3685 lines
159 KiB
C++
3685 lines
159 KiB
C++
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "image_writer.h"
|
|
|
|
#include <lz4.h>
|
|
#include <lz4hc.h>
|
|
#include <sys/stat.h>
|
|
#include <zlib.h>
|
|
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
#include "art_field-inl.h"
|
|
#include "art_method-inl.h"
|
|
#include "base/callee_save_type.h"
|
|
#include "base/enums.h"
|
|
#include "base/globals.h"
|
|
#include "base/logging.h" // For VLOG.
|
|
#include "base/stl_util.h"
|
|
#include "base/unix_file/fd_file.h"
|
|
#include "class_linker-inl.h"
|
|
#include "class_root-inl.h"
|
|
#include "compiled_method.h"
|
|
#include "dex/dex_file-inl.h"
|
|
#include "dex/dex_file_types.h"
|
|
#include "driver/compiler_options.h"
|
|
#include "elf/elf_utils.h"
|
|
#include "elf_file.h"
|
|
#include "entrypoints/entrypoint_utils-inl.h"
|
|
#include "gc/accounting/card_table-inl.h"
|
|
#include "gc/accounting/heap_bitmap.h"
|
|
#include "gc/accounting/space_bitmap-inl.h"
|
|
#include "gc/collector/concurrent_copying.h"
|
|
#include "gc/heap-visit-objects-inl.h"
|
|
#include "gc/heap.h"
|
|
#include "gc/space/large_object_space.h"
|
|
#include "gc/space/region_space.h"
|
|
#include "gc/space/space-inl.h"
|
|
#include "gc/verification.h"
|
|
#include "handle_scope-inl.h"
|
|
#include "image-inl.h"
|
|
#include "imt_conflict_table.h"
|
|
#include "indirect_reference_table-inl.h"
|
|
#include "intern_table-inl.h"
|
|
#include "jni/java_vm_ext-inl.h"
|
|
#include "jni/jni_internal.h"
|
|
#include "linear_alloc.h"
|
|
#include "lock_word.h"
|
|
#include "mirror/array-inl.h"
|
|
#include "mirror/class-inl.h"
|
|
#include "mirror/class_ext-inl.h"
|
|
#include "mirror/class_loader.h"
|
|
#include "mirror/dex_cache-inl.h"
|
|
#include "mirror/dex_cache.h"
|
|
#include "mirror/executable.h"
|
|
#include "mirror/method.h"
|
|
#include "mirror/object-inl.h"
|
|
#include "mirror/object-refvisitor-inl.h"
|
|
#include "mirror/object_array-alloc-inl.h"
|
|
#include "mirror/object_array-inl.h"
|
|
#include "mirror/string-inl.h"
|
|
#include "mirror/var_handle.h"
|
|
#include "nterp_helpers.h"
|
|
#include "oat.h"
|
|
#include "oat_file.h"
|
|
#include "oat_file_manager.h"
|
|
#include "optimizing/intrinsic_objects.h"
|
|
#include "runtime.h"
|
|
#include "scoped_thread_state_change-inl.h"
|
|
#include "subtype_check.h"
|
|
#include "well_known_classes.h"
|
|
|
|
using ::art::mirror::Class;
|
|
using ::art::mirror::DexCache;
|
|
using ::art::mirror::Object;
|
|
using ::art::mirror::ObjectArray;
|
|
using ::art::mirror::String;
|
|
|
|
namespace art {
|
|
namespace linker {
|
|
|
|
// The actual value of `kImageClassTableMinLoadFactor` is irrelevant because image class tables
|
|
// are never resized, but we still need to pass a reasonable value to the constructor.
|
|
constexpr double kImageClassTableMinLoadFactor = 0.5;
|
|
// We use `kImageClassTableMaxLoadFactor` to determine the buffer size for image class tables
|
|
// to make them full. We never insert additional elements to them, so we do not want to waste
|
|
// extra memory. And unlike runtime class tables, we do not want this to depend on runtime
|
|
// properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode).
|
|
constexpr double kImageClassTableMaxLoadFactor = 0.7;
|
|
|
|
// The actual value of `kImageInternTableMinLoadFactor` is irrelevant because image intern tables
|
|
// are never resized, but we still need to pass a reasonable value to the constructor.
|
|
constexpr double kImageInternTableMinLoadFactor = 0.5;
|
|
// We use `kImageInternTableMaxLoadFactor` to determine the buffer size for image intern tables
|
|
// to make them full. We never insert additional elements to them, so we do not want to waste
|
|
// extra memory. And unlike runtime intern tables, we do not want this to depend on runtime
|
|
// properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode).
|
|
constexpr double kImageInternTableMaxLoadFactor = 0.7;
|
|
|
|
static ArrayRef<const uint8_t> MaybeCompressData(ArrayRef<const uint8_t> source,
|
|
ImageHeader::StorageMode image_storage_mode,
|
|
/*out*/ dchecked_vector<uint8_t>* storage) {
|
|
const uint64_t compress_start_time = NanoTime();
|
|
|
|
switch (image_storage_mode) {
|
|
case ImageHeader::kStorageModeLZ4: {
|
|
storage->resize(LZ4_compressBound(source.size()));
|
|
size_t data_size = LZ4_compress_default(
|
|
reinterpret_cast<char*>(const_cast<uint8_t*>(source.data())),
|
|
reinterpret_cast<char*>(storage->data()),
|
|
source.size(),
|
|
storage->size());
|
|
storage->resize(data_size);
|
|
break;
|
|
}
|
|
case ImageHeader::kStorageModeLZ4HC: {
|
|
// Bound is same as non HC.
|
|
storage->resize(LZ4_compressBound(source.size()));
|
|
size_t data_size = LZ4_compress_HC(
|
|
reinterpret_cast<const char*>(const_cast<uint8_t*>(source.data())),
|
|
reinterpret_cast<char*>(storage->data()),
|
|
source.size(),
|
|
storage->size(),
|
|
LZ4HC_CLEVEL_MAX);
|
|
storage->resize(data_size);
|
|
break;
|
|
}
|
|
case ImageHeader::kStorageModeUncompressed: {
|
|
return source;
|
|
}
|
|
default: {
|
|
LOG(FATAL) << "Unsupported";
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
DCHECK(image_storage_mode == ImageHeader::kStorageModeLZ4 ||
|
|
image_storage_mode == ImageHeader::kStorageModeLZ4HC);
|
|
VLOG(compiler) << "Compressed from " << source.size() << " to " << storage->size() << " in "
|
|
<< PrettyDuration(NanoTime() - compress_start_time);
|
|
if (kIsDebugBuild) {
|
|
dchecked_vector<uint8_t> decompressed(source.size());
|
|
const size_t decompressed_size = LZ4_decompress_safe(
|
|
reinterpret_cast<char*>(storage->data()),
|
|
reinterpret_cast<char*>(decompressed.data()),
|
|
storage->size(),
|
|
decompressed.size());
|
|
CHECK_EQ(decompressed_size, decompressed.size());
|
|
CHECK_EQ(memcmp(source.data(), decompressed.data(), source.size()), 0) << image_storage_mode;
|
|
}
|
|
return ArrayRef<const uint8_t>(*storage);
|
|
}
|
|
|
|
// Separate objects into multiple bins to optimize dirty memory use.
|
|
static constexpr bool kBinObjects = true;
|
|
|
|
static ObjPtr<mirror::ObjectArray<mirror::Object>> AllocateBootImageLiveObjects(
|
|
Thread* self, Runtime* runtime) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ClassLinker* class_linker = runtime->GetClassLinker();
|
|
// The objects used for the Integer.valueOf() intrinsic must remain live even if references
|
|
// to them are removed using reflection. Image roots are not accessible through reflection,
|
|
// so the array we construct here shall keep them alive.
|
|
StackHandleScope<1> hs(self);
|
|
Handle<mirror::ObjectArray<mirror::Object>> integer_cache =
|
|
hs.NewHandle(IntrinsicObjects::LookupIntegerCache(self, class_linker));
|
|
size_t live_objects_size =
|
|
enum_cast<size_t>(ImageHeader::kIntrinsicObjectsStart) +
|
|
((integer_cache != nullptr) ? (/* cache */ 1u + integer_cache->GetLength()) : 0u);
|
|
ObjPtr<mirror::ObjectArray<mirror::Object>> live_objects =
|
|
mirror::ObjectArray<mirror::Object>::Alloc(
|
|
self, GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker), live_objects_size);
|
|
if (live_objects == nullptr) {
|
|
return nullptr;
|
|
}
|
|
int32_t index = 0u;
|
|
auto set_entry = [&](ImageHeader::BootImageLiveObjects entry,
|
|
ObjPtr<mirror::Object> value) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK_EQ(index, enum_cast<int32_t>(entry));
|
|
live_objects->Set</*kTransacrionActive=*/ false>(index, value);
|
|
++index;
|
|
};
|
|
set_entry(ImageHeader::kOomeWhenThrowingException,
|
|
runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
|
|
set_entry(ImageHeader::kOomeWhenThrowingOome,
|
|
runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
|
|
set_entry(ImageHeader::kOomeWhenHandlingStackOverflow,
|
|
runtime->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
|
|
set_entry(ImageHeader::kNoClassDefFoundError, runtime->GetPreAllocatedNoClassDefFoundError());
|
|
set_entry(ImageHeader::kClearedJniWeakSentinel, runtime->GetSentinel().Read());
|
|
|
|
DCHECK_EQ(index, enum_cast<int32_t>(ImageHeader::kIntrinsicObjectsStart));
|
|
if (integer_cache != nullptr) {
|
|
live_objects->Set(index++, integer_cache.Get());
|
|
for (int32_t i = 0, length = integer_cache->GetLength(); i != length; ++i) {
|
|
live_objects->Set(index++, integer_cache->Get(i));
|
|
}
|
|
}
|
|
CHECK_EQ(index, live_objects->GetLength());
|
|
|
|
if (kIsDebugBuild && integer_cache != nullptr) {
|
|
CHECK_EQ(integer_cache.Get(), IntrinsicObjects::GetIntegerValueOfCache(live_objects));
|
|
for (int32_t i = 0, len = integer_cache->GetLength(); i != len; ++i) {
|
|
CHECK_EQ(integer_cache->GetWithoutChecks(i),
|
|
IntrinsicObjects::GetIntegerValueOfObject(live_objects, i));
|
|
}
|
|
}
|
|
return live_objects;
|
|
}
|
|
|
|
template <typename MirrorType>
|
|
ObjPtr<MirrorType> ImageWriter::DecodeGlobalWithoutRB(JavaVMExt* vm, jobject obj) {
|
|
DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(obj), kGlobal);
|
|
return ObjPtr<MirrorType>::DownCast(vm->globals_.Get<kWithoutReadBarrier>(obj));
|
|
}
|
|
|
|
template <typename MirrorType>
|
|
ObjPtr<MirrorType> ImageWriter::DecodeWeakGlobalWithoutRB(
|
|
JavaVMExt* vm, Thread* self, jobject obj) {
|
|
DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(obj), kWeakGlobal);
|
|
DCHECK(vm->MayAccessWeakGlobals(self));
|
|
return ObjPtr<MirrorType>::DownCast(vm->weak_globals_.Get<kWithoutReadBarrier>(obj));
|
|
}
|
|
|
|
ObjPtr<mirror::ClassLoader> ImageWriter::GetAppClassLoader() const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return compiler_options_.IsAppImage()
|
|
? ObjPtr<mirror::ClassLoader>::DownCast(Thread::Current()->DecodeJObject(app_class_loader_))
|
|
: nullptr;
|
|
}
|
|
|
|
bool ImageWriter::IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const {
|
|
// For boot image, we keep all dex caches.
|
|
if (compiler_options_.IsBootImage()) {
|
|
return true;
|
|
}
|
|
// Dex caches already in the boot image do not belong to the image being written.
|
|
if (IsInBootImage(dex_cache.Ptr())) {
|
|
return false;
|
|
}
|
|
// Dex caches for the boot class path components that are not part of the boot image
|
|
// cannot be garbage collected in PrepareImageAddressSpace() but we do not want to
|
|
// include them in the app image.
|
|
if (!ContainsElement(compiler_options_.GetDexFilesForOatFile(), dex_cache->GetDexFile())) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(obj != nullptr);
|
|
Class* klass = obj->GetClass();
|
|
if (klass == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_DexFile)) {
|
|
ArtField* field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
|
|
// Null out the cookie to enable determinism. b/34090128
|
|
field->SetObject</*kTransactionActive*/false>(obj, nullptr);
|
|
}
|
|
};
|
|
Runtime::Current()->GetHeap()->VisitObjects(visitor);
|
|
}
|
|
|
|
bool ImageWriter::PrepareImageAddressSpace(TimingLogger* timings) {
|
|
target_ptr_size_ = InstructionSetPointerSize(compiler_options_.GetInstructionSet());
|
|
|
|
Thread* const self = Thread::Current();
|
|
|
|
gc::Heap* const heap = Runtime::Current()->GetHeap();
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
{
|
|
TimingLogger::ScopedTiming t("PruneNonImageClasses", timings);
|
|
PruneNonImageClasses(); // Remove junk
|
|
}
|
|
|
|
if (UNLIKELY(!CreateImageRoots())) {
|
|
self->AssertPendingOOMException();
|
|
self->ClearException();
|
|
return false;
|
|
}
|
|
|
|
if (compiler_options_.IsAppImage()) {
|
|
TimingLogger::ScopedTiming t("ClearDexFileCookies", timings);
|
|
// Clear dex file cookies for app images to enable app image determinism. This is required
|
|
// since the cookie field contains long pointers to DexFiles which are not deterministic.
|
|
// b/34090128
|
|
ClearDexFileCookies();
|
|
}
|
|
}
|
|
|
|
{
|
|
TimingLogger::ScopedTiming t("CollectGarbage", timings);
|
|
heap->CollectGarbage(/* clear_soft_references */ false); // Remove garbage.
|
|
}
|
|
|
|
if (kIsDebugBuild) {
|
|
ScopedObjectAccess soa(self);
|
|
CheckNonImageClassesRemoved();
|
|
}
|
|
|
|
// From this point on, there should be no GC, so we should not use unnecessary read barriers.
|
|
ScopedDebugDisallowReadBarriers sddrb(self);
|
|
|
|
{
|
|
// All remaining weak interns are referenced. Promote them to strong interns. Whether a
|
|
// string was strongly or weakly interned, we shall make it strongly interned in the image.
|
|
TimingLogger::ScopedTiming t("PromoteInterns", timings);
|
|
ScopedObjectAccess soa(self);
|
|
PromoteWeakInternsToStrong(self);
|
|
}
|
|
|
|
{
|
|
TimingLogger::ScopedTiming t("CalculateNewObjectOffsets", timings);
|
|
ScopedObjectAccess soa(self);
|
|
CalculateNewObjectOffsets();
|
|
}
|
|
|
|
// This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
|
|
// bin size sums being calculated.
|
|
TimingLogger::ScopedTiming t("AllocMemory", timings);
|
|
return AllocMemory();
|
|
}
|
|
|
|
void ImageWriter::CopyMetadata() {
|
|
DCHECK(compiler_options_.IsAppImage());
|
|
CHECK_EQ(image_infos_.size(), 1u);
|
|
|
|
const ImageInfo& image_info = image_infos_.back();
|
|
dchecked_vector<ImageSection> image_sections = image_info.CreateImageSections().second;
|
|
|
|
auto* sfo_section_base = reinterpret_cast<AppImageReferenceOffsetInfo*>(
|
|
image_info.image_.Begin() +
|
|
image_sections[ImageHeader::kSectionStringReferenceOffsets].Offset());
|
|
|
|
std::copy(image_info.string_reference_offsets_.begin(),
|
|
image_info.string_reference_offsets_.end(),
|
|
sfo_section_base);
|
|
}
|
|
|
|
// NO_THREAD_SAFETY_ANALYSIS: Avoid locking the `Locks::intern_table_lock_` while single-threaded.
|
|
bool ImageWriter::IsStronglyInternedString(ObjPtr<mirror::String> str) NO_THREAD_SAFETY_ANALYSIS {
|
|
uint32_t hash = static_cast<uint32_t>(str->GetStoredHashCode());
|
|
if (hash == 0u && str->ComputeHashCode() != 0) {
|
|
// A string with uninitialized hash code cannot be interned.
|
|
return false;
|
|
}
|
|
InternTable* intern_table = Runtime::Current()->GetInternTable();
|
|
for (InternTable::Table::InternalTable& table : intern_table->strong_interns_.tables_) {
|
|
auto it = table.set_.FindWithHash(GcRoot<mirror::String>(str), hash);
|
|
if (it != table.set_.end()) {
|
|
return it->Read<kWithoutReadBarrier>() == str;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ImageWriter::IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const {
|
|
return referred_obj != nullptr &&
|
|
!IsInBootImage(referred_obj.Ptr()) &&
|
|
referred_obj->IsString() &&
|
|
IsStronglyInternedString(referred_obj->AsString());
|
|
}
|
|
|
|
// Helper class that erases the image file if it isn't properly flushed and closed.
|
|
class ImageWriter::ImageFileGuard {
|
|
public:
|
|
ImageFileGuard() noexcept = default;
|
|
ImageFileGuard(ImageFileGuard&& other) noexcept = default;
|
|
ImageFileGuard& operator=(ImageFileGuard&& other) noexcept = default;
|
|
|
|
~ImageFileGuard() {
|
|
if (image_file_ != nullptr) {
|
|
// Failure, erase the image file.
|
|
image_file_->Erase();
|
|
}
|
|
}
|
|
|
|
void reset(File* image_file) {
|
|
image_file_.reset(image_file);
|
|
}
|
|
|
|
bool operator==(std::nullptr_t) {
|
|
return image_file_ == nullptr;
|
|
}
|
|
|
|
bool operator!=(std::nullptr_t) {
|
|
return image_file_ != nullptr;
|
|
}
|
|
|
|
File* operator->() const {
|
|
return image_file_.get();
|
|
}
|
|
|
|
bool WriteHeaderAndClose(const std::string& image_filename, const ImageHeader* image_header) {
|
|
// The header is uncompressed since it contains whether the image is compressed or not.
|
|
if (!image_file_->PwriteFully(image_header, sizeof(ImageHeader), 0)) {
|
|
PLOG(ERROR) << "Failed to write image file header " << image_filename;
|
|
return false;
|
|
}
|
|
|
|
// FlushCloseOrErase() takes care of erasing, so the destructor does not need
|
|
// to do that whether the FlushCloseOrErase() succeeds or fails.
|
|
std::unique_ptr<File> image_file = std::move(image_file_);
|
|
if (image_file->FlushCloseOrErase() != 0) {
|
|
PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
std::unique_ptr<File> image_file_;
|
|
};
|
|
|
|
bool ImageWriter::Write(int image_fd,
|
|
const std::vector<std::string>& image_filenames,
|
|
size_t component_count) {
|
|
// If image_fd or oat_fd are not File::kInvalidFd then we may have empty strings in
|
|
// image_filenames or oat_filenames.
|
|
CHECK(!image_filenames.empty());
|
|
if (image_fd != File::kInvalidFd) {
|
|
CHECK_EQ(image_filenames.size(), 1u);
|
|
}
|
|
DCHECK(!oat_filenames_.empty());
|
|
CHECK_EQ(image_filenames.size(), oat_filenames_.size());
|
|
|
|
Thread* const self = Thread::Current();
|
|
ScopedDebugDisallowReadBarriers sddrb(self);
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
for (size_t i = 0; i < oat_filenames_.size(); ++i) {
|
|
CreateHeader(i, component_count);
|
|
CopyAndFixupNativeData(i);
|
|
}
|
|
}
|
|
|
|
{
|
|
// TODO: heap validation can't handle these fix up passes.
|
|
ScopedObjectAccess soa(self);
|
|
Runtime::Current()->GetHeap()->DisableObjectValidation();
|
|
CopyAndFixupObjects();
|
|
}
|
|
|
|
if (compiler_options_.IsAppImage()) {
|
|
CopyMetadata();
|
|
}
|
|
|
|
// Primary image header shall be written last for two reasons. First, this ensures
|
|
// that we shall not end up with a valid primary image and invalid secondary image.
|
|
// Second, its checksum shall include the checksums of the secondary images (XORed).
|
|
// This way only the primary image checksum needs to be checked to determine whether
|
|
// any of the images or oat files are out of date. (Oat file checksums are included
|
|
// in the image checksum calculation.)
|
|
ImageHeader* primary_header = reinterpret_cast<ImageHeader*>(image_infos_[0].image_.Begin());
|
|
ImageFileGuard primary_image_file;
|
|
for (size_t i = 0; i < image_filenames.size(); ++i) {
|
|
const std::string& image_filename = image_filenames[i];
|
|
ImageInfo& image_info = GetImageInfo(i);
|
|
ImageFileGuard image_file;
|
|
if (image_fd != File::kInvalidFd) {
|
|
// Ignore image_filename, it is supplied only for better diagnostic.
