1026 lines
38 KiB
C
1026 lines
38 KiB
C
/*
|
|
* Copyright (C) 2016 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <fcntl.h>
|
|
#include <gelf.h>
|
|
#include <libelf.h>
|
|
#include <sys/types.h>
|
|
#include <stdbool.h>
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stddef.h>
|
|
#include <errno.h>
|
|
|
|
#include <nanohub/nanohub.h>
|
|
#include <nanohub/nanoapp.h>
|
|
#include <nanohub/appRelocFormat.h>
|
|
|
|
//This code assumes it is run on a LE CPU with unaligned access abilities. Sorry.
|
|
|
|
#define FLASH_BASE 0x10000000
|
|
#define RAM_BASE 0x80000000
|
|
|
|
#define FLASH_SIZE 0x10000000 //256MB ought to be enough for everyone
|
|
#define RAM_SIZE 0x10000000 //256MB ought to be enough for everyone
|
|
|
|
//caution: double evaluation
|
|
#define IS_IN_RANGE_E(_val, _rstart, _rend) (((_val) >= (_rstart)) && ((_val) < (_rend)))
|
|
#define IS_IN_RANGE(_val, _rstart, _rsz) IS_IN_RANGE_E((_val), (_rstart), ((_rstart) + (_rsz)))
|
|
#define IS_IN_RAM(_val) IS_IN_RANGE(_val, RAM_BASE, RAM_SIZE)
|
|
#define IS_IN_FLASH(_val) IS_IN_RANGE(_val, FLASH_BASE, FLASH_SIZE)
|
|
|
|
|
|
#define NANO_RELOC_TYPE_RAM 0
|
|
#define NANO_RELOC_TYPE_FLASH 1
|
|
#define NANO_RELOC_LAST 2 //must be <= (RELOC_TYPE_MASK >> RELOC_TYPE_SHIFT)
|
|
|
|
struct RelocEntry {
|
|
uint32_t where;
|
|
uint32_t info; //bottom 8 bits is type, top 24 is sym idx
|
|
};
|
|
|
|
#define RELOC_TYPE_ABS_S 2
|
|
#define RELOC_TYPE_ABS_D 21
|
|
#define RELOC_TYPE_SECT 23
|
|
|
|
|
|
struct SymtabEntry {
|
|
uint32_t a;
|
|
uint32_t addr;
|
|
uint32_t b, c;
|
|
};
|
|
|
|
struct NanoRelocEntry {
|
|
uint32_t ofstInRam;
|
|
uint8_t type;
|
|
};
|
|
|
|
#ifndef ARRAY_SIZE
|
|
#define ARRAY_SIZE(ary) (sizeof(ary) / sizeof((ary)[0]))
|
|
#endif
|
|
|
|
#define DBG(fmt, ...) printf(fmt "\n", ##__VA_ARGS__)
|
|
#define ERR(fmt, ...) fprintf(stderr, fmt "\n", ##__VA_ARGS__)
|
|
|
|
// Prints the given message followed by the most recent libelf error
|
|
#define ELF_ERR(fmt, ...) ERR(fmt ": %s\n", ##__VA_ARGS__, elf_errmsg(-1))
|
|
|
|
struct ElfAppSection {
|
|
void *data;
|
|
size_t size;
|
|
};
|
|
|
|
struct ElfNanoApp {
|
|
struct ElfAppSection flash;
|
|
struct ElfAppSection data;
|
|
struct ElfAppSection relocs;
|
|
struct ElfAppSection symtab;
|
|
|
|
// Not parsed from file, but constructed via genElfNanoRelocs
|
|
struct ElfAppSection packedNanoRelocs;
|
|
};
|
|
|
|
static void fatalUsage(const char *name, const char *msg, const char *arg)
|
|
{
|
|
if (msg && arg)
|
|
fprintf(stderr, "Error: %s: %s\n\n", msg, arg);
|
|
else if (msg)
|
|
fprintf(stderr, "Error: %s\n\n", msg);
|
|
|
|
fprintf(stderr, "USAGE: %s [-v] [-k <key id>] [-a <app id>] [-r] [-n <layout name>] [-i <layout id>] <input file> [<output file>]\n"
|
|
" -v : be verbose\n"
|
|
" -n <layout name> : app, os, key\n"
|
|
" -i <layout id> : 1 (app), 2 (key), 3 (os)\n"
|
|
" -f <layout flags>: 16-bit hex value, stored as layout-specific flags\n"
|
|
" -c <chre api> : 16-bit hex value, stored as chre-major + chre-minor\n"
