessReferences(self, GetTimings()); } void ConcurrentCopying::RevokeAllThreadLocalBuffers() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); region_space_->RevokeAllThreadLocalBuffers(); } mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(Thread* const self, mirror::Object* from_ref) { if (self != thread_running_gc_) { rb_slow_path_count_.fetch_add(1u, std::memory_order_relaxed); } else { rb_slow_path_count_gc_.fetch_add(1u, std::memory_order_relaxed); } ScopedTrace tr(__FUNCTION__); const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u; mirror::Object* ret = Mark(self, from_ref); if (measure_read_barrier_slow_path_) { rb_slow_path_ns_.fetch_add(NanoTime() - start_time, std::memory_order_relaxed); } return ret; } void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) { GarbageCollector::DumpPerformanceInfo(os); size_t num_gc_cycles = GetCumulativeTimings().GetIterations(); MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_); if (rb_slow_path_time_histogram_.SampleSize() > 0) { Histogram::CumulativeData cumulative_data; rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data); rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data); } if (rb_slow_path_count_total_ > 0) { os << "Slow path count " << rb_slow_path_count_total_ << "\n"; } if (rb_slow_path_count_gc_total_ > 0) { os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n"; } os << "Average " << (young_gen_ ? "minor" : "major") << " GC reclaim bytes ratio " << (reclaimed_bytes_ratio_sum_ / num_gc_cycles) << " over " << num_gc_cycles << " GC cycles\n"; os << "Average " << (young_gen_ ? "minor" : "major") << " GC copied live bytes ratio " << (copied_live_bytes_ratio_sum_ / gc_count_) << " over " << gc_count_ << " " << (young_gen_ ? "minor" : "major") << " GCs\n"; os << "Cumulative bytes moved " << cumulative_bytes_moved_ << "\n"; os << "Cumulative objects moved " << cumulative_objects_moved_ << "\n"; os << "Peak regions allocated " << region_space_->GetMaxPeakNumNonFreeRegions() << " (" << PrettySize(region_space_->GetMaxPeakNumNonFreeRegions() * space::RegionSpace::kRegionSize) << ") / " << region_space_->GetNumRegions() / 2 << " (" << PrettySize(region_space_->GetNumRegions() * space::RegionSpace::kRegionSize / 2) << ")\n"; if (!young_gen_) { os << "Total madvise time " << PrettyDuration(region_space_->GetMadviseTime()) << "\n"; } } } // namespace collector } // namespace gc } // namespace art