|
|
image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
|
|
// Empty the file in case it already exists.
|
|
if (image_file != nullptr) {
|
|
TEMP_FAILURE_RETRY(image_file->SetLength(0));
|
|
TEMP_FAILURE_RETRY(image_file->Flush());
|
|
}
|
|
} else {
|
|
image_file.reset(OS::CreateEmptyFile(image_filename.c_str()));
|
|
}
|
|
|
|
if (image_file == nullptr) {
|
|
LOG(ERROR) << "Failed to open image file " << image_filename;
|
|
return false;
|
|
}
|
|
|
|
// Make file world readable if we have created it, i.e. when not passed as file descriptor.
|
|
if (image_fd == -1 && !compiler_options_.IsAppImage() && fchmod(image_file->Fd(), 0644) != 0) {
|
|
PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
|
|
return false;
|
|
}
|
|
|
|
// Image data size excludes the bitmap and the header.
|
|
ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
|
|
|
|
// Block sources (from the image).
|
|
const bool is_compressed = image_storage_mode_ != ImageHeader::kStorageModeUncompressed;
|
|
dchecked_vector<std::pair<uint32_t, uint32_t>> block_sources;
|
|
dchecked_vector<ImageHeader::Block> blocks;
|
|
|
|
// Add a set of solid blocks such that no block is larger than the maximum size. A solid block
|
|
// is a block that must be decompressed all at once.
|
|
auto add_blocks = [&](uint32_t offset, uint32_t size) {
|
|
while (size != 0u) {
|
|
const uint32_t cur_size = std::min(size, compiler_options_.MaxImageBlockSize());
|
|
block_sources.emplace_back(offset, cur_size);
|
|
offset += cur_size;
|
|
size -= cur_size;
|
|
}
|
|
};
|
|
|
|
add_blocks(sizeof(ImageHeader), image_header->GetImageSize() - sizeof(ImageHeader));
|
|
|
|
// Checksum of compressed image data and header.
|
|
uint32_t image_checksum = adler32(0L, Z_NULL, 0);
|
|
image_checksum = adler32(image_checksum,
|
|
reinterpret_cast<const uint8_t*>(image_header),
|
|
sizeof(ImageHeader));
|
|
// Copy and compress blocks.
|
|
size_t out_offset = sizeof(ImageHeader);
|
|
for (const std::pair<uint32_t, uint32_t> block : block_sources) {
|
|
ArrayRef<const uint8_t> raw_image_data(image_info.image_.Begin() + block.first,
|
|
block.second);
|
|
dchecked_vector<uint8_t> compressed_data;
|
|
ArrayRef<const uint8_t> image_data =
|
|
MaybeCompressData(raw_image_data, image_storage_mode_, &compressed_data);
|
|
|
|
if (!is_compressed) {
|
|
// For uncompressed, preserve alignment since the image will be directly mapped.
|
|
out_offset = block.first;
|
|
}
|
|
|
|
// Fill in the compressed location of the block.
|
|
blocks.emplace_back(ImageHeader::Block(
|
|
image_storage_mode_,
|
|
/*data_offset=*/ out_offset,
|
|
/*data_size=*/ image_data.size(),
|
|
/*image_offset=*/ block.first,
|
|
/*image_size=*/ block.second));
|
|
|
|
// Write out the image + fields + methods.
|
|
if (!image_file->PwriteFully(image_data.data(), image_data.size(), out_offset)) {
|
|
PLOG(ERROR) << "Failed to write image file data " << image_filename;
|
|
image_file->Erase();
|
|
return false;
|
|
}
|
|
out_offset += image_data.size();
|
|
image_checksum = adler32(image_checksum, image_data.data(), image_data.size());
|
|
}
|
|
|
|
// Write the block metadata directly after the image sections.
|
|
// Note: This is not part of the mapped image and is not preserved after decompressing, it's
|
|
// only used for image loading. For this reason, only write it out for compressed images.
|
|
if (is_compressed) {
|
|
// Align up since the compressed data is not necessarily aligned.
|
|
out_offset = RoundUp(out_offset, alignof(ImageHeader::Block));
|
|
CHECK(!blocks.empty());
|
|
const size_t blocks_bytes = blocks.size() * sizeof(blocks[0]);
|
|
if (!image_file->PwriteFully(&blocks[0], blocks_bytes, out_offset)) {
|
|
PLOG(ERROR) << "Failed to write image blocks " << image_filename;
|
|
image_file->Erase();
|
|
return false;
|
|
}
|
|
image_header->blocks_offset_ = out_offset;
|
|
image_header->blocks_count_ = blocks.size();
|
|
out_offset += blocks_bytes;
|
|
}
|
|
|
|
// Data size includes everything except the bitmap.
|
|
image_header->data_size_ = out_offset - sizeof(ImageHeader);
|
|
|
|
// Update and write the bitmap section. Note that the bitmap section is relative to the
|
|
// possibly compressed image.
|
|
ImageSection& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
|
|
// Align up since data size may be unaligned if the image is compressed.
|
|
out_offset = RoundUp(out_offset, kPageSize);
|
|
bitmap_section = ImageSection(out_offset, bitmap_section.Size());
|
|
|
|
if (!image_file->PwriteFully(image_info.image_bitmap_.Begin(),
|
|
bitmap_section.Size(),
|
|
bitmap_section.Offset())) {
|
|
PLOG(ERROR) << "Failed to write image file bitmap " << image_filename;
|
|
return false;
|
|
}
|
|
|
|
int err = image_file->Flush();
|
|
if (err < 0) {
|
|
PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
|
|
return false;
|
|
}
|
|
|
|
// Calculate the image checksum of the remaining data.
|
|
image_checksum = adler32(image_checksum,
|
|
reinterpret_cast<const uint8_t*>(image_info.image_bitmap_.Begin()),
|
|
bitmap_section.Size());
|
|
image_header->SetImageChecksum(image_checksum);
|
|
|
|
if (VLOG_IS_ON(compiler)) {
|
|
const size_t separately_written_section_size = bitmap_section.Size();
|
|
const size_t total_uncompressed_size = image_info.image_size_ +
|
|
separately_written_section_size;
|
|
const size_t total_compressed_size = out_offset + separately_written_section_size;
|
|
|
|
VLOG(compiler) << "Dex2Oat:uncompressedImageSize = " << total_uncompressed_size;
|
|
if (total_uncompressed_size != total_compressed_size) {
|
|
VLOG(compiler) << "Dex2Oat:compressedImageSize = " << total_compressed_size;
|
|
}
|
|
}
|
|
|
|
CHECK_EQ(bitmap_section.End(), static_cast<size_t>(image_file->GetLength()))
|
|
<< "Bitmap should be at the end of the file";
|
|
|
|
// Write header last in case the compiler gets killed in the middle of image writing.
|
|
// We do not want to have a corrupted image with a valid header.
|
|
// Delay the writing of the primary image header until after writing secondary images.
|
|
if (i == 0u) {
|
|
primary_image_file = std::move(image_file);
|
|
} else {
|
|
if (!image_file.WriteHeaderAndClose(image_filename, image_header)) {
|
|
return false;
|
|
}
|
|
// Update the primary image checksum with the secondary image checksum.
|
|
primary_header->SetImageChecksum(primary_header->GetImageChecksum() ^ image_checksum);
|
|
}
|
|
}
|
|
DCHECK(primary_image_file != nullptr);
|
|
if (!primary_image_file.WriteHeaderAndClose(image_filenames[0], primary_header)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
size_t ImageWriter::GetImageOffset(mirror::Object* object, size_t oat_index) const {
|
|
BinSlot bin_slot = GetImageBinSlot(object, oat_index);
|
|
const ImageInfo& image_info = GetImageInfo(oat_index);
|
|
size_t offset = image_info.GetBinSlotOffset(bin_slot.GetBin()) + bin_slot.GetOffset();
|
|
DCHECK_LT(offset, image_info.image_end_);
|
|
return offset;
|
|
}
|
|
|
|
void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
|
|
DCHECK(object != nullptr);
|
|
DCHECK(!IsImageBinSlotAssigned(object));
|
|
|
|
// Before we stomp over the lock word, save the hash code for later.
|
|
LockWord lw(object->GetLockWord(false));
|
|
switch (lw.GetState()) {
|
|
case LockWord::kFatLocked:
|
|
FALLTHROUGH_INTENDED;
|
|
case LockWord::kThinLocked: {
|
|
std::ostringstream oss;
|
|
bool thin = (lw.GetState() == LockWord::kThinLocked);
|
|
oss << (thin ? "Thin" : "Fat")
|
|
<< " locked object " << object << "(" << object->PrettyTypeOf()
|
|
<< ") found during object copy";
|
|
if (thin) {
|
|
oss << ". Lock owner:" << lw.ThinLockOwner();
|
|
}
|
|
LOG(FATAL) << oss.str();
|
|
UNREACHABLE();
|
|
}
|
|
case LockWord::kUnlocked:
|
|
// No hash, don't need to save it.
|
|
break;
|
|
case LockWord::kHashCode:
|
|
DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
|
|
saved_hashcode_map_.insert(std::make_pair(object, lw.GetHashCode()));
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
UNREACHABLE();
|
|
}
|
|
object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()),
|
|
/*as_volatile=*/ false);
|
|
DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
|
|
DCHECK(IsImageBinSlotAssigned(object));
|
|
}
|
|
|
|
ImageWriter::Bin ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index) {
|
|
DCHECK(object != nullptr);
|
|
|
|
// The magic happens here. We segregate objects into different bins based
|
|
// on how likely they are to get dirty at runtime.
|
|
//
|
|
// Likely-to-dirty objects get packed together into the same bin so that
|
|
// at runtime their page dirtiness ratio (how many dirty objects a page has) is
|
|
// maximized.
|
|
//
|
|
// This means more pages will stay either clean or shared dirty (with zygote) and
|
|
// the app will use less of its own (private) memory.
|
|
Bin bin = Bin::kRegular;
|
|
|
|
if (kBinObjects) {
|
|
//
|
|
// Changing the bin of an object is purely a memory-use tuning.
|
|
// It has no change on runtime correctness.
|
|
//
|
|
// Memory analysis has determined that the following types of objects get dirtied
|
|
// the most:
|
|
//
|
|
// * Class'es which are verified [their clinit runs only at runtime]
|
|
// - classes in general [because their static fields get overwritten]
|
|
// - initialized classes with all-final statics are unlikely to be ever dirty,
|
|
// so bin them separately
|
|
// * Art Methods that are:
|
|
// - native [their native entry point is not looked up until runtime]
|
|
// - have declaring classes that aren't initialized
|
|
// [their interpreter/quick entry points are trampolines until the class
|
|
// becomes initialized]
|
|
//
|
|
// We also assume the following objects get dirtied either never or extremely rarely:
|
|
// * Strings (they are immutable)
|
|
// * Art methods that aren't native and have initialized declared classes
|
|
//
|
|
// We assume that "regular" bin objects are highly unlikely to become dirtied,
|
|
// so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
|
|
//
|
|
ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
|
|
if (klass->IsClassClass()) {
|
|
bin = Bin::kClassVerified;
|
|
ObjPtr<mirror::Class> as_klass = object->AsClass<kVerifyNone>();
|
|
|
|
// Move known dirty objects into their own sections. This includes:
|
|
// - classes with dirty static fields.
|
|
auto is_dirty = [&](ObjPtr<mirror::Class> k) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
std::string temp;
|
|
std::string_view descriptor = k->GetDescriptor(&temp);
|
|
return dirty_image_objects_->find(descriptor) != dirty_image_objects_->end();
|
|
};
|
|
if (dirty_image_objects_ != nullptr && is_dirty(as_klass)) {
|
|
bin = Bin::kKnownDirty;
|
|
} else if (as_klass->IsVisiblyInitialized<kVerifyNone>()) {
|
|
bin = Bin::kClassInitialized;
|
|
|
|
// If the class's static fields are all final, put it into a separate bin
|
|
// since it's very likely it will stay clean.
|
|
uint32_t num_static_fields = as_klass->NumStaticFields();
|
|
if (num_static_fields == 0) {
|
|
bin = Bin::kClassInitializedFinalStatics;
|
|
} else {
|
|
// Maybe all the statics are final?
|
|
bool all_final = true;
|
|
for (uint32_t i = 0; i < num_static_fields; ++i) {
|
|
ArtField* field = as_klass->GetStaticField(i);
|
|
if (!field->IsFinal()) {
|
|
all_final = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (all_final) {
|
|
bin = Bin::kClassInitializedFinalStatics;
|
|
}
|
|
}
|
|
}
|
|
} else if (klass->IsStringClass<kVerifyNone>()) {
|
|
bin = Bin::kString; // Strings are almost always immutable (except for object header).
|
|
} else if (!klass->HasSuperClass()) {
|
|
// Only `j.l.Object` and primitive classes lack the superclass and
|
|
// there are no instances of primitive classes.
|
|
DCHECK(klass->IsObjectClass());
|
|
// Instance of java lang object, probably a lock object. This means it will be dirty when we
|
|
// synchronize on it.
|
|
bin = Bin::kMiscDirty;
|
|
} else if (klass->IsDexCacheClass<kVerifyNone>()) {
|
|
// Dex file field becomes dirty when the image is loaded.
|
|
bin = Bin::kMiscDirty;
|
|
}
|
|
// else bin = kBinRegular
|
|
}
|
|
|
|
AssignImageBinSlot(object, oat_index, bin);
|
|
return bin;
|
|
}
|
|
|
|
void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index, Bin bin) {
|
|
DCHECK(object != nullptr);
|
|
size_t object_size = object->SizeOf();
|
|
|
|
// Assign the oat index too.
|
|
if (IsMultiImage()) {
|
|
DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
|
|
oat_index_map_.insert(std::make_pair(object, oat_index));
|
|
} else {
|
|
DCHECK(oat_index_map_.empty());
|
|
}
|
|
|
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
|
|
|
size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment
|
|
// How many bytes the current bin is at (aligned).
|
|
size_t current_offset = image_info.GetBinSlotSize(bin);
|
|
// Move the current bin size up to accommodate the object we just assigned a bin slot.
|
|
image_info.IncrementBinSlotSize(bin, offset_delta);
|
|
|
|
BinSlot new_bin_slot(bin, current_offset);
|
|
SetImageBinSlot(object, new_bin_slot);
|
|
|
|
image_info.IncrementBinSlotCount(bin, 1u);
|
|
|
|
// Grow the image closer to the end by the object we just assigned.
|
|
image_info.image_end_ += offset_delta;
|
|
}
|
|
|
|
bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
|
|
if (m->IsNative()) {
|
|
return true;
|
|
}
|
|
ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClass<kWithoutReadBarrier>();
|
|
// Initialized is highly unlikely to dirty since there's no entry points to mutate.
|
|
return declaring_class == nullptr ||
|
|
declaring_class->GetStatus() != ClassStatus::kVisiblyInitialized;
|
|
}
|
|
|
|
bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
|
|
DCHECK(object != nullptr);
|
|
|
|
// We always stash the bin slot into a lockword, in the 'forwarding address' state.
|
|
// If it's in some other state, then we haven't yet assigned an image bin slot.
|
|
if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
|
|
return false;
|
|
} else if (kIsDebugBuild) {
|
|
LockWord lock_word = object->GetLockWord(false);
|
|
size_t offset = lock_word.ForwardingAddress();
|
|
BinSlot bin_slot(offset);
|
|
size_t oat_index = GetOatIndex(object);
|
|
const ImageInfo& image_info = GetImageInfo(oat_index);
|
|
DCHECK_LT(bin_slot.GetOffset(), image_info.GetBinSlotSize(bin_slot.GetBin()))
|
|
<< "bin slot offset should not exceed the size of that bin";
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object, size_t oat_index) const {
|
|
DCHECK(object != nullptr);
|
|
DCHECK(IsImageBinSlotAssigned(object));
|
|
|
|
LockWord lock_word = object->GetLockWord(false);
|
|
size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t
|
|
DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
|
|
|
|
BinSlot bin_slot(static_cast<uint32_t>(offset));
|
|
DCHECK_LT(bin_slot.GetOffset(), GetImageInfo(oat_index).GetBinSlotSize(bin_slot.GetBin()));
|
|
|
|
return bin_slot;
|
|
}
|
|
|
|
void ImageWriter::UpdateImageBinSlotOffset(mirror::Object* object,
|
|
size_t oat_index,
|
|
size_t new_offset) {
|
|
BinSlot old_bin_slot = GetImageBinSlot(object, oat_index);
|
|
DCHECK_LT(new_offset, GetImageInfo(oat_index).GetBinSlotSize(old_bin_slot.GetBin()));
|
|
BinSlot new_bin_slot(old_bin_slot.GetBin(), new_offset);
|
|
object->SetLockWord(LockWord::FromForwardingAddress(new_bin_slot.Uint32Value()),
|
|
/*as_volatile=*/ false);
|
|
DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
|
|
DCHECK(IsImageBinSlotAssigned(object));
|
|
}
|
|
|
|
bool ImageWriter::AllocMemory() {
|
|
for (ImageInfo& image_info : image_infos_) {
|
|
const size_t length = RoundUp(image_info.CreateImageSections().first, kPageSize);
|
|
|
|
std::string error_msg;
|
|
image_info.image_ = MemMap::MapAnonymous("image writer image",
|
|
length,
|
|
PROT_READ | PROT_WRITE,
|
|
/*low_4gb=*/ false,
|
|
&error_msg);
|
|
if (UNLIKELY(!image_info.image_.IsValid())) {
|
|
LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
|
|
return false;
|
|
}
|
|
|
|
// Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
|
|
CHECK_LE(image_info.image_end_, length);
|
|
image_info.image_bitmap_ = gc::accounting::ContinuousSpaceBitmap::Create(
|
|
"image bitmap", image_info.image_.Begin(), RoundUp(image_info.image_end_, kPageSize));
|
|
if (!image_info.image_bitmap_.IsValid()) {
|
|
LOG(ERROR) << "Failed to allocate memory for image bitmap";
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// This visitor follows the references of an instance, recursively then prune this class
|
|
// if a type of any field is pruned.
|
|
class ImageWriter::PruneObjectReferenceVisitor {
|
|
public:
|
|
PruneObjectReferenceVisitor(ImageWriter* image_writer,
|
|
bool* early_exit,
|
|
HashSet<mirror::Object*>* visited,
|
|
bool* result)
|
|
: image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {}
|
|
|
|
ALWAYS_INLINE void VisitRootIfNonNull(
|
|
mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) { }
|
|
|
|
ALWAYS_INLINE void VisitRoot(
|
|
mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) { }
|
|
|
|
ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
|
|
MemberOffset offset,
|
|
bool is_static ATTRIBUTE_UNUSED) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
mirror::Object* ref =
|
|
obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
|
|
if (ref == nullptr || visited_->find(ref) != visited_->end()) {
|
|
return;
|
|
}
|
|
|
|
ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
|
|
Runtime::Current()->GetClassLinker()->GetClassRoots();
|
|
ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass();
|
|
if (klass == GetClassRoot<mirror::Method>(class_roots) ||
|
|
klass == GetClassRoot<mirror::Constructor>(class_roots)) {
|
|
// Prune all classes using reflection because the content they held will not be fixup.
|
|
*result_ = true;
|
|
}
|
|
|
|
if (ref->IsClass()) {
|
|
*result_ = *result_ ||
|
|
image_writer_->PruneImageClassInternal(ref->AsClass(), early_exit_, visited_);
|
|
} else {
|
|
// Record the object visited in case of circular reference.
|
|
visited_->insert(ref);
|
|
*result_ = *result_ ||
|
|
image_writer_->PruneImageClassInternal(klass, early_exit_, visited_);
|
|
ref->VisitReferences(*this, *this);
|
|
// Clean up before exit for next call of this function.
|
|
auto it = visited_->find(ref);
|
|
DCHECK(it != visited_->end());
|
|
visited_->erase(it);
|
|
}
|
|
}
|
|
|
|
ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
|
|
ObjPtr<mirror::Reference> ref) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
|
|
}
|
|
|
|
private:
|
|
ImageWriter* image_writer_;
|
|
bool* early_exit_;
|
|
HashSet<mirror::Object*>* visited_;
|
|
bool* const result_;
|
|
};
|
|
|
|
|
|
bool ImageWriter::PruneImageClass(ObjPtr<mirror::Class> klass) {
|
|
bool early_exit = false;
|
|
HashSet<mirror::Object*> visited;
|
|
return PruneImageClassInternal(klass, &early_exit, &visited);
|
|
}
|
|
|
|
bool ImageWriter::PruneImageClassInternal(
|
|
ObjPtr<mirror::Class> klass,
|
|
bool* early_exit,
|
|
HashSet<mirror::Object*>* visited) {
|
|
DCHECK(early_exit != nullptr);
|
|
DCHECK(visited != nullptr);
|
|
DCHECK(compiler_options_.IsAppImage() || compiler_options_.IsBootImageExtension());
|
|
if (klass == nullptr || IsInBootImage(klass.Ptr())) {
|
|
return false;
|
|
}
|
|
auto found = prune_class_memo_.find(klass.Ptr());
|
|
if (found != prune_class_memo_.end()) {
|
|
// Already computed, return the found value.