|
|
" -a <app ID> : 64-bit hex number != 0\n"
|
|
" -e <app version> : 32-bit hex number\n"
|
|
" -k <key ID> : 64-bit hex number != 0\n"
|
|
" -r : bare (no AOSP header); used only for inner OS image generation\n"
|
|
" -s : treat input as statically linked ELF (app layout only)\n"
|
|
" layout ID and layout name control the same parameter, so only one of them needs to be used\n"
|
|
, name);
|
|
exit(1);
|
|
}
|
|
|
|
static uint8_t *packNanoRelocs(struct NanoRelocEntry *nanoRelocs, uint32_t outNumRelocs, uint32_t *finalPackedNanoRelocSz, bool verbose)
|
|
{
|
|
uint32_t i, j, k;
|
|
uint8_t *packedNanoRelocs;
|
|
uint32_t packedNanoRelocSz;
|
|
uint32_t lastOutType = 0, origin = 0;
|
|
|
|
//sort by type and then offset
|
|
for (i = 0; i < outNumRelocs; i++) {
|
|
struct NanoRelocEntry t;
|
|
|
|
for (k = i, j = k + 1; j < outNumRelocs; j++) {
|
|
if (nanoRelocs[j].type > nanoRelocs[k].type)
|
|
continue;
|
|
if ((nanoRelocs[j].type < nanoRelocs[k].type) || (nanoRelocs[j].ofstInRam < nanoRelocs[k].ofstInRam))
|
|
k = j;
|
|
}
|
|
memcpy(&t, nanoRelocs + i, sizeof(struct NanoRelocEntry));
|
|
memcpy(nanoRelocs + i, nanoRelocs + k, sizeof(struct NanoRelocEntry));
|
|
memcpy(nanoRelocs + k, &t, sizeof(struct NanoRelocEntry));
|
|
|
|
if (verbose)
|
|
fprintf(stderr, "SortedReloc[%3" PRIu32 "] = {0x%08" PRIX32 ",0x%02" PRIX8 "}\n", i, nanoRelocs[i].ofstInRam, nanoRelocs[i].type);
|
|
}
|
|
|
|
//produce output nanorelocs in packed format
|
|
packedNanoRelocs = malloc(outNumRelocs * 6); //definitely big enough
|
|
packedNanoRelocSz = 0;
|
|
for (i = 0; i < outNumRelocs; i++) {
|
|
uint32_t displacement;
|
|
|
|
if (lastOutType != nanoRelocs[i].type) { //output type if ti changed
|
|
if (nanoRelocs[i].type - lastOutType == 1) {
|
|
packedNanoRelocs[packedNanoRelocSz++] = TOKEN_RELOC_TYPE_NEXT;
|
|
if (verbose)
|
|
fprintf(stderr, "Out: RelocTC (1) // to 0x%02" PRIX8 "\n", nanoRelocs[i].type);
|
|
}
|
|
else {
|
|
packedNanoRelocs[packedNanoRelocSz++] = TOKEN_RELOC_TYPE_CHG;
|
|
packedNanoRelocs[packedNanoRelocSz++] = nanoRelocs[i].type - lastOutType - 1;
|
|
if (verbose)
|
|
fprintf(stderr, "Out: RelocTC (0x%02" PRIX8 ") // to 0x%02" PRIX8 "\n", (uint8_t)(nanoRelocs[i].type - lastOutType - 1), nanoRelocs[i].type);
|
|
}
|
|
lastOutType = nanoRelocs[i].type;
|
|
origin = 0;
|
|
}
|
|
displacement = nanoRelocs[i].ofstInRam - origin;
|
|
origin = nanoRelocs[i].ofstInRam + 4;
|
|
if (displacement & 3) {
|
|
fprintf(stderr, "Unaligned relocs are not possible!\n");
|
|
exit(-5);
|
|
}
|
|
displacement /= 4;
|
|
|
|
//might be start of a run. look into that
|
|
if (!displacement) {
|
|
for (j = 1; j + i < outNumRelocs && j < MAX_RUN_LEN && nanoRelocs[j + i].type == lastOutType && nanoRelocs[j + i].ofstInRam - nanoRelocs[j + i - 1].ofstInRam == 4; j++);
|
|
if (j >= MIN_RUN_LEN) {
|
|
if (verbose)
|
|
fprintf(stderr, "Out: Reloc0 x%" PRIX32 "\n", j);
|
|
packedNanoRelocs[packedNanoRelocSz++] = TOKEN_CONSECUTIVE;
|
|
packedNanoRelocs[packedNanoRelocSz++] = j - MIN_RUN_LEN;