|
|
return found->second;
|
|
}
|
|
// Circular dependencies, return false but do not store the result in the memoization table.
|
|
if (visited->find(klass.Ptr()) != visited->end()) {
|
|
*early_exit = true;
|
|
return false;
|
|
}
|
|
visited->insert(klass.Ptr());
|
|
bool result = klass->IsBootStrapClassLoaded();
|
|
std::string temp;
|
|
// Prune if not an image class, this handles any broken sets of image classes such as having a
|
|
// class in the set but not it's superclass.
|
|
result = result || !compiler_options_.IsImageClass(klass->GetDescriptor(&temp));
|
|
bool my_early_exit = false; // Only for ourselves, ignore caller.
|
|
// Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
|
|
// app image.
|
|
if (klass->IsErroneous()) {
|
|
result = true;
|
|
} else {
|
|
ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
|
|
CHECK(ext.IsNull() || ext->GetErroneousStateError() == nullptr) << klass->PrettyClass();
|
|
}
|
|
if (!result) {
|
|
// Check interfaces since these wont be visited through VisitReferences.)
|
|
ObjPtr<mirror::IfTable> if_table = klass->GetIfTable();
|
|
for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
|
|
result = result || PruneImageClassInternal(if_table->GetInterface(i),
|
|
&my_early_exit,
|
|
visited);
|
|
}
|
|
}
|
|
if (klass->IsObjectArrayClass()) {
|
|
result = result || PruneImageClassInternal(klass->GetComponentType(),
|
|
&my_early_exit,
|
|
visited);
|
|
}
|
|
// Check static fields and their classes.
|
|
if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) {
|
|
size_t num_static_fields = klass->NumReferenceStaticFields();
|
|
// Presumably GC can happen when we are cross compiling, it should not cause performance
|
|
// problems to do pointer size logic.
|
|
MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
|
|
Runtime::Current()->GetClassLinker()->GetImagePointerSize());
|
|
for (size_t i = 0u; i < num_static_fields; ++i) {
|
|
mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
|
|
if (ref != nullptr) {
|
|
if (ref->IsClass()) {
|
|
result = result || PruneImageClassInternal(ref->AsClass(), &my_early_exit, visited);
|
|
} else {
|
|
mirror::Class* type = ref->GetClass();
|
|
result = result || PruneImageClassInternal(type, &my_early_exit, visited);
|
|
if (!result) {
|
|
// For non-class case, also go through all the types mentioned by it's fields'
|
|
// references recursively to decide whether to keep this class.
|
|
bool tmp = false;
|
|
PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp);
|
|
ref->VisitReferences(visitor, visitor);
|
|
result = result || tmp;
|
|
}
|
|
}
|
|
}
|
|
field_offset = MemberOffset(field_offset.Uint32Value() +
|
|
sizeof(mirror::HeapReference<mirror::Object>));
|
|
}
|
|
}
|
|
result = result || PruneImageClassInternal(klass->GetSuperClass(), &my_early_exit, visited);
|
|
// Remove the class if the dex file is not in the set of dex files. This happens for classes that
|
|
// are from uses-library if there is no profile. b/30688277
|
|
ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
|
|
if (dex_cache != nullptr) {
|
|
result = result ||
|
|
dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end();
|
|
}
|
|
// Erase the element we stored earlier since we are exiting the function.
|
|
auto it = visited->find(klass.Ptr());
|
|
DCHECK(it != visited->end());
|
|
visited->erase(it);
|
|
// Only store result if it is true or none of the calls early exited due to circular
|
|
// dependencies. If visited is empty then we are the root caller, in this case the cycle was in
|
|
// a child call and we can remember the result.
|
|
if (result == true || !my_early_exit || visited->empty()) {
|
|
prune_class_memo_.Overwrite(klass.Ptr(), result);
|
|
}
|
|
*early_exit |= my_early_exit;
|
|
return result;
|
|
}
|
|
|
|
bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) {
|
|
if (klass == nullptr) {
|
|
return false;
|
|
}
|
|
if (IsInBootImage(klass.Ptr())) {
|
|
// Already in boot image, return true.
|
|
DCHECK(!compiler_options_.IsBootImage());
|
|
return true;
|
|
}
|
|
std::string temp;
|
|
if (!compiler_options_.IsImageClass(klass->GetDescriptor(&temp))) {
|
|
return false;
|
|
}
|
|
if (compiler_options_.IsAppImage()) {
|
|
// For app images, we need to prune classes that
|
|
// are defined by the boot class path we're compiling against but not in
|
|
// the boot image spaces since these may have already been loaded at
|
|
// run time when this image is loaded. Keep classes in the boot image
|
|
// spaces we're compiling against since we don't want to re-resolve these.
|
|
return !PruneImageClass(klass);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
class ImageWriter::PruneClassesVisitor : public ClassVisitor {
|
|
public:
|
|
PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader)
|
|
: image_writer_(image_writer),
|
|
class_loader_(class_loader),
|
|
classes_to_prune_(),
|
|
defined_class_count_(0u) { }
|
|
|
|
bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (!image_writer_->KeepClass(klass.Ptr())) {
|
|
classes_to_prune_.insert(klass.Ptr());
|
|
if (klass->GetClassLoader() == class_loader_) {
|
|
++defined_class_count_;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ClassTable* class_table =
|
|
Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_);
|
|
WriterMutexLock mu(Thread::Current(), class_table->lock_);
|
|
// App class loader class tables contain only one internal set. The boot class path class
|
|
// table also contains class sets from boot images we're compiling against but we are not
|
|
// pruning these boot image classes, so all classes to remove are in the last set.
|
|
DCHECK(!class_table->classes_.empty());
|
|
ClassTable::ClassSet& last_class_set = class_table->classes_.back();
|
|
for (mirror::Class* klass : classes_to_prune_) {
|
|
uint32_t hash = klass->DescriptorHash();
|
|
auto it = last_class_set.FindWithHash(ClassTable::TableSlot(klass, hash), hash);
|
|
DCHECK(it != last_class_set.end());
|
|
last_class_set.erase(it);
|
|
DCHECK(std::none_of(class_table->classes_.begin(),
|
|
class_table->classes_.end(),
|
|
[klass, hash](ClassTable::ClassSet& class_set) {
|
|
ClassTable::TableSlot slot(klass, hash);
|
|
return class_set.FindWithHash(slot, hash) != class_set.end();
|
|
}));
|
|
}
|
|
return defined_class_count_;
|
|
}
|
|
|
|
private:
|
|
ImageWriter* const image_writer_;
|
|
const ObjPtr<mirror::ClassLoader> class_loader_;
|
|
HashSet<mirror::Class*> classes_to_prune_;
|
|
size_t defined_class_count_;
|
|
};
|
|
|
|
class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor {
|
|
public:
|
|
explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer)
|
|
: image_writer_(image_writer), removed_class_count_(0) {}
|
|
|
|
void Visit(ObjPtr<mirror::ClassLoader> class_loader) override
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
PruneClassesVisitor classes_visitor(image_writer_, class_loader);
|
|
ClassTable* class_table =
|
|
Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader);
|
|
class_table->Visit(classes_visitor);
|
|
removed_class_count_ += classes_visitor.Prune();
|
|
}
|
|
|
|
size_t GetRemovedClassCount() const {
|
|
return removed_class_count_;
|
|
}
|
|
|
|
private:
|
|
ImageWriter* const image_writer_;
|
|
size_t removed_class_count_;
|
|
};
|
|
|
|
void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) {
|
|
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
|
|
visitor->Visit(nullptr); // Visit boot class loader.
|
|
Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor);
|
|
}
|
|
|
|
void ImageWriter::PruneNonImageClasses() {
|
|
Runtime* runtime = Runtime::Current();
|
|
ClassLinker* class_linker = runtime->GetClassLinker();
|
|
Thread* self = Thread::Current();
|
|
ScopedAssertNoThreadSuspension sa(__FUNCTION__);
|
|
|
|
// Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make
|
|
// sure the other ones don't get unloaded before the OatWriter runs.
|
|
class_linker->VisitClassTables(
|
|
[&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
table->RemoveStrongRoots(
|
|
[&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ObjPtr<mirror::Object> obj = root.Read();
|
|
if (obj->IsDexCache()) {
|
|
// Return true if the dex file is not one of the ones in the map.
|
|
return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) ==
|
|
dex_file_oat_index_map_.end();
|
|
}
|
|
// Return false to avoid removing.
|
|
return false;
|
|
});
|
|
});
|
|
|
|
// Remove the undesired classes from the class roots.
|
|
{
|
|
PruneClassLoaderClassesVisitor class_loader_visitor(this);
|
|
VisitClassLoaders(&class_loader_visitor);
|
|
VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes";
|
|
}
|
|
|
|
// Completely clear DexCaches.
|
|
dchecked_vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
|
|
for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
|
|
dex_cache->ResetNativeArrays();
|
|
}
|
|
|
|
// Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
|
|
class_linker->DropFindArrayClassCache();
|
|
|
|
// Clear to save RAM.
|
|
prune_class_memo_.clear();
|
|
}
|
|
|
|
dchecked_vector<ObjPtr<mirror::DexCache>> ImageWriter::FindDexCaches(Thread* self) {
|
|
dchecked_vector<ObjPtr<mirror::DexCache>> dex_caches;
|
|
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
|
|
ReaderMutexLock mu2(self, *Locks::dex_lock_);
|
|
dex_caches.reserve(class_linker->GetDexCachesData().size());
|
|
for (const auto& entry : class_linker->GetDexCachesData()) {
|
|
const ClassLinker::DexCacheData& data = entry.second;
|
|
if (self->IsJWeakCleared(data.weak_root)) {
|
|
continue;
|
|
}
|
|
dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache());
|
|
}
|
|
return dex_caches;
|
|
}
|
|
|
|
void ImageWriter::CheckNonImageClassesRemoved() {
|
|
auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (obj->IsClass() && !IsInBootImage(obj)) {
|
|
ObjPtr<Class> klass = obj->AsClass();
|
|
if (!KeepClass(klass)) {
|
|
DumpImageClasses();
|
|
CHECK(KeepClass(klass))
|
|
<< Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass);
|
|
}
|
|
}
|
|
};
|
|
gc::Heap* heap = Runtime::Current()->GetHeap();
|
|
heap->VisitObjects(visitor);
|
|
}
|
|
|
|
void ImageWriter::PromoteWeakInternsToStrong(Thread* self) {
|
|
InternTable* intern_table = Runtime::Current()->GetInternTable();
|
|
MutexLock mu(self, *Locks::intern_table_lock_);
|
|
DCHECK_EQ(intern_table->weak_interns_.tables_.size(), 1u);
|
|
for (GcRoot<mirror::String>& entry : intern_table->weak_interns_.tables_.front().set_) {
|
|
ObjPtr<mirror::String> s = entry.Read<kWithoutReadBarrier>();
|
|
DCHECK(!IsStronglyInternedString(s));
|
|
uint32_t hash = static_cast<uint32_t>(s->GetStoredHashCode());
|
|
intern_table->InsertStrong(s, hash);
|
|
}
|
|
intern_table->weak_interns_.tables_.front().set_.clear();
|
|
}
|
|
|
|
void ImageWriter::DumpImageClasses() {
|
|
for (const std::string& image_class : compiler_options_.GetImageClasses()) {
|
|
LOG(INFO) << " " << image_class;
|
|
}
|
|
}
|
|
|
|
bool ImageWriter::CreateImageRoots() {
|
|
Runtime* runtime = Runtime::Current();
|
|
ClassLinker* class_linker = runtime->GetClassLinker();
|
|
Thread* self = Thread::Current();
|
|
VariableSizedHandleScope handles(self);
|
|
|
|
// Prepare boot image live objects if we're compiling a boot image or boot image extension.
|
|
Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects;
|
|
if (compiler_options_.IsBootImage()) {
|
|
boot_image_live_objects = handles.NewHandle(AllocateBootImageLiveObjects(self, runtime));
|
|
if (boot_image_live_objects == nullptr) {
|
|
return false;
|
|
}
|
|
} else if (compiler_options_.IsBootImageExtension()) {
|
|
gc::Heap* heap = runtime->GetHeap();
|
|
DCHECK(!heap->GetBootImageSpaces().empty());
|
|
const ImageHeader& primary_header = heap->GetBootImageSpaces().front()->GetImageHeader();
|
|
boot_image_live_objects = handles.NewHandle(ObjPtr<ObjectArray<Object>>::DownCast(
|
|
primary_header.GetImageRoot<kWithReadBarrier>(ImageHeader::kBootImageLiveObjects)));
|
|
DCHECK(boot_image_live_objects != nullptr);
|
|
}
|
|
|
|
// Collect dex caches and the sizes of dex cache arrays.
|
|
struct DexCacheRecord {
|
|
uint64_t registration_index;
|
|
Handle<mirror::DexCache> dex_cache;
|
|
size_t oat_index;
|
|
};
|
|
size_t num_oat_files = oat_filenames_.size();
|
|
dchecked_vector<size_t> dex_cache_counts(num_oat_files, 0u);
|
|
dchecked_vector<DexCacheRecord> dex_cache_records;
|
|
dex_cache_records.reserve(dex_file_oat_index_map_.size());
|
|
{
|
|
ReaderMutexLock mu(self, *Locks::dex_lock_);
|
|
// Count number of dex caches not in the boot image.
|
|
for (const auto& entry : class_linker->GetDexCachesData()) {
|
|
const ClassLinker::DexCacheData& data = entry.second;
|
|
ObjPtr<mirror::DexCache> dex_cache =
|
|
ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
|
|
if (dex_cache == nullptr) {
|
|
continue;
|
|
}
|
|
const DexFile* dex_file = dex_cache->GetDexFile();
|
|
auto it = dex_file_oat_index_map_.find(dex_file);
|
|
if (it != dex_file_oat_index_map_.end()) {
|
|
size_t oat_index = it->second;
|
|
DCHECK(IsImageDexCache(dex_cache));
|
|
++dex_cache_counts[oat_index];
|
|
Handle<mirror::DexCache> h_dex_cache = handles.NewHandle(dex_cache);
|
|
dex_cache_records.push_back({data.registration_index, h_dex_cache, oat_index});
|
|
}
|
|
}
|
|
}
|
|
|
|
// Allocate dex cache arrays.
|
|
dchecked_vector<Handle<ObjectArray<Object>>> dex_cache_arrays;
|
|
dex_cache_arrays.reserve(num_oat_files);
|
|
for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
|
|
ObjPtr<ObjectArray<Object>> dex_caches = ObjectArray<Object>::Alloc(
|
|
self, GetClassRoot<ObjectArray<Object>>(class_linker), dex_cache_counts[oat_index]);
|
|
if (dex_caches == nullptr) {
|
|
return false;
|
|
}
|
|
dex_cache_counts[oat_index] = 0u; // Reset count for filling in dex caches below.
|
|
dex_cache_arrays.push_back(handles.NewHandle(dex_caches));
|
|
}
|
|
|
|
// Sort dex caches by registration index to make output deterministic.
|
|
std::sort(dex_cache_records.begin(),
|
|
dex_cache_records.end(),
|
|
[](const DexCacheRecord& lhs, const DexCacheRecord&rhs) {
|
|
return lhs.registration_index < rhs.registration_index;
|
|
});
|
|
|
|
// Fill dex cache arrays.
|
|
for (const DexCacheRecord& record : dex_cache_records) {
|
|
ObjPtr<ObjectArray<Object>> dex_caches = dex_cache_arrays[record.oat_index].Get();
|
|
dex_caches->SetWithoutChecks</*kTransactionActive=*/ false>(
|
|
dex_cache_counts[record.oat_index], record.dex_cache.Get());
|
|
++dex_cache_counts[record.oat_index];
|
|
}
|
|
|
|
// Create image roots with empty dex cache arrays.
|
|
image_roots_.reserve(num_oat_files);
|
|
JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
|
|
for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
|
|
// Build an Object[] of the roots needed to restore the runtime.
|
|
int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compiler_options_.IsAppImage());
|
|
ObjPtr<ObjectArray<Object>> image_roots = ObjectArray<Object>::Alloc(
|
|
self, GetClassRoot<ObjectArray<Object>>(class_linker), image_roots_size);
|
|
if (image_roots == nullptr) {
|
|
return false;
|
|
}
|
|
ObjPtr<ObjectArray<Object>> dex_caches = dex_cache_arrays[oat_index].Get();
|
|
CHECK_EQ(dex_cache_counts[oat_index],
|
|
dchecked_integral_cast<size_t>(dex_caches->GetLength<kVerifyNone>()))
|
|
<< "The number of non-image dex caches changed.";
|
|
image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
|
|
ImageHeader::kDexCaches, dex_caches);
|
|
image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
|
|
ImageHeader::kClassRoots, class_linker->GetClassRoots());
|
|
if (!compiler_options_.IsAppImage()) {
|
|
DCHECK(boot_image_live_objects != nullptr);
|
|
image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
|
|
ImageHeader::kBootImageLiveObjects, boot_image_live_objects.Get());
|
|
} else {
|
|
DCHECK(boot_image_live_objects.GetReference() == nullptr);
|
|
image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
|
|
ImageHeader::kAppImageClassLoader, GetAppClassLoader());
|
|
}
|
|
for (int32_t i = 0; i != image_roots_size; ++i) {
|
|
CHECK(image_roots->Get(i) != nullptr);
|
|
}
|
|
image_roots_.push_back(vm->AddGlobalRef(self, image_roots));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void ImageWriter::RecordNativeRelocations(ObjPtr<mirror::Class> klass, size_t oat_index) {
|
|
// Visit and assign offsets for fields and field arrays.
|
|
DCHECK_EQ(oat_index, GetOatIndexForClass(klass));
|
|
DCHECK(!klass->IsErroneous()) << klass->GetStatus();
|
|
if (compiler_options_.IsAppImage()) {
|
|
// Extra consistency check: no boot loader classes should be left!
|
|
CHECK(!klass->IsBootStrapClassLoaded()) << klass->PrettyClass();
|
|
}
|
|
LengthPrefixedArray<ArtField>* fields[] = {
|
|
klass->GetSFieldsPtr(), klass->GetIFieldsPtr(),
|
|
};
|
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
|
for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
|
|
// Total array length including header.
|
|
if (cur_fields != nullptr) {
|
|
// Forward the entire array at once.
|
|
size_t offset = image_info.GetBinSlotSize(Bin::kArtField);
|
|
DCHECK(!IsInBootImage(cur_fields));
|
|
bool inserted =
|
|
native_object_relocations_.insert(std::make_pair(
|
|
cur_fields,
|
|
NativeObjectRelocation{
|
|
oat_index, offset, NativeObjectRelocationType::kArtFieldArray
|
|
})).second;
|
|
CHECK(inserted) << "Field array " << cur_fields << " already forwarded";
|
|
const size_t size = LengthPrefixedArray<ArtField>::ComputeSize(cur_fields->size());
|
|
offset += size;
|
|
image_info.IncrementBinSlotSize(Bin::kArtField, size);
|
|
DCHECK_EQ(offset, image_info.GetBinSlotSize(Bin::kArtField));
|
|
}
|
|
}
|
|
// Visit and assign offsets for methods.
|
|
size_t num_methods = klass->NumMethods();
|
|
if (num_methods != 0) {
|
|
bool any_dirty = false;
|
|
for (auto& m : klass->GetMethods(target_ptr_size_)) {
|
|
if (WillMethodBeDirty(&m)) {
|
|
any_dirty = true;
|
|
break;
|
|
}
|
|
}
|
|
NativeObjectRelocationType type = any_dirty
|
|
? NativeObjectRelocationType::kArtMethodDirty
|
|
: NativeObjectRelocationType::kArtMethodClean;
|
|
Bin bin_type = BinTypeForNativeRelocationType(type);
|
|
// Forward the entire array at once, but header first.
|
|
const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
|
|
const size_t method_size = ArtMethod::Size(target_ptr_size_);
|
|
const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
|
|
method_size,
|
|
method_alignment);
|
|
LengthPrefixedArray<ArtMethod>* array = klass->GetMethodsPtr();
|
|
size_t offset = image_info.GetBinSlotSize(bin_type);
|
|
DCHECK(!IsInBootImage(array));
|
|
bool inserted =
|
|
native_object_relocations_.insert(std::make_pair(
|
|
array,
|
|
NativeObjectRelocation{
|
|
oat_index,
|
|
offset,
|
|
any_dirty ? NativeObjectRelocationType::kArtMethodArrayDirty
|
|
: NativeObjectRelocationType::kArtMethodArrayClean
|
|
})).second;
|
|
CHECK(inserted) << "Method array " << array << " already forwarded";
|
|
image_info.IncrementBinSlotSize(bin_type, header_size);
|
|
for (auto& m : klass->GetMethods(target_ptr_size_)) {
|
|
AssignMethodOffset(&m, type, oat_index);
|
|
}
|
|
(any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
|
|
}
|
|
// Assign offsets for all runtime methods in the IMT since these may hold conflict tables
|
|
// live.
|
|
if (klass->ShouldHaveImt()) {
|
|
ImTable* imt = klass->GetImt(target_ptr_size_);
|
|
if (TryAssignImTableOffset(imt, oat_index)) {
|
|
// Since imt's can be shared only do this the first time to not double count imt method
|
|
// fixups.
|
|
for (size_t i = 0; i < ImTable::kSize; ++i) {
|
|
ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
|
|
DCHECK(imt_method != nullptr);
|
|
if (imt_method->IsRuntimeMethod() &&
|
|
!IsInBootImage(imt_method) &&
|
|
!NativeRelocationAssigned(imt_method)) {
|
|
AssignMethodOffset(imt_method, NativeObjectRelocationType::kRuntimeMethod, oat_index);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
|
|
return native_object_relocations_.find(ptr) != native_object_relocations_.end();
|
|
}
|
|
|
|
bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
|
|
// No offset, or already assigned.
|
|
if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
|
|
return false;
|
|
}
|
|
// If the method is a conflict method we also want to assign the conflict table offset.
|
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
|
const size_t size = ImTable::SizeInBytes(target_ptr_size_);
|
|
native_object_relocations_.insert(std::make_pair(
|
|
imt,
|
|
NativeObjectRelocation{
|
|
oat_index,
|
|
image_info.GetBinSlotSize(Bin::kImTable),
|
|
NativeObjectRelocationType::kIMTable
|
|
}));
|
|
image_info.IncrementBinSlotSize(Bin::kImTable, size);
|
|
return true;
|
|
}
|
|
|
|
void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
|
|
// No offset, or already assigned.
|
|
if (table == nullptr || NativeRelocationAssigned(table)) {
|
|
return;
|
|
}
|
|
CHECK(!IsInBootImage(table));
|
|
// If the method is a conflict method we also want to assign the conflict table offset.
|
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
|
const size_t size = table->ComputeSize(target_ptr_size_);
|
|
native_object_relocations_.insert(std::make_pair(
|
|
table,
|
|
NativeObjectRelocation{
|
|
oat_index,
|
|
image_info.GetBinSlotSize(Bin::kIMTConflictTable),
|
|
NativeObjectRelocationType::kIMTConflictTable
|
|
}));
|
|
image_info.IncrementBinSlotSize(Bin::kIMTConflictTable, size);
|
|
}
|
|
|
|
void ImageWriter::AssignMethodOffset(ArtMethod* method,
|
|
NativeObjectRelocationType type,
|
|
size_t oat_index) {
|
|
DCHECK(!IsInBootImage(method));
|
|
CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
|
|
<< ArtMethod::PrettyMethod(method);
|
|
if (method->IsRuntimeMethod()) {
|
|
TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
|
|
}
|
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
|
Bin bin_type = BinTypeForNativeRelocationType(type);
|
|
size_t offset = image_info.GetBinSlotSize(bin_type);
|
|
native_object_relocations_.insert(
|
|
std::make_pair(method, NativeObjectRelocation{oat_index, offset, type}));
|
|
image_info.IncrementBinSlotSize(bin_type, ArtMethod::Size(target_ptr_size_));
|
|
}
|
|
|
|
class ImageWriter::LayoutHelper {
|
|
public:
|
|
explicit LayoutHelper(ImageWriter* image_writer)
|
|
: image_writer_(image_writer) {
|
|
bin_objects_.resize(image_writer_->image_infos_.size());
|
|
for (auto& inner : bin_objects_) {
|
|
inner.resize(enum_cast<size_t>(Bin::kMirrorCount));
|
|
}
|
|
}
|
|
|
|
void ProcessDexFileObjects(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
|
|
void ProcessRoots(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
|
|
void FinalizeInternTables() REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
void VerifyImageBinSlotsAssigned() REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
void FinalizeBinSlotOffsets() REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
/*
|
|
* Collects the string reference info necessary for loading app images.
|
|
*
|
|
* Because AppImages may contain interned strings that must be deduplicated
|
|
* with previously interned strings when loading the app image, we need to
|
|
* visit references to these strings and update them to point to the correct
|
|
* string. To speed up the visiting of references at load time we include
|
|
* a list of offsets to string references in the AppImage.
|
|
*/
|
|
void CollectStringReferenceInfo() REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
private:
|
|
class CollectClassesVisitor;
|
|
class CollectStringReferenceVisitor;
|
|
class VisitReferencesVisitor;
|
|
|
|
void ProcessInterns(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
|
|
void ProcessWorkQueue() REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
using WorkQueue = std::deque<std::pair<ObjPtr<mirror::Object>, size_t>>;
|
|
|
|
void VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index)
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
bool TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index)
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
void AssignImageBinSlot(ObjPtr<mirror::Object> object, size_t oat_index, Bin bin)
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
ImageWriter* const image_writer_;
|
|
|
|
// Work list of <object, oat_index> for objects. Everything in the queue must already be
|
|
// assigned a bin slot.
|
|
WorkQueue work_queue_;
|
|
|
|
// Objects for individual bins. Indexed by `oat_index` and `bin`.
|
|
// Cannot use ObjPtr<> because of invalidation in Heap::VisitObjects().
|
|
dchecked_vector<dchecked_vector<dchecked_vector<mirror::Object*>>> bin_objects_;
|
|
|
|
// Interns that do not have a corresponding StringId in any of the input dex files.
|
|
// These shall be assigned to individual images based on the `oat_index` that we
|
|
// see as we visit them during the work queue processing.
|
|
dchecked_vector<mirror::String*> non_dex_file_interns_;
|
|
};
|
|
|
|
class ImageWriter::LayoutHelper::CollectClassesVisitor {
|
|
public:
|
|
explicit CollectClassesVisitor(ImageWriter* image_writer)
|
|
: image_writer_(image_writer),
|
|
dex_files_(image_writer_->compiler_options_.GetDexFilesForOatFile()) {}
|
|
|
|
bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (!image_writer_->IsInBootImage(klass.Ptr())) {
|
|
ObjPtr<mirror::Class> component_type = klass;
|
|
size_t dimension = 0u;
|
|
while (component_type->IsArrayClass<kVerifyNone>()) {
|
|
++dimension;
|
|
component_type = component_type->GetComponentType<kVerifyNone, kWithoutReadBarrier>();
|
|
}
|
|
DCHECK(!component_type->IsProxyClass());
|
|
size_t dex_file_index;
|
|
uint32_t class_def_index = 0u;
|
|
if (UNLIKELY(component_type->IsPrimitive())) {
|
|
DCHECK(image_writer_->compiler_options_.IsBootImage());
|
|
dex_file_index = 0u;
|
|
class_def_index = enum_cast<uint32_t>(component_type->GetPrimitiveType());
|
|
} else {
|
|
auto it = std::find(dex_files_.begin(), dex_files_.end(), &component_type->GetDexFile());
|
|
DCHECK(it != dex_files_.end()) << klass->PrettyDescriptor();
|
|
dex_file_index = std::distance(dex_files_.begin(), it) + 1u; // 0 is for primitive types.
|
|
class_def_index = component_type->GetDexClassDefIndex();
|
|
}
|
|
klasses_.push_back({klass, dex_file_index, class_def_index, dimension});
|
|
}
|
|
return true;
|
|
}
|
|
|
|
WorkQueue ProcessCollectedClasses(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
std::sort(klasses_.begin(), klasses_.end());
|
|
|
|
ImageWriter* image_writer = image_writer_;
|
|
WorkQueue work_queue;
|
|
size_t last_dex_file_index = static_cast<size_t>(-1);
|
|
size_t last_oat_index = static_cast<size_t>(-1);
|
|
for (const ClassEntry& entry : klasses_) {
|
|
if (last_dex_file_index != entry.dex_file_index) {
|
|
if (UNLIKELY(entry.dex_file_index == 0u)) {
|
|
last_oat_index = GetDefaultOatIndex(); // Primitive type.
|
|
} else {
|
|
uint32_t dex_file_index = entry.dex_file_index - 1u; // 0 is for primitive types.
|
|
last_oat_index = image_writer->GetOatIndexForDexFile(dex_files_[dex_file_index]);
|
|
}
|
|
last_dex_file_index = entry.dex_file_index;
|
|
}
|
|
// Count the number of classes for class tables.
|
|
image_writer->image_infos_[last_oat_index].class_table_size_ += 1u;
|
|
work_queue.emplace_back(entry.klass, last_oat_index);
|
|
}
|
|
klasses_.clear();
|
|
|
|
// Prepare image class tables.
|
|
dchecked_vector<mirror::Class*> boot_image_classes;
|
|
if (image_writer->compiler_options_.IsAppImage()) {
|
|
DCHECK_EQ(image_writer->image_infos_.size(), 1u);
|
|
ImageInfo& image_info = image_writer->image_infos_[0];
|
|
// Log the non-boot image class count for app image for debugging purposes.
|
|
VLOG(compiler) << "Dex2Oat:AppImage:classCount = " << image_info.class_table_size_;
|
|
// Collect boot image classes referenced by app class loader's class table.
|
|
JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
|
|
auto app_class_loader = DecodeGlobalWithoutRB<mirror::ClassLoader>(
|
|
vm, image_writer->app_class_loader_);
|
|
ClassTable* app_class_table = app_class_loader->GetClassTable();
|
|
ReaderMutexLock lock(self, app_class_table->lock_);
|
|
DCHECK_EQ(app_class_table->classes_.size(), 1u);
|
|
const ClassTable::ClassSet& app_class_set = app_class_table->classes_[0];
|
|
DCHECK_GE(app_class_set.size(), image_info.class_table_size_);
|
|
boot_image_classes.reserve(app_class_set.size() - image_info.class_table_size_);
|
|
for (const ClassTable::TableSlot& slot : app_class_set) {
|
|
mirror::Class* klass = slot.Read<kWithoutReadBarrier>().Ptr();
|
|
if (image_writer->IsInBootImage(klass)) {
|
|
boot_image_classes.push_back(klass);
|
|
}
|
|
}
|
|
DCHECK_EQ(app_class_set.size() - image_info.class_table_size_, boot_image_classes.size());
|
|
// Increase the app class table size to include referenced boot image classes.
|
|
image_info.class_table_size_ = app_class_set.size();
|
|
}
|
|
for (ImageInfo& image_info : image_writer->image_infos_) {
|
|
if (image_info.class_table_size_ != 0u) {
|
|
// Make sure the class table shall be full by allocating a buffer of the right size.
|
|
size_t buffer_size = static_cast<size_t>(
|
|
ceil(image_info.class_table_size_ / kImageClassTableMaxLoadFactor));
|
|
image_info.class_table_buffer_.reset(new ClassTable::TableSlot[buffer_size]);
|
|
DCHECK(image_info.class_table_buffer_ != nullptr);
|
|
image_info.class_table_.emplace(kImageClassTableMinLoadFactor,
|
|
kImageClassTableMaxLoadFactor,
|
|
image_info.class_table_buffer_.get(),
|
|
buffer_size);
|
|
}
|
|
}
|
|
for (const auto& pair : work_queue) {
|
|
ObjPtr<mirror::Class> klass = pair.first->AsClass();
|
|
size_t oat_index = pair.second;
|
|
DCHECK(image_writer->image_infos_[oat_index].class_table_.has_value());
|
|
ClassTable::ClassSet& class_table = *image_writer->image_infos_[oat_index].class_table_;
|
|
uint32_t hash = klass->DescriptorHash();
|
|
bool inserted = class_table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second;
|
|
DCHECK(inserted) << "Class " << klass->PrettyDescriptor()
|
|
<< " (" << klass.Ptr() << ") already inserted";
|
|
}
|
|
if (image_writer->compiler_options_.IsAppImage()) {
|
|
DCHECK_EQ(image_writer->image_infos_.size(), 1u);
|
|
ImageInfo& image_info = image_writer->image_infos_[0];
|
|
if (image_info.class_table_size_ != 0u) {
|
|
// Insert boot image class references to the app class table.
|
|
// The order of insertion into the app class loader's ClassTable is non-deterministic,
|
|
// so sort the boot image classes by the boot image address to get deterministic table.
|
|
std::sort(boot_image_classes.begin(), boot_image_classes.end());
|
|
DCHECK(image_info.class_table_.has_value());
|
|
ClassTable::ClassSet& table = *image_info.class_table_;
|
|
for (mirror::Class* klass : boot_image_classes) {
|
|
uint32_t hash = klass->DescriptorHash();
|
|
bool inserted = table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second;
|
|
DCHECK(inserted) << "Boot image class " << klass->PrettyDescriptor()
|
|
<< " (" << klass << ") already inserted";
|
|
}
|
|
DCHECK_EQ(table.size(), image_info.class_table_size_);
|
|
}
|
|
}
|
|
for (ImageInfo& image_info : image_writer->image_infos_) {
|
|
DCHECK_EQ(image_info.class_table_bytes_, 0u);
|
|
if (image_info.class_table_size_ != 0u) {
|
|
DCHECK(image_info.class_table_.has_value());
|
|
DCHECK_EQ(image_info.class_table_->size(), image_info.class_table_size_);
|
|
image_info.class_table_bytes_ = image_info.class_table_->WriteToMemory(nullptr);
|
|
DCHECK_NE(image_info.class_table_bytes_, 0u);
|
|
} else {
|
|
DCHECK(!image_info.class_table_.has_value());
|
|
}
|
|
}
|
|
|
|
return work_queue;
|
|
}
|
|
|
|
private:
|
|
struct ClassEntry {
|
|
ObjPtr<mirror::Class> klass;
|
|
// We shall sort classes by dex file, class def index and array dimension.
|
|
size_t dex_file_index;
|
|
uint32_t class_def_index;
|
|
size_t dimension;
|
|
|
|
bool operator<(const ClassEntry& other) const {
|
|
return std::tie(dex_file_index, class_def_index, dimension) <
|
|
std::tie(other.dex_file_index, other.class_def_index, other.dimension);
|
|
}
|
|
};
|
|
|
|
ImageWriter* const image_writer_;
|
|
const ArrayRef<const DexFile* const> dex_files_;
|
|
std::deque<ClassEntry> klasses_;
|
|
};
|
|
|
|
class ImageWriter::LayoutHelper::CollectStringReferenceVisitor {
|
|
public:
|
|
explicit CollectStringReferenceVisitor(
|
|
const ImageWriter* image_writer,
|
|
size_t oat_index,
|
|
dchecked_vector<AppImageReferenceOffsetInfo>* const string_reference_offsets,
|
|
ObjPtr<mirror::Object> current_obj)
|
|
: image_writer_(image_writer),
|
|
oat_index_(oat_index),
|
|
string_reference_offsets_(string_reference_offsets),
|
|
current_obj_(current_obj) {}
|
|
|
|
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (!root->IsNull()) {
|
|
VisitRoot(root);
|
|
}
|
|
}
|
|
|
|
void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
// Only dex caches have native String roots. These are collected separately.
|
|
DCHECK((current_obj_->IsDexCache<kVerifyNone, kWithoutReadBarrier>()) ||
|
|
!image_writer_->IsInternedAppImageStringReference(root->AsMirrorPtr()))
|
|
<< mirror::Object::PrettyTypeOf(current_obj_);
|
|
}
|
|
|
|
// Collects info for managed fields that reference managed Strings.
|
|
void operator() (ObjPtr<mirror::Object> obj,
|
|
MemberOffset member_offset,
|
|
bool is_static ATTRIBUTE_UNUSED) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ObjPtr<mirror::Object> referred_obj =
|
|
obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(member_offset);
|
|
|
|
if (image_writer_->IsInternedAppImageStringReference(referred_obj)) {
|
|
size_t base_offset = image_writer_->GetImageOffset(current_obj_.Ptr(), oat_index_);
|
|
string_reference_offsets_->emplace_back(base_offset, member_offset.Uint32Value());
|
|
}
|
|
}
|
|
|
|
ALWAYS_INLINE
|
|
void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
|
|
ObjPtr<mirror::Reference> ref) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
|
|
}
|
|
|
|
private:
|
|
const ImageWriter* const image_writer_;
|
|
const size_t oat_index_;
|
|
dchecked_vector<AppImageReferenceOffsetInfo>* const string_reference_offsets_;
|
|
const ObjPtr<mirror::Object> current_obj_;
|
|
};
|
|
|
|
class ImageWriter::LayoutHelper::VisitReferencesVisitor {
|
|
public:
|
|
VisitReferencesVisitor(LayoutHelper* helper, size_t oat_index)
|
|
: helper_(helper), oat_index_(oat_index) {}
|
|
|
|
// We do not visit native roots. These are handled with other logic.
|
|
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
|
|
const {
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
}
|
|
void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
}
|
|
|
|
ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
|
|
MemberOffset offset,
|
|
bool is_static ATTRIBUTE_UNUSED) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
mirror::Object* ref =
|
|
obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
|
|
VisitReference(ref);
|
|
}
|
|
|
|
ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
|
|
ObjPtr<mirror::Reference> ref) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
|
|
}
|
|
|
|
private:
|
|
void VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (helper_->TryAssignBinSlot(ref, oat_index_)) {
|
|
// Remember how many objects we're adding at the front of the queue as we want
|
|
// to reverse that range to process these references in the order of addition.
|
|
helper_->work_queue_.emplace_front(ref, oat_index_);
|
|
}
|
|
if (ClassLinker::kAppImageMayContainStrings &&
|
|
helper_->image_writer_->compiler_options_.IsAppImage() &&
|
|
helper_->image_writer_->IsInternedAppImageStringReference(ref)) {
|
|
helper_->image_writer_->image_infos_[oat_index_].num_string_references_ += 1u;
|
|
}
|
|
}
|
|
|
|
LayoutHelper* const helper_;
|
|
const size_t oat_index_;
|
|
};
|
|
|
|
// Visit method pointer arrays in `klass` that were not inherited from its superclass.
|
|
template <typename Visitor>
|
|
static void VisitNewMethodPointerArrays(ObjPtr<mirror::Class> klass, Visitor&& visitor)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ObjPtr<mirror::Class> super = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
|
|
ObjPtr<mirror::PointerArray> vtable = klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
|
|
if (vtable != nullptr &&
|
|
(super == nullptr || vtable != super->GetVTable<kVerifyNone, kWithoutReadBarrier>())) {
|
|
visitor(vtable);
|
|
}
|
|
int32_t iftable_count = klass->GetIfTableCount();
|
|
int32_t super_iftable_count = (super != nullptr) ? super->GetIfTableCount() : 0;
|
|
ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
|
|
ObjPtr<mirror::IfTable> super_iftable =
|
|
(super != nullptr) ? super->GetIfTable<kVerifyNone, kWithoutReadBarrier>() : nullptr;
|
|
for (int32_t i = 0; i < iftable_count; ++i) {
|
|
ObjPtr<mirror::PointerArray> methods =
|
|
iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
|
|
ObjPtr<mirror::PointerArray> super_methods = (i < super_iftable_count)
|
|
? super_iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i)
|
|
: nullptr;
|
|
if (methods != super_methods) {
|
|
DCHECK(methods != nullptr);
|
|
if (i < super_iftable_count) {
|
|
DCHECK(super_methods != nullptr);
|
|
DCHECK_EQ(methods->GetLength(), super_methods->GetLength());
|
|
}
|
|
visitor(methods);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ImageWriter::LayoutHelper::ProcessDexFileObjects(Thread* self) {
|
|
Runtime* runtime = Runtime::Current();
|
|
ClassLinker* class_linker = runtime->GetClassLinker();
|
|
const CompilerOptions& compiler_options = image_writer_->compiler_options_;
|
|
JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
|
|
|
|
// To ensure deterministic output, populate the work queue with objects in a pre-defined order.
|
|
// Note: If we decide to implement a profile-guided layout, this is the place to do so.
|
|
|
|
// Get initial work queue with the image classes and assign their bin slots.
|
|
CollectClassesVisitor visitor(image_writer_);
|
|
{
|
|
WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
|
|
if (compiler_options.IsBootImage() || compiler_options.IsBootImageExtension()) {
|
|
// No need to filter based on class loader, boot class table contains only
|
|
// classes defined by the boot class loader.
|
|
ClassTable* class_table = class_linker->boot_class_table_.get();
|
|
class_table->Visit<kWithoutReadBarrier>(visitor);
|
|
} else {
|
|
// No need to visit boot class table as there are no classes there for the app image.
|
|
for (const ClassLinker::ClassLoaderData& data : class_linker->class_loaders_) {
|
|
auto class_loader =
|
|
DecodeWeakGlobalWithoutRB<mirror::ClassLoader>(vm, self, data.weak_root);
|
|
if (class_loader != nullptr) {
|
|
ClassTable* class_table = class_loader->GetClassTable();
|
|
if (class_table != nullptr) {
|
|
// Visit only classes defined in this class loader (avoid visiting multiple times).