|
|
origin = nanoRelocs[j + i - 1].ofstInRam + 4; //reset origin to last one
|
|
i += j - 1; //loop will increment anyways, hence +1
|
|
continue;
|
|
}
|
|
}
|
|
|
|
//produce output
|
|
if (displacement <= MAX_8_BIT_NUM) {
|
|
if (verbose)
|
|
fprintf(stderr, "Out: Reloc8 0x%02" PRIX32 "\n", displacement);
|
|
packedNanoRelocs[packedNanoRelocSz++] = displacement;
|
|
}
|
|
else if (displacement <= MAX_16_BIT_NUM) {
|
|
if (verbose)
|
|
fprintf(stderr, "Out: Reloc16 0x%06" PRIX32 "\n", displacement);
|
|
displacement -= MAX_8_BIT_NUM;
|
|
packedNanoRelocs[packedNanoRelocSz++] = TOKEN_16BIT_OFST;
|
|
packedNanoRelocs[packedNanoRelocSz++] = displacement;
|
|
packedNanoRelocs[packedNanoRelocSz++] = displacement >> 8;
|
|
}
|
|
else if (displacement <= MAX_24_BIT_NUM) {
|
|
if (verbose)
|
|
fprintf(stderr, "Out: Reloc24 0x%08" PRIX32 "\n", displacement);
|
|
displacement -= MAX_16_BIT_NUM;
|
|
packedNanoRelocs[packedNanoRelocSz++] = TOKEN_24BIT_OFST;
|
|
packedNanoRelocs[packedNanoRelocSz++] = displacement;
|
|
packedNanoRelocs[packedNanoRelocSz++] = displacement >> 8;
|
|
packedNanoRelocs[packedNanoRelocSz++] = displacement >> 16;
|
|
}
|
|
else {
|
|
if (verbose)
|
|
fprintf(stderr, "Out: Reloc32 0x%08" PRIX32 "\n", displacement);
|
|
packedNanoRelocs[packedNanoRelocSz++] = TOKEN_32BIT_OFST;
|
|
packedNanoRelocs[packedNanoRelocSz++] = displacement;
|
|
packedNanoRelocs[packedNanoRelocSz++] = displacement >> 8;
|
|
packedNanoRelocs[packedNanoRelocSz++] = displacement >> 16;
|
|
packedNanoRelocs[packedNanoRelocSz++] = displacement >> 24;
|
|
}
|
|
}
|
|
|
|
*finalPackedNanoRelocSz = packedNanoRelocSz;
|
|
return packedNanoRelocs;
|
|
}
|
|
|
|
static int finalizeAndWrite(uint8_t *buf, uint32_t bufUsed, uint32_t bufSz, FILE *out, uint32_t layoutFlags, uint64_t appId, uint32_t chreApi)
|
|
{
|
|
int ret;
|
|
struct AppInfo app;
|
|
struct SectInfo *sect;
|
|
struct BinHdr *bin = (struct BinHdr *) buf;
|
|
struct ImageHeader outHeader = {
|
|
.aosp = (struct nano_app_binary_t) {
|
|
.header_version = 1,
|
|
.magic = NANOAPP_AOSP_MAGIC,
|
|
.app_id = appId,
|
|
.app_version = bin->hdr.appVer,
|
|
.flags = 0, // encrypted (1), signed (2) (will be set by other tools)
|
|
.chre_api_major = chreApi >> 8,
|
|
.chre_api_minor = chreApi & 0xFF,
|
|
},
|
|
.layout = (struct ImageLayout) {
|
|
.magic = GOOGLE_LAYOUT_MAGIC,
|
|
.version = 1,
|
|
.payload = LAYOUT_APP,
|
|
.flags = layoutFlags | (chreApi ? 0x0010 : 0x0000),
|
|
},
|
|
};
|
|
uint32_t dataOffset = sizeof(outHeader) + sizeof(app);
|
|
uint32_t hdrDiff = dataOffset - sizeof(*bin);
|
|
app.sect = bin->sect;
|
|
app.vec = bin->vec;
|
|
|
|
assertMem(bufUsed + hdrDiff, bufSz);
|
|
|
|
memmove(buf + dataOffset, buf + sizeof(*bin), bufUsed - sizeof(*bin));
|
|
bufUsed += hdrDiff;
|
|
memcpy(buf, &outHeader, sizeof(outHeader));
|
|
memcpy(buf + sizeof(outHeader), &app, sizeof(app));
|
|
sect = &app.sect;
|
|
|
|
//if we have any bytes to output, show stats
|
|
if (bufUsed) {
|
|
uint32_t codeAndRoDataSz = sect->data_data;