|
|
auto filtering_visitor = [&visitor, class_loader](ObjPtr<mirror::Class> klass)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (klass->GetClassLoader<kVerifyNone, kWithoutReadBarrier>() == class_loader) {
|
|
visitor(klass);
|
|
}
|
|
return true;
|
|
};
|
|
class_table->Visit<kWithoutReadBarrier>(filtering_visitor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
DCHECK(work_queue_.empty());
|
|
work_queue_ = visitor.ProcessCollectedClasses(self);
|
|
for (const std::pair<ObjPtr<mirror::Object>, size_t>& entry : work_queue_) {
|
|
DCHECK(entry.first != nullptr);
|
|
ObjPtr<mirror::Class> klass = entry.first->AsClass();
|
|
size_t oat_index = entry.second;
|
|
DCHECK(!image_writer_->IsInBootImage(klass.Ptr()));
|
|
DCHECK(!image_writer_->IsImageBinSlotAssigned(klass.Ptr()));
|
|
image_writer_->RecordNativeRelocations(klass, oat_index);
|
|
Bin klass_bin = image_writer_->AssignImageBinSlot(klass.Ptr(), oat_index);
|
|
bin_objects_[oat_index][enum_cast<size_t>(klass_bin)].push_back(klass.Ptr());
|
|
|
|
auto method_pointer_array_visitor =
|
|
[&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
constexpr Bin bin = kBinObjects ? Bin::kInternalClean : Bin::kRegular;
|
|
image_writer_->AssignImageBinSlot(pointer_array.Ptr(), oat_index, bin);
|
|
bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(pointer_array.Ptr());
|
|
// No need to add to the work queue. The class reference, if not in the boot image
|
|
// (that is, when compiling the primary boot image), is already in the work queue.
|
|
};
|
|
VisitNewMethodPointerArrays(klass, method_pointer_array_visitor);
|
|
}
|
|
|
|
// Assign bin slots to dex caches.
|
|
{
|
|
ReaderMutexLock mu(self, *Locks::dex_lock_);
|
|
for (const DexFile* dex_file : compiler_options.GetDexFilesForOatFile()) {
|
|
auto it = image_writer_->dex_file_oat_index_map_.find(dex_file);
|
|
DCHECK(it != image_writer_->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
|
|
const size_t oat_index = it->second;
|
|
// Assign bin slot to this file's dex cache and add it to the end of the work queue.
|
|
auto dcd_it = class_linker->GetDexCachesData().find(dex_file);
|
|
DCHECK(dcd_it != class_linker->GetDexCachesData().end()) << dex_file->GetLocation();
|
|
auto dex_cache =
|
|
DecodeWeakGlobalWithoutRB<mirror::DexCache>(vm, self, dcd_it->second.weak_root);
|
|
DCHECK(dex_cache != nullptr);
|
|
bool assigned = TryAssignBinSlot(dex_cache, oat_index);
|
|
DCHECK(assigned);
|
|
work_queue_.emplace_back(dex_cache, oat_index);
|
|
}
|
|
}
|
|
|
|
// Assign interns to images depending on the first dex file they appear in.
|
|
// Record those that do not have a StringId in any dex file.
|
|
ProcessInterns(self);
|
|
|
|
// Since classes and dex caches have been assigned to their bins, when we process a class
|
|
// we do not follow through the class references or dex caches, so we correctly process
|
|
// only objects actually belonging to that class before taking a new class from the queue.
|
|
// If multiple class statics reference the same object (directly or indirectly), the object
|
|
// is treated as belonging to the first encountered referencing class.
|
|
ProcessWorkQueue();
|
|
}
|
|
|
|
void ImageWriter::LayoutHelper::ProcessRoots(Thread* self) {
|
|
// Assign bin slots to the image roots and boot image live objects, add them to the work queue
|
|
// and process the work queue. These objects reference other objects needed for the image, for
|
|
// example the array of dex cache references, or the pre-allocated exceptions for the boot image.
|
|
DCHECK(work_queue_.empty());
|
|
|
|
constexpr Bin clean_bin = kBinObjects ? Bin::kInternalClean : Bin::kRegular;
|
|
size_t num_oat_files = image_writer_->oat_filenames_.size();
|
|
JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
|
|
for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
|
|
// Put image roots and dex caches into `clean_bin`.
|
|
auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
|
|
vm, image_writer_->image_roots_[oat_index]);
|
|
AssignImageBinSlot(image_roots, oat_index, clean_bin);
|
|
work_queue_.emplace_back(image_roots, oat_index);
|
|
// Do not rely on the `work_queue_` for dex cache arrays, it would assign a different bin.
|
|
ObjPtr<ObjectArray<Object>> dex_caches = ObjPtr<ObjectArray<Object>>::DownCast(
|
|
image_roots->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(ImageHeader::kDexCaches));
|
|
AssignImageBinSlot(dex_caches, oat_index, clean_bin);
|
|
work_queue_.emplace_back(dex_caches, oat_index);
|
|
}
|
|
// Do not rely on the `work_queue_` for boot image live objects, it would assign a different bin.
|
|
if (image_writer_->compiler_options_.IsBootImage()) {
|
|
ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
|
|
image_writer_->boot_image_live_objects_;
|
|
AssignImageBinSlot(boot_image_live_objects, GetDefaultOatIndex(), clean_bin);
|
|
work_queue_.emplace_back(boot_image_live_objects, GetDefaultOatIndex());
|
|
}
|
|
|
|
ProcessWorkQueue();
|
|
}
|
|
|
|
void ImageWriter::LayoutHelper::ProcessInterns(Thread* self) {
|
|
// String bins are empty at this point.
|
|
DCHECK(std::all_of(bin_objects_.begin(),
|
|
bin_objects_.end(),
|
|
[](const auto& bins) {
|
|
return bins[enum_cast<size_t>(Bin::kString)].empty();
|
|
}));
|
|
|
|
// There is only one non-boot image intern table and it's the last one.
|
|
InternTable* const intern_table = Runtime::Current()->GetInternTable();
|
|
MutexLock mu(self, *Locks::intern_table_lock_);
|
|
DCHECK_EQ(std::count_if(intern_table->strong_interns_.tables_.begin(),
|
|
intern_table->strong_interns_.tables_.end(),
|
|
[](const InternTable::Table::InternalTable& table) {
|
|
return !table.IsBootImage();
|
|
}),
|
|
1);
|
|
DCHECK(!intern_table->strong_interns_.tables_.back().IsBootImage());
|
|
const InternTable::UnorderedSet& intern_set = intern_table->strong_interns_.tables_.back().set_;
|
|
|
|
// Assign bin slots to all interns with a corresponding StringId in one of the input dex files.
|
|
ImageWriter* image_writer = image_writer_;
|
|
for (const DexFile* dex_file : image_writer->compiler_options_.GetDexFilesForOatFile()) {
|
|
auto it = image_writer->dex_file_oat_index_map_.find(dex_file);
|
|
DCHECK(it != image_writer->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
|
|
const size_t oat_index = it->second;
|
|
// Assign bin slots for strings defined in this dex file in StringId (lexicographical) order.
|
|
auto& string_bin_objects = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)];
|
|
for (size_t i = 0, count = dex_file->NumStringIds(); i != count; ++i) {
|
|
uint32_t utf16_length;
|
|
const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(dex::StringIndex(i),
|
|
&utf16_length);
|
|
uint32_t hash = InternTable::Utf8String::Hash(utf16_length, utf8_data);
|
|
auto intern_it =
|
|
intern_set.FindWithHash(InternTable::Utf8String(utf16_length, utf8_data), hash);
|
|
if (intern_it != intern_set.end()) {
|
|
mirror::String* string = intern_it->Read<kWithoutReadBarrier>();
|
|
DCHECK(string != nullptr);
|
|
DCHECK(!image_writer->IsInBootImage(string));
|
|
if (!image_writer->IsImageBinSlotAssigned(string)) {
|
|
Bin bin = image_writer->AssignImageBinSlot(string, oat_index);
|
|
DCHECK_EQ(bin, kBinObjects ? Bin::kString : Bin::kRegular);
|
|
string_bin_objects.push_back(string);
|
|
} else {
|
|
// We have already seen this string in a previous dex file.
|
|
DCHECK(dex_file != image_writer->compiler_options_.GetDexFilesForOatFile().front());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// String bins have been filled with dex file interns. Record their numbers in image infos.
|
|
DCHECK_EQ(bin_objects_.size(), image_writer_->image_infos_.size());
|
|
size_t total_dex_file_interns = 0u;
|
|
for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) {
|
|
size_t num_dex_file_interns = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)].size();
|
|
ImageInfo& image_info = image_writer_->GetImageInfo(oat_index);
|
|
DCHECK_EQ(image_info.intern_table_size_, 0u);
|
|
image_info.intern_table_size_ = num_dex_file_interns;
|
|
total_dex_file_interns += num_dex_file_interns;
|
|
}
|
|
|
|
// Collect interns that do not have a corresponding StringId in any of the input dex files.
|
|
non_dex_file_interns_.reserve(intern_set.size() - total_dex_file_interns);
|
|
for (const GcRoot<mirror::String>& root : intern_set) {
|
|
mirror::String* string = root.Read<kWithoutReadBarrier>();
|
|
if (!image_writer->IsImageBinSlotAssigned(string)) {
|
|
non_dex_file_interns_.push_back(string);
|
|
}
|
|
}
|
|
DCHECK_EQ(intern_set.size(), total_dex_file_interns + non_dex_file_interns_.size());
|
|
}
|
|
|
|
void ImageWriter::LayoutHelper::FinalizeInternTables() {
|
|
// Remove interns that do not have a bin slot assigned. These correspond
|
|
// to the DexCache locations excluded in VerifyImageBinSlotsAssigned().
|
|
ImageWriter* image_writer = image_writer_;
|
|
auto retained_end = std::remove_if(
|
|
non_dex_file_interns_.begin(),
|
|
non_dex_file_interns_.end(),
|
|
[=](mirror::String* string) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return !image_writer->IsImageBinSlotAssigned(string);
|
|
});
|
|
non_dex_file_interns_.resize(std::distance(non_dex_file_interns_.begin(), retained_end));
|
|
|
|
// Sort `non_dex_file_interns_` based on oat index and bin offset.
|
|
ArrayRef<mirror::String*> non_dex_file_interns(non_dex_file_interns_);
|
|
std::sort(non_dex_file_interns.begin(),
|
|
non_dex_file_interns.end(),
|
|
[=](mirror::String* lhs, mirror::String* rhs) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
size_t lhs_oat_index = image_writer->GetOatIndex(lhs);
|
|
size_t rhs_oat_index = image_writer->GetOatIndex(rhs);
|
|
if (lhs_oat_index != rhs_oat_index) {
|
|
return lhs_oat_index < rhs_oat_index;
|
|
}
|
|
BinSlot lhs_bin_slot = image_writer->GetImageBinSlot(lhs, lhs_oat_index);
|
|
BinSlot rhs_bin_slot = image_writer->GetImageBinSlot(rhs, rhs_oat_index);
|
|
return lhs_bin_slot < rhs_bin_slot;
|
|
});
|
|
|
|
// Allocate and fill intern tables.
|
|
size_t ndfi_index = 0u;
|
|
DCHECK_EQ(bin_objects_.size(), image_writer->image_infos_.size());
|
|
for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) {
|
|
// Find the end of `non_dex_file_interns` for this oat file.
|
|
size_t ndfi_end = ndfi_index;
|
|
while (ndfi_end != non_dex_file_interns.size() &&
|
|
image_writer->GetOatIndex(non_dex_file_interns[ndfi_end]) == oat_index) {
|
|
++ndfi_end;
|
|
}
|
|
|
|
// Calculate final intern table size.
|
|
ImageInfo& image_info = image_writer->GetImageInfo(oat_index);
|
|
DCHECK_EQ(image_info.intern_table_bytes_, 0u);
|
|
size_t num_dex_file_interns = image_info.intern_table_size_;
|
|
size_t num_non_dex_file_interns = ndfi_end - ndfi_index;
|
|
image_info.intern_table_size_ = num_dex_file_interns + num_non_dex_file_interns;
|
|
if (image_info.intern_table_size_ != 0u) {
|
|
// Make sure the intern table shall be full by allocating a buffer of the right size.
|
|
size_t buffer_size = static_cast<size_t>(
|
|
ceil(image_info.intern_table_size_ / kImageInternTableMaxLoadFactor));
|
|
image_info.intern_table_buffer_.reset(new GcRoot<mirror::String>[buffer_size]);
|
|
DCHECK(image_info.intern_table_buffer_ != nullptr);
|
|
image_info.intern_table_.emplace(kImageInternTableMinLoadFactor,
|
|
kImageInternTableMaxLoadFactor,
|
|
image_info.intern_table_buffer_.get(),
|
|
buffer_size);
|
|
|
|
// Fill the intern table. Dex file interns are at the start of the bin_objects[.][kString].
|
|
InternTable::UnorderedSet& table = *image_info.intern_table_;
|
|
const auto& oat_file_strings = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)];
|
|
DCHECK_LE(num_dex_file_interns, oat_file_strings.size());
|
|
ArrayRef<mirror::Object* const> dex_file_interns(
|
|
oat_file_strings.data(), num_dex_file_interns);
|
|
for (mirror::Object* string : dex_file_interns) {
|
|
bool inserted = table.insert(GcRoot<mirror::String>(string->AsString())).second;
|
|
DCHECK(inserted) << "String already inserted: " << string->AsString()->ToModifiedUtf8();
|
|
}
|
|
ArrayRef<mirror::String*> current_non_dex_file_interns =
|
|
non_dex_file_interns.SubArray(ndfi_index, num_non_dex_file_interns);
|
|
for (mirror::String* string : current_non_dex_file_interns) {
|
|
bool inserted = table.insert(GcRoot<mirror::String>(string)).second;
|
|
DCHECK(inserted) << "String already inserted: " << string->ToModifiedUtf8();
|
|
}
|
|
|
|
// Record the intern table size in bytes.
|
|
image_info.intern_table_bytes_ = table.WriteToMemory(nullptr);
|
|
}
|
|
|
|
ndfi_index = ndfi_end;
|
|
}
|
|
}
|
|
|
|
void ImageWriter::LayoutHelper::ProcessWorkQueue() {
|
|
while (!work_queue_.empty()) {
|
|
std::pair<ObjPtr<mirror::Object>, size_t> pair = work_queue_.front();
|
|
work_queue_.pop_front();
|
|
VisitReferences(/*obj=*/ pair.first, /*oat_index=*/ pair.second);
|
|
}
|
|
}
|
|
|
|
void ImageWriter::LayoutHelper::VerifyImageBinSlotsAssigned() {
|
|
dchecked_vector<mirror::Object*> carveout;
|
|
JavaVMExt* vm = nullptr;
|
|
if (image_writer_->compiler_options_.IsAppImage()) {
|
|
// Exclude boot class path dex caches that are not part of the boot image.
|
|
// Also exclude their locations if they have not been visited through another path.
|
|
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
|
|
Thread* self = Thread::Current();
|
|
vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
|
|
ReaderMutexLock mu(self, *Locks::dex_lock_);
|
|
for (const auto& entry : class_linker->GetDexCachesData()) {
|
|
const ClassLinker::DexCacheData& data = entry.second;
|
|
auto dex_cache = DecodeWeakGlobalWithoutRB<mirror::DexCache>(vm, self, data.weak_root);
|
|
if (dex_cache == nullptr ||
|
|
image_writer_->IsInBootImage(dex_cache.Ptr()) ||
|
|
ContainsElement(image_writer_->compiler_options_.GetDexFilesForOatFile(),
|
|
dex_cache->GetDexFile())) {
|
|
continue;
|
|
}
|
|
CHECK(!image_writer_->IsImageBinSlotAssigned(dex_cache.Ptr()));
|
|
carveout.push_back(dex_cache.Ptr());
|
|
ObjPtr<mirror::String> location = dex_cache->GetLocation<kVerifyNone, kWithoutReadBarrier>();
|
|
if (!image_writer_->IsImageBinSlotAssigned(location.Ptr())) {
|
|
carveout.push_back(location.Ptr());
|
|
}
|
|
}
|
|
}
|
|
|
|
dchecked_vector<mirror::Object*> missed_objects;
|
|
auto ensure_bin_slots_assigned = [&](mirror::Object* obj)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (!image_writer_->IsInBootImage(obj)) {
|
|
if (!UNLIKELY(image_writer_->IsImageBinSlotAssigned(obj))) {
|
|
// Ignore the `carveout` objects.
|
|
if (ContainsElement(carveout, obj)) {
|
|
return;
|
|
}
|
|
// Ignore finalizer references for the dalvik.system.DexFile objects referenced by
|
|
// the app class loader.
|
|
ObjPtr<mirror::Class> klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
|
|
if (klass->IsFinalizerReferenceClass<kVerifyNone>()) {
|
|
ObjPtr<mirror::Class> reference_class =
|
|
klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
|
|
DCHECK(reference_class->DescriptorEquals("Ljava/lang/ref/Reference;"));
|
|
ArtField* ref_field = reference_class->FindDeclaredInstanceField(
|
|
"referent", "Ljava/lang/Object;");
|
|
CHECK(ref_field != nullptr);
|
|
ObjPtr<mirror::Object> ref = ref_field->GetObject<kWithoutReadBarrier>(obj);
|
|
CHECK(ref != nullptr);
|
|
CHECK(image_writer_->IsImageBinSlotAssigned(ref.Ptr()));
|
|
ObjPtr<mirror::Class> ref_klass = ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
|
|
CHECK(ref_klass ==
|
|
DecodeGlobalWithoutRB<mirror::Class>(vm, WellKnownClasses::dalvik_system_DexFile));
|
|
// Note: The app class loader is used only for checking against the runtime
|
|
// class loader, the dex file cookie is cleared and therefore we do not need
|
|
// to run the finalizer even if we implement app image objects collection.
|
|
ArtField* field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
|
|
CHECK(field->GetObject<kWithoutReadBarrier>(ref) == nullptr);
|
|
return;
|
|
}
|
|
if (klass->IsStringClass()) {
|
|
// Ignore interned strings. These may come from reflection interning method names.
|
|
// TODO: Make dex file strings weak interns and GC them before writing the image.
|
|
if (IsStronglyInternedString(obj->AsString())) {
|
|
return;
|
|
}
|
|
}
|
|
missed_objects.push_back(obj);
|
|
}
|
|
}
|
|
};
|
|
Runtime::Current()->GetHeap()->VisitObjects(ensure_bin_slots_assigned);
|
|
if (!missed_objects.empty()) {
|
|
const gc::Verification* v = Runtime::Current()->GetHeap()->GetVerification();
|
|
size_t num_missed_objects = missed_objects.size();
|
|
size_t num_paths = std::min<size_t>(num_missed_objects, 5u); // Do not flood the output.
|
|
ArrayRef<mirror::Object*> missed_objects_head =
|
|
ArrayRef<mirror::Object*>(missed_objects).SubArray(/*pos=*/ 0u, /*length=*/ num_paths);
|
|
for (mirror::Object* obj : missed_objects_head) {
|
|
LOG(ERROR) << "Image object without assigned bin slot: "
|
|
<< mirror::Object::PrettyTypeOf(obj) << " " << obj
|
|
<< " " << v->FirstPathFromRootSet(obj);
|
|
}
|
|
LOG(FATAL) << "Found " << num_missed_objects << " objects without assigned bin slots.";
|
|
}
|
|
}
|
|
|
|
void ImageWriter::LayoutHelper::FinalizeBinSlotOffsets() {
|
|
// Calculate bin slot offsets and adjust for region padding if needed.
|
|
const size_t region_size = image_writer_->region_size_;
|
|
const size_t num_image_infos = image_writer_->image_infos_.size();
|
|
for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
|
|
ImageInfo& image_info = image_writer_->image_infos_[oat_index];
|
|
size_t bin_offset = image_writer_->image_objects_offset_begin_;
|
|
|
|
for (size_t i = 0; i != kNumberOfBins; ++i) {
|
|
Bin bin = enum_cast<Bin>(i);
|
|
switch (bin) {
|
|
case Bin::kArtMethodClean:
|
|
case Bin::kArtMethodDirty: {
|
|
bin_offset = RoundUp(bin_offset, ArtMethod::Alignment(image_writer_->target_ptr_size_));
|
|
break;
|
|
}
|
|
case Bin::kImTable:
|
|
case Bin::kIMTConflictTable: {
|
|
bin_offset = RoundUp(bin_offset, static_cast<size_t>(image_writer_->target_ptr_size_));
|
|
break;
|
|
}
|
|
default: {
|
|
// Normal alignment.
|
|
}
|
|
}
|
|
image_info.bin_slot_offsets_[i] = bin_offset;
|
|
|
|
// If the bin is for mirror objects, we may need to add region padding and update offsets.
|
|
if (i < enum_cast<size_t>(Bin::kMirrorCount) && region_size != 0u) {
|
|
const size_t offset_after_header = bin_offset - sizeof(ImageHeader);
|
|
size_t remaining_space =
|
|
RoundUp(offset_after_header + 1u, region_size) - offset_after_header;
|
|
// Exercise the loop below in debug builds to get coverage.
|
|
if (kIsDebugBuild || remaining_space < image_info.bin_slot_sizes_[i]) {
|
|
// The bin crosses a region boundary. Add padding if needed.
|
|
size_t object_offset = 0u;
|
|
size_t padding = 0u;
|
|
for (mirror::Object* object : bin_objects_[oat_index][i]) {
|
|
BinSlot bin_slot = image_writer_->GetImageBinSlot(object, oat_index);
|
|
DCHECK_EQ(enum_cast<size_t>(bin_slot.GetBin()), i);
|
|
DCHECK_EQ(bin_slot.GetOffset() + padding, object_offset);
|
|
size_t object_size = RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
|
|
|
|
auto add_padding = [&](bool tail_region) {
|
|
DCHECK_NE(remaining_space, 0u);
|
|
DCHECK_LT(remaining_space, region_size);
|
|
DCHECK_ALIGNED(remaining_space, kObjectAlignment);
|
|
// TODO When copying to heap regions, leave the tail region padding zero-filled.
|
|
if (!tail_region || true) {
|
|
image_info.padding_offsets_.push_back(bin_offset + object_offset);
|
|
}
|
|
image_info.bin_slot_sizes_[i] += remaining_space;
|
|
padding += remaining_space;
|
|
object_offset += remaining_space;
|
|
remaining_space = region_size;
|
|
};
|
|
if (object_size > remaining_space) {
|
|
// Padding needed if we're not at region boundary (with a multi-region object).
|
|
if (remaining_space != region_size) {
|
|
// TODO: Instead of adding padding, we should consider reordering the bins
|
|
// or objects to reduce wasted space.
|
|
add_padding(/*tail_region=*/ false);
|
|
}
|
|
DCHECK_EQ(remaining_space, region_size);
|
|
// For huge objects, adjust the remaining space to hold the object and some more.
|
|
if (object_size > region_size) {
|
|
remaining_space = RoundUp(object_size + 1u, region_size);
|
|
}
|
|
} else if (remaining_space == object_size) {
|
|
// Move to the next region, no padding needed.
|
|
remaining_space += region_size;
|
|
}
|
|
DCHECK_GT(remaining_space, object_size);
|
|
remaining_space -= object_size;
|
|
image_writer_->UpdateImageBinSlotOffset(object, oat_index, object_offset);
|
|
object_offset += object_size;
|
|
// Add padding to the tail region of huge objects if not region-aligned.
|
|
if (object_size > region_size && remaining_space != region_size) {
|
|
DCHECK(!IsAlignedParam(object_size, region_size));
|
|
add_padding(/*tail_region=*/ true);
|
|
}
|
|
}
|
|
image_writer_->region_alignment_wasted_ += padding;
|
|
image_info.image_end_ += padding;
|
|
}
|
|
}
|
|
bin_offset += image_info.bin_slot_sizes_[i];
|
|
}
|
|
// NOTE: There may be additional padding between the bin slots and the intern table.
|
|
DCHECK_EQ(
|
|
image_info.image_end_,
|
|
image_info.GetBinSizeSum(Bin::kMirrorCount) + image_writer_->image_objects_offset_begin_);
|
|
}
|
|
|
|
VLOG(image) << "Space wasted for region alignment " << image_writer_->region_alignment_wasted_;
|
|
}
|
|
|
|
void ImageWriter::LayoutHelper::CollectStringReferenceInfo() {
|
|
size_t total_string_refs = 0u;
|
|
|
|
const size_t num_image_infos = image_writer_->image_infos_.size();
|
|
for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
|
|
ImageInfo& image_info = image_writer_->image_infos_[oat_index];
|
|
DCHECK(image_info.string_reference_offsets_.empty());
|
|
image_info.string_reference_offsets_.reserve(image_info.num_string_references_);
|
|
|
|
for (size_t i = 0; i < enum_cast<size_t>(Bin::kMirrorCount); ++i) {
|
|
for (mirror::Object* obj : bin_objects_[oat_index][i]) {
|
|
CollectStringReferenceVisitor visitor(image_writer_,
|
|
oat_index,
|
|
&image_info.string_reference_offsets_,
|
|
obj);
|
|
/*
|
|
* References to managed strings can occur either in the managed heap or in
|
|
* native memory regions. Information about managed references is collected
|
|
* by the CollectStringReferenceVisitor and directly added to the image info.
|
|
*
|
|
* Native references to managed strings can only occur through DexCache
|
|
* objects. This is verified by the visitor in debug mode and the references
|
|
* are collected separately below.
|
|
*/
|
|
obj->VisitReferences</*kVisitNativeRoots=*/ kIsDebugBuild,
|
|
kVerifyNone,
|
|
kWithoutReadBarrier>(visitor, visitor);
|
|
}
|
|
}
|
|
|
|
total_string_refs += image_info.string_reference_offsets_.size();
|
|
|
|
// Check that we collected the same number of string references as we saw in the previous pass.
|
|
CHECK_EQ(image_info.string_reference_offsets_.size(), image_info.num_string_references_);
|
|
}
|
|
|
|
VLOG(compiler) << "Dex2Oat:AppImage:stringReferences = " << total_string_refs;
|
|
}
|
|
|
|
void ImageWriter::LayoutHelper::VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index) {
|
|
size_t old_work_queue_size = work_queue_.size();
|
|
VisitReferencesVisitor visitor(this, oat_index);
|
|
// Walk references and assign bin slots for them.
|
|
obj->VisitReferences</*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(
|
|
visitor,
|
|
visitor);
|
|
// Put the added references in the queue in the order in which they were added.
|
|
// The visitor just pushes them to the front as it visits them.
|
|
DCHECK_LE(old_work_queue_size, work_queue_.size());
|
|
size_t num_added = work_queue_.size() - old_work_queue_size;
|
|
std::reverse(work_queue_.begin(), work_queue_.begin() + num_added);
|
|
}
|
|
|
|
bool ImageWriter::LayoutHelper::TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index) {
|
|
if (obj == nullptr || image_writer_->IsInBootImage(obj.Ptr())) {
|
|
// Object is null or already in the image, there is no work to do.
|
|
return false;
|
|
}
|
|
bool assigned = false;
|
|
if (!image_writer_->IsImageBinSlotAssigned(obj.Ptr())) {
|
|
Bin bin = image_writer_->AssignImageBinSlot(obj.Ptr(), oat_index);
|
|
bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(obj.Ptr());
|
|
assigned = true;
|
|
}
|
|
return assigned;
|
|
}
|
|
|
|
void ImageWriter::LayoutHelper::AssignImageBinSlot(
|
|
ObjPtr<mirror::Object> object, size_t oat_index, Bin bin) {
|
|
DCHECK(object != nullptr);
|
|
DCHECK(!image_writer_->IsInBootImage(object.Ptr()));
|
|
DCHECK(!image_writer_->IsImageBinSlotAssigned(object.Ptr()));
|
|
image_writer_->AssignImageBinSlot(object.Ptr(), oat_index, bin);
|
|
bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(object.Ptr());
|
|
}
|
|
|
|
void ImageWriter::CalculateNewObjectOffsets() {
|
|
Thread* const self = Thread::Current();
|
|
Runtime* const runtime = Runtime::Current();
|
|
gc::Heap* const heap = runtime->GetHeap();
|
|
|
|
// Leave space for the header, but do not write it yet, we need to
|
|
// know where image_roots is going to end up
|
|
image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment
|
|
|
|
// Write the image runtime methods.
|
|
image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
|
|
image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
|
|
image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
|
|
image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
|
|
runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves);
|
|
image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
|
|
runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly);
|
|
image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
|
|
runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
|
|
image_methods_[ImageHeader::kSaveEverythingMethod] =
|
|
runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything);
|
|
image_methods_[ImageHeader::kSaveEverythingMethodForClinit] =
|
|
runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit);
|
|
image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] =
|
|
runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck);
|
|
// Visit image methods first to have the main runtime methods in the first image.
|
|
for (auto* m : image_methods_) {
|
|
CHECK(m != nullptr);
|
|
CHECK(m->IsRuntimeMethod());
|
|
DCHECK_EQ(!compiler_options_.IsBootImage(), IsInBootImage(m))
|
|
<< "Trampolines should be in boot image";
|
|
if (!IsInBootImage(m)) {
|
|
AssignMethodOffset(m, NativeObjectRelocationType::kRuntimeMethod, GetDefaultOatIndex());
|
|
}
|
|
}
|
|
|
|
// Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
|
|
// this lock while holding other locks may cause lock order violations.
|
|
{
|
|
auto deflate_monitor = [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
Monitor::Deflate(Thread::Current(), obj);
|
|
};
|
|
heap->VisitObjects(deflate_monitor);
|
|
}
|
|
|
|
// From this point on, there shall be no GC anymore and no objects shall be allocated.
|
|
// We can now assign a BitSlot to each object and store it in its lockword.
|
|
|
|
JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
|
|
if (compiler_options_.IsBootImage() || compiler_options_.IsBootImageExtension()) {
|
|
// Record the address of boot image live objects.
|
|
auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
|
|
vm, image_roots_[0]);
|
|
boot_image_live_objects_ = ObjPtr<ObjectArray<Object>>::DownCast(
|
|
image_roots->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(
|
|
ImageHeader::kBootImageLiveObjects)).Ptr();
|
|
}
|
|
|
|
LayoutHelper layout_helper(this);
|
|
layout_helper.ProcessDexFileObjects(self);
|
|
layout_helper.ProcessRoots(self);
|
|
layout_helper.FinalizeInternTables();
|
|
|
|
// Verify that all objects have assigned image bin slots.
|
|
layout_helper.VerifyImageBinSlotsAssigned();
|
|
|
|
// Finalize bin slot offsets. This may add padding for regions.
|
|
layout_helper.FinalizeBinSlotOffsets();
|
|
|
|
// Collect string reference info for app images.
|
|
if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) {
|
|
layout_helper.CollectStringReferenceInfo();
|
|
}
|
|
|
|
// Calculate image offsets.
|
|
size_t image_offset = 0;
|
|
for (ImageInfo& image_info : image_infos_) {
|
|
image_info.image_begin_ = global_image_begin_ + image_offset;
|
|
image_info.image_offset_ = image_offset;
|
|
image_info.image_size_ = RoundUp(image_info.CreateImageSections().first, kPageSize);
|
|
// There should be no gaps until the next image.
|
|
image_offset += image_info.image_size_;
|
|
}
|
|
|
|
size_t oat_index = 0;
|
|
for (ImageInfo& image_info : image_infos_) {
|
|
auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
|
|
vm, image_roots_[oat_index]);
|
|
image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots.Ptr()));
|
|
++oat_index;
|
|
}
|
|
|
|
// Update the native relocations by adding their bin sums.
|
|
for (auto& pair : native_object_relocations_) {
|
|
NativeObjectRelocation& relocation = pair.second;
|
|
Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
|
|
ImageInfo& image_info = GetImageInfo(relocation.oat_index);
|
|
relocation.offset += image_info.GetBinSlotOffset(bin_type);
|
|
}
|
|
}
|
|
|
|
std::pair<size_t, dchecked_vector<ImageSection>>
|
|
ImageWriter::ImageInfo::CreateImageSections() const {
|
|
dchecked_vector<ImageSection> sections(ImageHeader::kSectionCount);
|
|
|
|
// Do not round up any sections here that are represented by the bins since it
|
|
// will break offsets.
|
|
|
|
/*
|
|
* Objects section
|
|
*/
|
|
sections[ImageHeader::kSectionObjects] =
|
|
ImageSection(0u, image_end_);
|
|
|
|
/*
|
|
* Field section
|
|
*/
|
|
sections[ImageHeader::kSectionArtFields] =
|
|
ImageSection(GetBinSlotOffset(Bin::kArtField), GetBinSlotSize(Bin::kArtField));
|
|
|
|
/*
|
|
* Method section
|
|
*/
|
|
sections[ImageHeader::kSectionArtMethods] =
|
|
ImageSection(GetBinSlotOffset(Bin::kArtMethodClean),
|
|
GetBinSlotSize(Bin::kArtMethodClean) +
|
|
GetBinSlotSize(Bin::kArtMethodDirty));
|
|
|
|
/*
|
|
* IMT section
|
|
*/
|
|
sections[ImageHeader::kSectionImTables] =
|
|
ImageSection(GetBinSlotOffset(Bin::kImTable), GetBinSlotSize(Bin::kImTable));
|
|
|
|
/*
|
|
* Conflict Tables section
|
|
*/
|
|
sections[ImageHeader::kSectionIMTConflictTables] =
|
|
ImageSection(GetBinSlotOffset(Bin::kIMTConflictTable), GetBinSlotSize(Bin::kIMTConflictTable));
|
|
|
|
/*
|
|
* Runtime Methods section
|
|
*/
|
|
sections[ImageHeader::kSectionRuntimeMethods] =
|
|
ImageSection(GetBinSlotOffset(Bin::kRuntimeMethod), GetBinSlotSize(Bin::kRuntimeMethod));
|
|
|
|
/*
|
|
* Interned Strings section
|
|
*/
|
|
|
|
// Round up to the alignment the string table expects. See HashSet::WriteToMemory.
|
|
size_t cur_pos = RoundUp(sections[ImageHeader::kSectionRuntimeMethods].End(), sizeof(uint64_t));
|
|
|
|
const ImageSection& interned_strings_section =
|
|
sections[ImageHeader::kSectionInternedStrings] =
|
|
ImageSection(cur_pos, intern_table_bytes_);
|
|
|
|
/*
|
|
* Class Table section
|
|
*/
|
|
|
|
// Obtain the new position and round it up to the appropriate alignment.
|
|
cur_pos = RoundUp(interned_strings_section.End(), sizeof(uint64_t));
|
|
|
|
const ImageSection& class_table_section =
|
|
sections[ImageHeader::kSectionClassTable] =
|
|
ImageSection(cur_pos, class_table_bytes_);
|
|
|
|
/*
|
|
* String Field Offsets section
|
|
*/
|
|
|
|
// Round up to the alignment of the offsets we are going to store.
|
|
cur_pos = RoundUp(class_table_section.End(), sizeof(uint32_t));
|
|
|
|
// The size of string_reference_offsets_ can't be used here because it hasn't
|
|
// been filled with AppImageReferenceOffsetInfo objects yet. The
|
|
// num_string_references_ value is calculated separately, before we can
|
|
// compute the actual offsets.
|
|
const ImageSection& string_reference_offsets =
|
|
sections[ImageHeader::kSectionStringReferenceOffsets] =
|
|
ImageSection(cur_pos, sizeof(string_reference_offsets_[0]) * num_string_references_);
|
|
|
|
/*
|
|
* Metadata section.
|
|
*/
|
|
|
|
// Round up to the alignment of the offsets we are going to store.
|
|
cur_pos = RoundUp(string_reference_offsets.End(), sizeof(uint32_t));
|
|
|
|
const ImageSection& metadata_section =
|
|
sections[ImageHeader::kSectionMetadata] =
|
|
ImageSection(cur_pos, GetBinSlotSize(Bin::kMetadata));
|
|
|
|
// Return the number of bytes described by these sections, and the sections
|
|
// themselves.
|
|
return make_pair(metadata_section.End(), std::move(sections));
|
|
}
|
|
|
|
void ImageWriter::CreateHeader(size_t oat_index, size_t component_count) {
|
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
|
const uint8_t* oat_file_begin = image_info.oat_file_begin_;
|
|
const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
|
|
const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
|
|
|
|
uint32_t image_reservation_size = image_info.image_size_;
|
|
DCHECK_ALIGNED(image_reservation_size, kPageSize);
|
|
uint32_t current_component_count = 1u;
|
|
if (compiler_options_.IsAppImage()) {
|
|
DCHECK_EQ(oat_index, 0u);
|
|
DCHECK_EQ(component_count, current_component_count);
|
|
} else {
|
|
DCHECK(image_infos_.size() == 1u || image_infos_.size() == component_count)
|
|
<< image_infos_.size() << " " << component_count;
|
|
if (oat_index == 0u) {
|
|
const ImageInfo& last_info = image_infos_.back();
|
|
const uint8_t* end = last_info.oat_file_begin_ + last_info.oat_loaded_size_;
|
|
DCHECK_ALIGNED(image_info.image_begin_, kPageSize);
|
|
image_reservation_size =
|
|
dchecked_integral_cast<uint32_t>(RoundUp(end - image_info.image_begin_, kPageSize));
|
|
current_component_count = component_count;
|
|
} else {
|
|
image_reservation_size = 0u;
|
|
current_component_count = 0u;
|
|
}
|
|
}
|
|
|
|
// Compute boot image checksums for the primary component, leave as 0 otherwise.
|
|
uint32_t boot_image_components = 0u;
|
|
uint32_t boot_image_checksums = 0u;
|
|
if (oat_index == 0u) {
|
|
const std::vector<gc::space::ImageSpace*>& image_spaces =
|
|
Runtime::Current()->GetHeap()->GetBootImageSpaces();
|
|
DCHECK_EQ(image_spaces.empty(), compiler_options_.IsBootImage());
|
|
for (size_t i = 0u, size = image_spaces.size(); i != size; ) {
|
|
const ImageHeader& header = image_spaces[i]->GetImageHeader();
|
|
boot_image_components += header.GetComponentCount();
|
|
boot_image_checksums ^= header.GetImageChecksum();
|
|
DCHECK_LE(header.GetImageSpaceCount(), size - i);
|
|
i += header.GetImageSpaceCount();
|
|
}
|
|
}
|
|
|
|
// Create the image sections.
|
|
auto section_info_pair = image_info.CreateImageSections();
|
|
const size_t image_end = section_info_pair.first;
|
|
dchecked_vector<ImageSection>& sections = section_info_pair.second;
|
|
|
|
// Finally bitmap section.
|
|
const size_t bitmap_bytes = image_info.image_bitmap_.Size();
|
|
auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap];
|
|
*bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
|
|
if (VLOG_IS_ON(compiler)) {
|
|
LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
|
|
size_t idx = 0;
|
|
for (const ImageSection& section : sections) {
|
|
LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
|
|
++idx;
|
|
}
|
|
LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
|
|
LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
|
|
LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
|
|
<< " Image offset=" << image_info.image_offset_ << std::dec;
|
|
LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
|
|
<< " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
|
|
<< " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
|
|
<< " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
|
|
}
|
|
|
|
// Create the header, leave 0 for data size since we will fill this in as we are writing the
|
|
// image.
|
|
new (image_info.image_.Begin()) ImageHeader(
|
|
image_reservation_size,
|
|
current_component_count,
|
|
PointerToLowMemUInt32(image_info.image_begin_),
|
|
image_end,
|
|
sections.data(),
|
|
image_info.image_roots_address_,
|
|
image_info.oat_checksum_,
|
|
PointerToLowMemUInt32(oat_file_begin),
|
|
PointerToLowMemUInt32(image_info.oat_data_begin_),
|
|
PointerToLowMemUInt32(oat_data_end),
|
|
PointerToLowMemUInt32(oat_file_end),
|
|
boot_image_begin_,
|
|
boot_image_size_,
|
|
boot_image_components,
|
|
boot_image_checksums,
|
|
static_cast<uint32_t>(target_ptr_size_));
|
|
}
|
|
|
|
ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
|
|
NativeObjectRelocation relocation = GetNativeRelocation(method);
|
|
const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
|
|
CHECK_GE(relocation.offset, image_info.image_end_) << "ArtMethods should be after Objects";
|
|
return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + relocation.offset);
|
|
}
|
|
|
|
const void* ImageWriter::GetIntrinsicReferenceAddress(uint32_t intrinsic_data) {
|
|
DCHECK(compiler_options_.IsBootImage());
|
|
switch (IntrinsicObjects::DecodePatchType(intrinsic_data)) {
|
|
case IntrinsicObjects::PatchType::kIntegerValueOfArray: {
|
|
const uint8_t* base_address =
|
|
reinterpret_cast<const uint8_t*>(GetImageAddress(boot_image_live_objects_));
|
|
MemberOffset data_offset =
|
|
IntrinsicObjects::GetIntegerValueOfArrayDataOffset(boot_image_live_objects_);
|
|
return base_address + data_offset.Uint32Value();
|
|
}
|
|
case IntrinsicObjects::PatchType::kIntegerValueOfObject: {
|
|
uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data);
|
|
ObjPtr<mirror::Object> value =
|
|
IntrinsicObjects::GetIntegerValueOfObject(boot_image_live_objects_, index);
|
|
return GetImageAddress(value.Ptr());
|
|
}
|
|
}
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
class ImageWriter::FixupRootVisitor : public RootVisitor {
|
|
public:
|
|
explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
|
|
}
|
|
|
|
void VisitRoots(mirror::Object*** roots ATTRIBUTE_UNUSED,
|
|
size_t count ATTRIBUTE_UNUSED,
|
|
const RootInfo& info ATTRIBUTE_UNUSED)
|
|
override REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
LOG(FATAL) << "Unsupported";
|
|
}
|
|
|
|
void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
|
|
size_t count,
|
|
const RootInfo& info ATTRIBUTE_UNUSED)
|
|
override REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
for (size_t i = 0; i < count; ++i) {
|
|
// Copy the reference. Since we do not have the address for recording the relocation,
|
|
// it needs to be recorded explicitly by the user of FixupRootVisitor.
|
|
ObjPtr<mirror::Object> old_ptr = roots[i]->AsMirrorPtr();
|
|
roots[i]->Assign(image_writer_->GetImageAddress(old_ptr.Ptr()));
|
|
}
|
|
}
|
|
|
|
private:
|
|
ImageWriter* const image_writer_;
|
|
};
|
|
|
|
void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
|
|
for (size_t i = 0; i < ImTable::kSize; ++i) {
|
|
ArtMethod* method = orig->Get(i, target_ptr_size_);
|
|
void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_));
|
|
CopyAndFixupPointer(address, method);
|
|
DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method));
|
|
}
|
|
}
|
|
|
|
void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
|
|
const size_t count = orig->NumEntries(target_ptr_size_);
|
|
for (size_t i = 0; i < count; ++i) {
|
|
ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
|
|
ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
|
|
CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method);
|
|
CopyAndFixupPointer(
|
|
copy->AddressOfImplementationMethod(i, target_ptr_size_), implementation_method);
|
|
DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_),
|
|
NativeLocationInImage(interface_method));
|
|
DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_),
|
|
NativeLocationInImage(implementation_method));
|
|
}
|
|
}
|
|
|
|
void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
|
|
const ImageInfo& image_info = GetImageInfo(oat_index);
|
|
// Copy ArtFields and methods to their locations and update the array for convenience.
|
|
for (auto& pair : native_object_relocations_) {
|
|
NativeObjectRelocation& relocation = pair.second;
|
|
// Only work with fields and methods that are in the current oat file.
|
|
if (relocation.oat_index != oat_index) {
|
|
continue;
|
|
}
|
|
auto* dest = image_info.image_.Begin() + relocation.offset;
|
|
DCHECK_GE(dest, image_info.image_.Begin() + image_info.image_end_);
|
|
DCHECK(!IsInBootImage(pair.first));
|
|
switch (relocation.type) {
|
|
case NativeObjectRelocationType::kRuntimeMethod:
|
|
case NativeObjectRelocationType::kArtMethodClean:
|
|
case NativeObjectRelocationType::kArtMethodDirty: {
|
|
CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
|
|
reinterpret_cast<ArtMethod*>(dest),
|
|
oat_index);
|
|
break;
|
|
}
|
|
case NativeObjectRelocationType::kArtFieldArray: {
|
|
// Copy and fix up the entire field array.
|
|
auto* src_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(pair.first);
|
|
auto* dest_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(dest);
|
|
size_t size = src_array->size();
|
|
memcpy(dest_array, src_array, LengthPrefixedArray<ArtField>::ComputeSize(size));
|
|
for (size_t i = 0; i != size; ++i) {
|
|
CopyAndFixupReference(
|
|
dest_array->At(i).GetDeclaringClassAddressWithoutBarrier(),
|
|
src_array->At(i).GetDeclaringClass<kWithoutReadBarrier>());
|
|
}
|
|
break;
|
|
}
|
|
case NativeObjectRelocationType::kArtMethodArrayClean:
|
|
case NativeObjectRelocationType::kArtMethodArrayDirty: {
|
|
// For method arrays, copy just the header since the elements will
|
|
// get copied by their corresponding relocations.
|
|
size_t size = ArtMethod::Size(target_ptr_size_);
|
|
size_t alignment = ArtMethod::Alignment(target_ptr_size_);
|
|
memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
|
|
// Clear padding to avoid non-deterministic data in the image.
|
|
// Historical note: We also did that to placate Valgrind.
|
|
reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
|
|
break;
|
|
}
|
|
case NativeObjectRelocationType::kIMTable: {
|
|
ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
|
|
ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
|
|
CopyAndFixupImTable(orig_imt, dest_imt);
|
|
break;
|
|
}
|
|
case NativeObjectRelocationType::kIMTConflictTable: {
|
|
auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
|
|
CopyAndFixupImtConflictTable(
|
|
orig_table,
|
|
new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
|
|
break;
|
|
}
|
|
case NativeObjectRelocationType::kGcRootPointer: {
|
|
auto* orig_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(pair.first);
|
|
auto* dest_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(dest);
|
|
CopyAndFixupReference(dest_pointer->AddressWithoutBarrier(), orig_pointer->Read());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Fixup the image method roots.
|
|
auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
|
|
for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
|
|
ArtMethod* method = image_methods_[i];
|
|
CHECK(method != nullptr);
|
|
CopyAndFixupPointer(
|
|
reinterpret_cast<void**>(&image_header->image_methods_[i]), method, PointerSize::k32);
|
|
}
|
|
FixupRootVisitor root_visitor(this);
|
|
|
|
// Write the intern table into the image.
|
|
if (image_info.intern_table_bytes_ > 0) {
|
|
const ImageSection& intern_table_section = image_header->GetInternedStringsSection();
|
|
DCHECK(image_info.intern_table_.has_value());
|
|
const InternTable::UnorderedSet& intern_table = *image_info.intern_table_;
|
|
uint8_t* const intern_table_memory_ptr =
|
|
image_info.image_.Begin() + intern_table_section.Offset();
|
|
const size_t intern_table_bytes = intern_table.WriteToMemory(intern_table_memory_ptr);
|
|
CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
|
|
// Fixup the pointers in the newly written intern table to contain image addresses.
|
|
InternTable temp_intern_table;
|
|
// Note that we require that ReadFromMemory does not make an internal copy of the elements so
|
|
// that the VisitRoots() will update the memory directly rather than the copies.
|
|
// This also relies on visit roots not doing any verification which could fail after we update
|
|
// the roots to be the image addresses.
|
|
temp_intern_table.AddTableFromMemory(intern_table_memory_ptr,
|
|
VoidFunctor(),
|
|
/*is_boot_image=*/ false);
|
|
CHECK_EQ(temp_intern_table.Size(), intern_table.size());
|
|
temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
|
|
|
|
if (kIsDebugBuild) {
|
|
MutexLock lock(Thread::Current(), *Locks::intern_table_lock_);
|
|
CHECK(!temp_intern_table.strong_interns_.tables_.empty());
|
|
// The UnorderedSet was inserted at the beginning.
|
|
CHECK_EQ(temp_intern_table.strong_interns_.tables_[0].Size(), intern_table.size());
|
|
}
|
|
}
|
|
|
|
// Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
|
|
// class loaders. Writing multiple class tables into the image is currently unsupported.
|
|
if (image_info.class_table_bytes_ > 0u) {
|
|
const ImageSection& class_table_section = image_header->GetClassTableSection();
|
|
uint8_t* const class_table_memory_ptr =
|
|
image_info.image_.Begin() + class_table_section.Offset();
|
|
|
|
DCHECK(image_info.class_table_.has_value());
|
|
const ClassTable::ClassSet& table = *image_info.class_table_;
|
|
CHECK_EQ(table.size(), image_info.class_table_size_);
|
|
const size_t class_table_bytes = table.WriteToMemory(class_table_memory_ptr);
|
|
CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
|
|
|
|
// Fixup the pointers in the newly written class table to contain image addresses. See
|
|
// above comment for intern tables.
|
|
ClassTable temp_class_table;
|
|
temp_class_table.ReadFromMemory(class_table_memory_ptr);
|
|
CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(), table.size());
|
|
UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown));
|
|
temp_class_table.VisitRoots(visitor);
|
|
|
|
if (kIsDebugBuild) {
|
|
ReaderMutexLock lock(Thread::Current(), temp_class_table.lock_);
|
|
CHECK(!temp_class_table.classes_.empty());
|
|
// The ClassSet was inserted at the beginning.
|
|
CHECK_EQ(temp_class_table.classes_[0].size(), table.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
void ImageWriter::CopyAndFixupMethodPointerArray(mirror::PointerArray* arr) {
|
|
// Pointer arrays are processed early and each is visited just once.
|
|
// Therefore we know that this array has not been copied yet.
|
|
mirror::Object* dst = CopyObject</*kCheckIfDone=*/ false>(arr);
|
|
DCHECK(dst != nullptr);
|
|
DCHECK(arr->IsIntArray() || arr->IsLongArray())
|
|
<< arr->GetClass<kVerifyNone, kWithoutReadBarrier>()->PrettyClass() << " " << arr;
|
|
// Fixup int and long pointers for the ArtMethod or ArtField arrays.
|
|
const size_t num_elements = arr->GetLength();
|
|
CopyAndFixupReference(dst->GetFieldObjectReferenceAddr<kVerifyNone>(Class::ClassOffset()),
|
|
arr->GetClass<kVerifyNone, kWithoutReadBarrier>());
|
|
auto* dest_array = down_cast<mirror::PointerArray*>(dst);
|
|
for (size_t i = 0, count = num_elements; i < count; ++i) {
|
|
void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
|
|
if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) {
|
|
auto it = native_object_relocations_.find(elem);
|
|
if (UNLIKELY(it == native_object_relocations_.end())) {
|
|
auto* method = reinterpret_cast<ArtMethod*>(elem);
|
|
LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ "
|
|
<< method << " idx=" << i << "/" << num_elements << " with declaring class "
|
|
<< Class::PrettyClass(method->GetDeclaringClass<kWithoutReadBarrier>());
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem);
|
|
}
|
|
}
|
|
|
|
void ImageWriter::CopyAndFixupObject(Object* obj) {
|
|
if (!IsImageBinSlotAssigned(obj)) {
|
|
return;
|
|
}
|
|
// Some objects (such as method pointer arrays) may have been processed before.
|
|
mirror::Object* dst = CopyObject</*kCheckIfDone=*/ true>(obj);
|
|
if (dst != nullptr) {
|
|
FixupObject(obj, dst);
|
|
}
|
|
}
|
|
|
|
template <bool kCheckIfDone>
|
|
inline Object* ImageWriter::CopyObject(Object* obj) {
|
|
size_t oat_index = GetOatIndex(obj);
|
|
size_t offset = GetImageOffset(obj, oat_index);
|
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
|
auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset);
|
|
DCHECK_LT(offset, image_info.image_end_);
|
|
const auto* src = reinterpret_cast<const uint8_t*>(obj);
|
|
|
|
bool done = image_info.image_bitmap_.Set(dst); // Mark the obj as live.
|
|
// Check if the object was already copied, unless the caller indicated that it was not.
|
|
if (kCheckIfDone && done) {
|
|
return nullptr;
|
|
}
|
|
DCHECK(!done);
|
|
|
|
const size_t n = obj->SizeOf();
|
|
|
|
if (kIsDebugBuild && region_size_ != 0u) {
|
|
const size_t offset_after_header = offset - sizeof(ImageHeader);
|
|
const size_t next_region = RoundUp(offset_after_header, region_size_);
|
|
if (offset_after_header != next_region) {
|
|
// If the object is not on a region bondary, it must not be cross region.
|
|
CHECK_LT(offset_after_header, next_region)
|
|
<< "offset_after_header=" << offset_after_header << " size=" << n;
|
|
CHECK_LE(offset_after_header + n, next_region)
|
|
<< "offset_after_header=" << offset_after_header << " size=" << n;
|
|
}
|
|
}
|
|
DCHECK_LE(offset + n, image_info.image_.Size());
|
|
memcpy(dst, src, n);
|
|
|
|
// Write in a hash code of objects which have inflated monitors or a hash code in their monitor
|
|
// word.
|
|
const auto it = saved_hashcode_map_.find(obj);
|
|
dst->SetLockWord(it != saved_hashcode_map_.end() ?
|
|
LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
|
|
if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
|
|
// Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is
|
|
// safe since we mark all of the objects that may reference non immune objects as gray.
|
|
CHECK(dst->AtomicSetMarkBit(0, 1));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
// Rewrite all the references in the copied object to point to their image address equivalent
|
|
class ImageWriter::FixupVisitor {
|
|
public:
|
|
FixupVisitor(ImageWriter* image_writer, Object* copy)
|
|
: image_writer_(image_writer), copy_(copy) {
|
|
}
|
|
|
|
// We do not visit native roots. These are handled with other logic.
|
|
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
|
|
const {
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
}
|
|
void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
}
|
|
|
|
void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
|
|
ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone, kWithoutReadBarrier>(offset);
|
|
// Copy the reference and record the fixup if necessary.
|
|
image_writer_->CopyAndFixupReference(
|
|
copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset), ref);
|
|
}
|
|
|
|
// java.lang.ref.Reference visitor.
|
|
void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
|
|
ObjPtr<mirror::Reference> ref) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
|
|
operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
|
|
}
|
|
|
|
protected:
|
|
ImageWriter* const image_writer_;
|
|
mirror::Object* const copy_;
|
|
};
|
|
|
|
void ImageWriter::CopyAndFixupObjects() {
|
|
// Copy and fix up pointer arrays first as they require special treatment.
|
|
auto method_pointer_array_visitor =
|
|
[&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
CopyAndFixupMethodPointerArray(pointer_array.Ptr());
|
|
};
|
|
for (ImageInfo& image_info : image_infos_) {
|
|
if (image_info.class_table_size_ != 0u) {
|
|
DCHECK(image_info.class_table_.has_value());
|
|
for (const ClassTable::TableSlot& slot : *image_info.class_table_) {
|
|
ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
|
|
DCHECK(klass != nullptr);
|
|
// Do not process boot image classes present in app image class table.
|
|
DCHECK(!IsInBootImage(klass.Ptr()) || compiler_options_.IsAppImage());
|
|
if (!IsInBootImage(klass.Ptr())) {
|
|
// Do not fix up method pointer arrays inherited from superclass. If they are part
|
|
// of the current image, they were or shall be copied when visiting the superclass.
|
|
VisitNewMethodPointerArrays(klass, method_pointer_array_visitor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(obj != nullptr);
|
|
CopyAndFixupObject(obj);
|
|
};
|
|
Runtime::Current()->GetHeap()->VisitObjects(visitor);
|
|
|
|
// Fill the padding objects since they are required for in order traversal of the image space.
|
|
for (ImageInfo& image_info : image_infos_) {
|
|
for (const size_t start_offset : image_info.padding_offsets_) {
|
|
const size_t offset_after_header = start_offset - sizeof(ImageHeader);
|
|
size_t remaining_space =
|
|
RoundUp(offset_after_header + 1u, region_size_) - offset_after_header;
|
|
DCHECK_NE(remaining_space, 0u);
|
|
DCHECK_LT(remaining_space, region_size_);
|
|
Object* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + start_offset);
|
|
ObjPtr<Class> object_class = GetClassRoot<mirror::Object, kWithoutReadBarrier>();
|
|
DCHECK_ALIGNED_PARAM(remaining_space, object_class->GetObjectSize());
|
|
Object* end = dst + remaining_space / object_class->GetObjectSize();
|
|
Class* image_object_class = GetImageAddress(object_class.Ptr());
|
|
while (dst != end) {
|
|
dst->SetClass<kVerifyNone>(image_object_class);
|
|
dst->SetLockWord<kVerifyNone>(LockWord::Default(), /*as_volatile=*/ false);
|
|
image_info.image_bitmap_.Set(dst); // Mark the obj as live.
|
|
++dst;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We no longer need the hashcode map, values have already been copied to target objects.
|
|
saved_hashcode_map_.clear();
|
|
}
|
|
|
|
class ImageWriter::FixupClassVisitor final : public FixupVisitor {
|
|
public:
|
|
FixupClassVisitor(ImageWriter* image_writer, Object* copy)
|
|
: FixupVisitor(image_writer, copy) {}
|
|
|
|
void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
|
|
REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
|
|
DCHECK(obj->IsClass());
|
|
FixupVisitor::operator()(obj, offset, /*is_static*/false);
|
|
}
|
|
|
|
void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
|
|
ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
|
|
LOG(FATAL) << "Reference not expected here.";
|
|
}
|
|
};
|
|
|
|
ImageWriter::NativeObjectRelocation ImageWriter::GetNativeRelocation(void* obj) {
|
|
DCHECK(obj != nullptr);
|
|
DCHECK(!IsInBootImage(obj));
|
|
auto it = native_object_relocations_.find(obj);
|
|
CHECK(it != native_object_relocations_.end()) << obj << " spaces "
|
|
<< Runtime::Current()->GetHeap()->DumpSpaces();
|
|
return it->second;
|
|
}
|
|
|
|
template <typename T>
|
|
std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
std::ostringstream oss;
|
|
oss << ptr;
|
|
return oss.str();
|
|
}
|
|
|
|
template <>
|
|
std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return ArtMethod::PrettyMethod(method);
|
|
}
|
|
|
|
template <typename T>
|
|
T* ImageWriter::NativeLocationInImage(T* obj) {
|
|
if (obj == nullptr || IsInBootImage(obj)) {
|
|
return obj;
|
|
} else {
|
|
NativeObjectRelocation relocation = GetNativeRelocation(obj);
|
|
const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
|
|
return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
|
|
}
|
|
}
|
|
|
|
ArtField* ImageWriter::NativeLocationInImage(ArtField* src_field) {
|
|
// Fields are not individually stored in the native relocation map. Use the field array.
|
|
ObjPtr<mirror::Class> declaring_class = src_field->GetDeclaringClass<kWithoutReadBarrier>();
|
|
LengthPrefixedArray<ArtField>* src_fields =
|
|
src_field->IsStatic() ? declaring_class->GetSFieldsPtr() : declaring_class->GetIFieldsPtr();
|
|
DCHECK(src_fields != nullptr);
|
|
LengthPrefixedArray<ArtField>* dst_fields = NativeLocationInImage(src_fields);
|
|
DCHECK(dst_fields != nullptr);
|
|
size_t field_offset =
|
|
reinterpret_cast<uint8_t*>(src_field) - reinterpret_cast<uint8_t*>(src_fields);
|
|
return reinterpret_cast<ArtField*>(reinterpret_cast<uint8_t*>(dst_fields) + field_offset);
|
|
}
|
|
|
|
class ImageWriter::NativeLocationVisitor {
|
|
public:
|
|
explicit NativeLocationVisitor(ImageWriter* image_writer)
|
|
: image_writer_(image_writer) {}
|
|
|
|
template <typename T>
|
|
T* operator()(T* ptr, void** dest_addr) const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (ptr != nullptr) {
|
|
image_writer_->CopyAndFixupPointer(dest_addr, ptr);
|
|
}
|
|
// TODO: The caller shall overwrite the value stored by CopyAndFixupPointer()
|
|
// with the value we return here. We should try to avoid the duplicate work.
|
|
return image_writer_->NativeLocationInImage(ptr);
|
|
}
|
|
|
|
private:
|
|
ImageWriter* const image_writer_;
|
|
};
|
|
|
|
void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
|
|
orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
|
|
FixupClassVisitor visitor(this, copy);
|
|
ObjPtr<mirror::Object>(orig)->VisitReferences<
|
|
/*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(visitor, visitor);
|
|
|
|
if (kBitstringSubtypeCheckEnabled && !compiler_options_.IsBootImage()) {
|
|
// When we call SubtypeCheck::EnsureInitialize, it Assigns new bitstring
|
|
// values to the parent of that class.
|
|
//
|
|
// Every time this happens, the parent class has to mutate to increment
|
|
// the "Next" value.
|
|
//
|
|
// If any of these parents are in the boot image, the changes [in the parents]
|
|
// would be lost when the app image is reloaded.
|
|
//
|
|
// To prevent newly loaded classes (not in the app image) from being reassigned
|
|
// the same bitstring value as an existing app image class, uninitialize
|
|
// all the classes in the app image.
|
|
//
|
|
// On startup, the class linker will then re-initialize all the app
|
|
// image bitstrings. See also ClassLinker::AddImageSpace.
|
|
//
|
|
// FIXME: Deal with boot image extensions.
|
|
MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
|
|
// Lock every time to prevent a dcheck failure when we suspend with the lock held.
|
|
SubtypeCheck<mirror::Class*>::ForceUninitialize(copy);
|
|
}
|
|
|
|
// Remove the clinitThreadId. This is required for image determinism.
|
|
copy->SetClinitThreadId(static_cast<pid_t>(0));
|
|
// We never emit kRetryVerificationAtRuntime, instead we mark the class as
|
|
// resolved and the class will therefore be re-verified at runtime.
|
|
if (orig->ShouldVerifyAtRuntime()) {
|
|
copy->SetStatusInternal(ClassStatus::kResolved);
|
|
}
|
|
}
|
|
|
|
void ImageWriter::FixupObject(Object* orig, Object* copy) {
|
|
DCHECK(orig != nullptr);
|
|
DCHECK(copy != nullptr);
|
|
if (kUseBakerReadBarrier) {
|
|
orig->AssertReadBarrierState();
|
|
}
|
|
ObjPtr<mirror::Class> klass = orig->GetClass<kVerifyNone, kWithoutReadBarrier>();
|
|
if (klass->IsClassClass()) {
|
|
FixupClass(orig->AsClass<kVerifyNone>().Ptr(), down_cast<mirror::Class*>(copy));
|
|
} else {
|
|
ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
|
|
Runtime::Current()->GetClassLinker()->GetClassRoots<kWithoutReadBarrier>();
|
|
if (klass == GetClassRoot<mirror::String, kWithoutReadBarrier>(class_roots)) {
|
|
// Make sure all image strings have the hash code calculated, even if they are not interned.
|
|
down_cast<mirror::String*>(copy)->GetHashCode();
|
|
} else if (klass == GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots) ||
|
|
klass == GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots)) {
|
|
// Need to update the ArtMethod.
|
|
auto* dest = down_cast<mirror::Executable*>(copy);
|
|
auto* src = down_cast<mirror::Executable*>(orig);
|
|
ArtMethod* src_method = src->GetArtMethod();
|
|
CopyAndFixupPointer(dest, mirror::Executable::ArtMethodOffset(), src_method);
|
|
} else if (klass == GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots) ||
|
|
klass == GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots)) {
|
|
// Need to update the ArtField.
|
|
auto* dest = down_cast<mirror::FieldVarHandle*>(copy);
|
|
auto* src = down_cast<mirror::FieldVarHandle*>(orig);
|
|
ArtField* src_field = src->GetArtField();
|
|
CopyAndFixupPointer(dest, mirror::FieldVarHandle::ArtFieldOffset(), src_field);
|
|
} else if (klass == GetClassRoot<mirror::DexCache, kWithoutReadBarrier>(class_roots)) {
|
|
down_cast<mirror::DexCache*>(copy)->SetDexFile(nullptr);
|
|
down_cast<mirror::DexCache*>(copy)->ResetNativeArrays();
|
|
} else if (klass->IsClassLoaderClass()) {
|
|
mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
|
|
// If src is a ClassLoader, set the class table to null so that it gets recreated by the
|
|
// ClassLinker.
|
|
copy_loader->SetClassTable(nullptr);
|
|
// Also set allocator to null to be safe. The allocator is created when we create the class
|
|
// table. We also never expect to unload things in the image since they are held live as
|
|
// roots.
|
|
copy_loader->SetAllocator(nullptr);
|
|
}
|
|
FixupVisitor visitor(this, copy);
|
|
orig->VisitReferences</*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(
|
|
visitor, visitor);
|
|
}
|
|
}
|
|
|
|
const uint8_t* ImageWriter::GetOatAddress(StubType type) const {
|
|
DCHECK_LE(type, StubType::kLast);
|
|
// If we are compiling a boot image extension or app image,
|
|
// we need to use the stubs of the primary boot image.
|
|
if (!compiler_options_.IsBootImage()) {
|
|
// Use the current image pointers.
|
|
const std::vector<gc::space::ImageSpace*>& image_spaces =
|
|
Runtime::Current()->GetHeap()->GetBootImageSpaces();
|
|
DCHECK(!image_spaces.empty());
|
|
const OatFile* oat_file = image_spaces[0]->GetOatFile();
|
|
CHECK(oat_file != nullptr);
|
|
const OatHeader& header = oat_file->GetOatHeader();
|
|
switch (type) {
|
|
// TODO: We could maybe clean this up if we stored them in an array in the oat header.
|
|
case StubType::kQuickGenericJNITrampoline:
|
|
return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
|
|
case StubType::kJNIDlsymLookupTrampoline:
|
|
return static_cast<const uint8_t*>(header.GetJniDlsymLookupTrampoline());
|
|
case StubType::kJNIDlsymLookupCriticalTrampoline:
|
|
return static_cast<const uint8_t*>(header.GetJniDlsymLookupCriticalTrampoline());
|
|
case StubType::kQuickIMTConflictTrampoline:
|
|
return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
|
|
case StubType::kQuickResolutionTrampoline:
|
|
return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
|
|
case StubType::kQuickToInterpreterBridge:
|
|
return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
|
|
case StubType::kNterpTrampoline:
|
|
return static_cast<const uint8_t*>(header.GetNterpTrampoline());
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
const ImageInfo& primary_image_info = GetImageInfo(0);
|
|
return GetOatAddressForOffset(primary_image_info.GetStubOffset(type), primary_image_info);
|
|
}
|
|
|
|
const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, const ImageInfo& image_info) {
|
|
DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod();
|
|
DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod();
|
|
DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod();
|
|
DCHECK(method->IsInvokable()) << method->PrettyMethod();
|
|
DCHECK(!IsInBootImage(method)) << method->PrettyMethod();
|
|
|
|
// Use original code if it exists. Otherwise, set the code pointer to the resolution
|
|
// trampoline.
|
|
|
|
// Quick entrypoint:
|
|
const void* quick_oat_entry_point =
|
|
method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
|
|
const uint8_t* quick_code;
|
|
|
|
if (UNLIKELY(IsInBootImage(method->GetDeclaringClass<kWithoutReadBarrier>().Ptr()))) {
|
|
DCHECK(method->IsCopied());
|
|
// If the code is not in the oat file corresponding to this image (e.g. default methods)
|
|
quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
|
|
} else {
|
|
uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
|
|
quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
|
|
}
|
|
|
|
bool needs_clinit_check = NeedsClinitCheckBeforeCall(method) &&
|
|
!method->GetDeclaringClass<kWithoutReadBarrier>()->IsVisiblyInitialized();
|
|
|
|
if (quick_code == nullptr) {
|
|
// If we don't have code, use generic jni / interpreter.
|
|
if (method->IsNative()) {
|
|
// The generic JNI trampolines performs class initialization check if needed.
|
|
quick_code = GetOatAddress(StubType::kQuickGenericJNITrampoline);
|
|
} else if (CanMethodUseNterp(method, compiler_options_.GetInstructionSet())) {
|
|
// The nterp trampoline doesn't do initialization checks, so install the
|
|
// resolution stub if needed.
|
|
if (needs_clinit_check) {
|
|
quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
|
|
} else {
|
|
quick_code = GetOatAddress(StubType::kNterpTrampoline);
|
|
}
|
|
} else {
|
|
// The interpreter brige performs class initialization check if needed.
|
|
quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
|
|
}
|
|
} else if (needs_clinit_check) {
|
|
// If we do have code but the method needs a class initialization check before calling
|
|
// that code, install the resolution stub that will perform the check.
|
|
quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
|
|
}
|
|
return quick_code;
|
|
}
|
|
|
|
void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
|
|
ArtMethod* copy,
|
|
size_t oat_index) {
|
|
if (orig->IsAbstract()) {
|
|
// Ignore the single-implementation info for abstract method.
|
|
// Do this on orig instead of copy, otherwise there is a crash due to methods
|
|
// are copied before classes.
|
|
// TODO: handle fixup of single-implementation method for abstract method.
|
|
orig->SetHasSingleImplementation(false);
|
|
orig->SetSingleImplementation(
|
|
nullptr, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
|
|
}
|
|
|
|
if (!orig->IsRuntimeMethod() &&
|
|
(compiler_options_.IsBootImage() || compiler_options_.IsBootImageExtension())) {
|
|
orig->SetMemorySharedMethod();
|
|
}
|
|
|
|
memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
|
|
|
|
CopyAndFixupReference(copy->GetDeclaringClassAddressWithoutBarrier(),
|
|
orig->GetDeclaringClassUnchecked<kWithoutReadBarrier>());
|
|
|
|
// OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
|
|
// oat_begin_
|
|
|
|
// The resolution method has a special trampoline to call.
|
|
Runtime* runtime = Runtime::Current();
|
|
const void* quick_code;
|
|
if (orig->IsRuntimeMethod()) {
|
|
ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
|
|
if (orig_table != nullptr) {
|
|
// Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
|
|
quick_code = GetOatAddress(StubType::kQuickIMTConflictTrampoline);
|
|
CopyAndFixupPointer(copy, ArtMethod::DataOffset(target_ptr_size_), orig_table);
|
|
} else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
|
|
quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
|
|
// Set JNI entrypoint for resolving @CriticalNative methods called from compiled code .
|
|
const void* jni_code = GetOatAddress(StubType::kJNIDlsymLookupCriticalTrampoline);
|
|
copy->SetEntryPointFromJniPtrSize(jni_code, target_ptr_size_);
|
|
} else {
|
|
bool found_one = false;
|
|
for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
|
|
auto idx = static_cast<CalleeSaveType>(i);
|
|
if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
|
|
found_one = true;
|
|
break;
|
|
}
|
|
}
|
|
CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod();
|
|
CHECK(copy->IsRuntimeMethod());
|
|
CHECK(copy->GetEntryPointFromQuickCompiledCode() == nullptr);
|
|
quick_code = nullptr;
|
|
}
|
|
} else {
|
|
// We assume all methods have code. If they don't currently then we set them to the use the
|
|
// resolution trampoline. Abstract methods never have code and so we need to make sure their
|
|
// use results in an AbstractMethodError. We use the interpreter to achieve this.
|
|
if (UNLIKELY(!orig->IsInvokable())) {
|
|
quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
|
|
} else {
|
|
const ImageInfo& image_info = image_infos_[oat_index];
|
|
quick_code = GetQuickCode(orig, image_info);
|
|
|
|
// JNI entrypoint:
|
|
if (orig->IsNative()) {
|
|
// The native method's pointer is set to a stub to lookup via dlsym.
|
|
// Note this is not the code_ pointer, that is handled above.
|
|
StubType stub_type = orig->IsCriticalNative() ? StubType::kJNIDlsymLookupCriticalTrampoline
|
|
: StubType::kJNIDlsymLookupTrampoline;
|
|
copy->SetEntryPointFromJniPtrSize(GetOatAddress(stub_type), target_ptr_size_);
|
|
} else if (!orig->HasCodeItem()) {
|
|
CHECK(copy->GetDataPtrSize(target_ptr_size_) == nullptr);
|
|
} else {
|
|
CHECK(copy->GetDataPtrSize(target_ptr_size_) != nullptr);
|
|
}
|
|
}
|
|
}
|
|
if (quick_code != nullptr) {
|
|
copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
|
|
}
|
|
}
|
|
|
|
size_t ImageWriter::ImageInfo::GetBinSizeSum(Bin up_to) const {
|
|
DCHECK_LE(static_cast<size_t>(up_to), kNumberOfBins);
|
|
return std::accumulate(&bin_slot_sizes_[0],
|
|
&bin_slot_sizes_[0] + static_cast<size_t>(up_to),
|
|
/*init*/ static_cast<size_t>(0));
|
|
}
|
|
|
|
ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
|
|
// These values may need to get updated if more bins are added to the enum Bin
|
|
static_assert(kBinBits == 3, "wrong number of bin bits");
|
|
static_assert(kBinShift == 27, "wrong number of shift");
|
|
static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
|
|
|
|
DCHECK_LT(GetBin(), Bin::kMirrorCount);
|
|
DCHECK_ALIGNED(GetOffset(), kObjectAlignment);
|
|
}
|
|
|
|
ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
|
|
: BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
|
|
DCHECK_EQ(index, GetOffset());
|
|
}
|
|
|
|
ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
|
|
return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
|
|
}
|
|
|
|
uint32_t ImageWriter::BinSlot::GetOffset() const {
|
|
return lockword_ & ~kBinMask;
|
|
}
|
|
|
|
ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
|
|
switch (type) {
|
|
case NativeObjectRelocationType::kArtFieldArray:
|
|
return Bin::kArtField;
|
|
case NativeObjectRelocationType::kArtMethodClean:
|
|
case NativeObjectRelocationType::kArtMethodArrayClean:
|
|
return Bin::kArtMethodClean;
|
|
case NativeObjectRelocationType::kArtMethodDirty:
|
|
case NativeObjectRelocationType::kArtMethodArrayDirty:
|
|
return Bin::kArtMethodDirty;
|
|
case NativeObjectRelocationType::kRuntimeMethod:
|
|
return Bin::kRuntimeMethod;
|
|
case NativeObjectRelocationType::kIMTable:
|
|
return Bin::kImTable;
|
|
case NativeObjectRelocationType::kIMTConflictTable:
|
|
return Bin::kIMTConflictTable;
|
|
case NativeObjectRelocationType::kGcRootPointer:
|
|
return Bin::kMetadata;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
|
|
if (!IsMultiImage()) {
|
|
DCHECK(oat_index_map_.empty());
|
|
return GetDefaultOatIndex();
|
|
}
|
|
auto it = oat_index_map_.find(obj);
|
|
DCHECK(it != oat_index_map_.end()) << obj;
|
|
return it->second;
|
|
}
|
|
|
|
size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
|
|
if (!IsMultiImage()) {
|
|
return GetDefaultOatIndex();
|
|
}
|
|
auto it = dex_file_oat_index_map_.find(dex_file);
|
|
DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
|
|
return it->second;
|
|
}
|
|
|
|
size_t ImageWriter::GetOatIndexForClass(ObjPtr<mirror::Class> klass) const {
|
|
while (klass->IsArrayClass()) {
|
|
klass = klass->GetComponentType<kVerifyNone, kWithoutReadBarrier>();
|
|
}
|
|
if (UNLIKELY(klass->IsPrimitive())) {
|
|
DCHECK((klass->GetDexCache<kVerifyNone, kWithoutReadBarrier>()) == nullptr);
|
|
return GetDefaultOatIndex();
|
|
} else {
|
|
DCHECK((klass->GetDexCache<kVerifyNone, kWithoutReadBarrier>()) != nullptr);
|
|
return GetOatIndexForDexFile(&klass->GetDexFile());
|
|
}
|
|
}
|
|
|
|
void ImageWriter::UpdateOatFileLayout(size_t oat_index,
|
|
size_t oat_loaded_size,
|
|
size_t oat_data_offset,
|
|
size_t oat_data_size) {
|
|
DCHECK_GE(oat_loaded_size, oat_data_offset);
|
|
DCHECK_GE(oat_loaded_size - oat_data_offset, oat_data_size);
|
|
|
|
const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
|
|
DCHECK(images_end != nullptr); // Image space must be ready.
|
|
for (const ImageInfo& info : image_infos_) {
|
|
DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
|
|
}
|
|
|
|
ImageInfo& cur_image_info = GetImageInfo(oat_index);
|
|
cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
|
|
cur_image_info.oat_loaded_size_ = oat_loaded_size;
|
|
cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
|
|
cur_image_info.oat_size_ = oat_data_size;
|
|
|
|
if (compiler_options_.IsAppImage()) {
|
|
CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
|
|
return;
|
|
}
|
|
|
|
// Update the oat_offset of the next image info.
|
|
if (oat_index + 1u != oat_filenames_.size()) {
|
|
// There is a following one.
|
|
ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
|
|
next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
|
|
}
|
|
}
|
|
|
|
void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
|
|
ImageInfo& cur_image_info = GetImageInfo(oat_index);
|
|
cur_image_info.oat_checksum_ = oat_header.GetChecksum();
|
|
|
|
if (oat_index == GetDefaultOatIndex()) {
|
|
// Primary oat file, read the trampolines.
|
|
cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupTrampoline,
|
|
oat_header.GetJniDlsymLookupTrampolineOffset());
|
|
cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupCriticalTrampoline,
|
|
oat_header.GetJniDlsymLookupCriticalTrampolineOffset());
|
|
cur_image_info.SetStubOffset(StubType::kQuickGenericJNITrampoline,
|
|
oat_header.GetQuickGenericJniTrampolineOffset());
|
|
cur_image_info.SetStubOffset(StubType::kQuickIMTConflictTrampoline,
|
|
oat_header.GetQuickImtConflictTrampolineOffset());
|
|
cur_image_info.SetStubOffset(StubType::kQuickResolutionTrampoline,
|
|
oat_header.GetQuickResolutionTrampolineOffset());
|
|
cur_image_info.SetStubOffset(StubType::kQuickToInterpreterBridge,
|
|
oat_header.GetQuickToInterpreterBridgeOffset());
|
|
cur_image_info.SetStubOffset(StubType::kNterpTrampoline,
|
|
oat_header.GetNterpTrampolineOffset());
|
|
}
|
|
}
|
|
|
|
ImageWriter::ImageWriter(
|
|
const CompilerOptions& compiler_options,
|
|
uintptr_t image_begin,
|
|
ImageHeader::StorageMode image_storage_mode,
|
|
const std::vector<std::string>& oat_filenames,
|
|
const HashMap<const DexFile*, size_t>& dex_file_oat_index_map,
|
|
jobject class_loader,
|
|
const HashSet<std::string>* dirty_image_objects)
|
|
: compiler_options_(compiler_options),
|
|
boot_image_begin_(Runtime::Current()->GetHeap()->GetBootImagesStartAddress()),
|
|
boot_image_size_(Runtime::Current()->GetHeap()->GetBootImagesSize()),
|
|
global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
|
|
image_objects_offset_begin_(0),
|
|
target_ptr_size_(InstructionSetPointerSize(compiler_options.GetInstructionSet())),
|
|
image_infos_(oat_filenames.size()),
|
|
dirty_methods_(0u),
|
|
clean_methods_(0u),
|
|
app_class_loader_(class_loader),
|
|
boot_image_live_objects_(nullptr),
|
|
image_roots_(),
|
|
image_storage_mode_(image_storage_mode),
|
|
oat_filenames_(oat_filenames),
|
|
dex_file_oat_index_map_(dex_file_oat_index_map),
|
|
dirty_image_objects_(dirty_image_objects) {
|
|
DCHECK(compiler_options.IsBootImage() ||
|
|
compiler_options.IsBootImageExtension() ||
|
|
compiler_options.IsAppImage());
|
|
DCHECK_EQ(compiler_options.IsBootImage(), boot_image_begin_ == 0u);
|
|
DCHECK_EQ(compiler_options.IsBootImage(), boot_image_size_ == 0u);
|
|
CHECK_NE(image_begin, 0U);
|
|
std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
|
|
CHECK_EQ(compiler_options.IsBootImage(),
|
|
Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
|
|
<< "Compiling a boot image should occur iff there are no boot image spaces loaded";
|
|
if (compiler_options_.IsAppImage()) {
|
|
// Make sure objects are not crossing region boundaries for app images.
|
|
region_size_ = gc::space::RegionSpace::kRegionSize;
|
|
}
|
|
}
|
|
|
|
ImageWriter::~ImageWriter() {
|
|
if (!image_roots_.empty()) {
|
|
Thread* self = Thread::Current();
|
|
JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
|
|
for (jobject image_roots : image_roots_) {
|
|
vm->DeleteGlobalRef(self, image_roots);
|
|
}
|
|
}
|
|
}
|
|
|
|
ImageWriter::ImageInfo::ImageInfo()
|
|
: intern_table_(),
|
|
class_table_() {}
|
|
|
|
template <typename DestType>
|
|
void ImageWriter::CopyAndFixupReference(DestType* dest, ObjPtr<mirror::Object> src) {
|
|
static_assert(std::is_same<DestType, mirror::CompressedReference<mirror::Object>>::value ||
|
|
std::is_same<DestType, mirror::HeapReference<mirror::Object>>::value,
|
|
"DestType must be a Compressed-/HeapReference<Object>.");
|
|
dest->Assign(GetImageAddress(src.Ptr()));
|
|
}
|
|
|
|
template <typename ValueType>
|
|
void ImageWriter::CopyAndFixupPointer(
|
|
void** target, ValueType src_value, PointerSize pointer_size) {
|
|
DCHECK(src_value != nullptr);
|
|
void* new_value = NativeLocationInImage(src_value);
|
|
DCHECK(new_value != nullptr);
|
|
if (pointer_size == PointerSize::k32) {
|
|
*reinterpret_cast<uint32_t*>(target) = reinterpret_cast32<uint32_t>(new_value);
|
|
} else {
|
|
*reinterpret_cast<uint64_t*>(target) = reinterpret_cast64<uint64_t>(new_value);
|
|
}
|
|
}
|
|
|
|
template <typename ValueType>
|
|
void ImageWriter::CopyAndFixupPointer(void** target, ValueType src_value)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
CopyAndFixupPointer(target, src_value, target_ptr_size_);
|
|
}
|
|
|
|
template <typename ValueType>
|
|
void ImageWriter::CopyAndFixupPointer(
|
|
void* object, MemberOffset offset, ValueType src_value, PointerSize pointer_size) {
|
|
void** target =
|
|
reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(object) + offset.Uint32Value());
|
|
return CopyAndFixupPointer(target, src_value, pointer_size);
|
|
}
|
|
|
|
template <typename ValueType>
|
|
void ImageWriter::CopyAndFixupPointer(void* object, MemberOffset offset, ValueType src_value) {
|
|
return CopyAndFixupPointer(object, offset, src_value, target_ptr_size_);
|
|
}
|
|
|
|
} // namespace linker
|
|
} // namespace art
|