|
|
uint32_t relocsSz = sect->rel_end - sect->rel_start;
|
|
uint32_t gotSz = sect->got_end - sect->data_start;
|
|
uint32_t bssSz = sect->bss_end - sect->bss_start;
|
|
|
|
fprintf(stderr,"Final binary size %" PRIu32 " bytes\n", bufUsed);
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, " FW header size (flash): %6zu bytes\n", FLASH_RELOC_OFFSET);
|
|
fprintf(stderr, " Code + RO data (flash): %6" PRIu32 " bytes\n", codeAndRoDataSz);
|
|
fprintf(stderr, " Relocs (flash): %6" PRIu32 " bytes\n", relocsSz);
|
|
fprintf(stderr, " GOT + RW data (flash & RAM): %6" PRIu32 " bytes\n", gotSz);
|
|
fprintf(stderr, " BSS (RAM): %6" PRIu32 " bytes\n", bssSz);
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr,"Runtime flash use: %" PRIu32 " bytes\n", (uint32_t)(codeAndRoDataSz + relocsSz + gotSz + FLASH_RELOC_OFFSET));
|
|
fprintf(stderr,"Runtime RAM use: %" PRIu32 " bytes\n", gotSz + bssSz);
|
|
}
|
|
|
|
ret = fwrite(buf, bufUsed, 1, out) == 1 ? 0 : 2;
|
|
if (ret)
|
|
fprintf(stderr, "Failed to write output file: %s\n", strerror(errno));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int handleApp(uint8_t **pbuf, uint32_t bufUsed, FILE *out, uint32_t layoutFlags, uint64_t appId, uint32_t appVer, uint32_t chreApi, bool verbose)
|
|
{
|
|
uint32_t i, numRelocs, numSyms, outNumRelocs = 0, packedNanoRelocSz;
|
|
struct NanoRelocEntry *nanoRelocs = NULL;
|
|
struct RelocEntry *relocs;
|
|
struct SymtabEntry *syms;
|
|
uint8_t *packedNanoRelocs;
|
|
uint32_t t;
|
|
struct BinHdr *bin;
|
|
int ret = -1;
|
|
struct SectInfo *sect;
|
|
uint8_t *buf = *pbuf;
|
|
uint32_t bufSz = bufUsed * 3 /2;
|
|
|
|
//make buffer 50% bigger than bufUsed in case relocs grow out of hand
|
|
buf = reallocOrDie(buf, bufSz);
|
|
*pbuf = buf;
|
|
|
|
//sanity checks
|
|
bin = (struct BinHdr*)buf;
|
|
if (bufUsed < sizeof(*bin)) {
|
|
fprintf(stderr, "File size too small\n");
|
|
goto out;
|
|
}
|
|
|
|
if (bin->hdr.magic != NANOAPP_FW_MAGIC) {
|
|
fprintf(stderr, "Magic value is wrong: found %08" PRIX32
|
|
"; expected %08" PRIX32 "\n",
|
|
bin->hdr.magic, NANOAPP_FW_MAGIC);
|
|
goto out;
|
|
}
|
|
|
|
sect = &bin->sect;
|
|
bin->hdr.appVer = appVer;
|
|
|
|
//do some math
|
|
relocs = (struct RelocEntry*)(buf + sect->rel_start - FLASH_BASE);
|
|
syms = (struct SymtabEntry*)(buf + sect->rel_end - FLASH_BASE);
|
|
numRelocs = (sect->rel_end - sect->rel_start) / sizeof(struct RelocEntry);
|
|
numSyms = (bufUsed + FLASH_BASE - sect->rel_end) / sizeof(struct SymtabEntry);
|
|
|
|
//sanity
|
|
if (numRelocs * sizeof(struct RelocEntry) + sect->rel_start != sect->rel_end) {
|
|
fprintf(stderr, "Relocs of nonstandard size\n");
|
|
goto out;
|
|
}
|
|
if (numSyms * sizeof(struct SymtabEntry) + sect->rel_end != bufUsed + FLASH_BASE) {
|
|
fprintf(stderr, "Syms of nonstandard size\n");
|
|
goto out;
|
|
}
|
|
|
|
//show some info
|
|
fprintf(stderr, "\nRead %" PRIu32 " bytes of binary.\n", bufUsed);
|
|
|
|
if (verbose)
|
|
fprintf(stderr, "Found %" PRIu32 " relocs and a %" PRIu32 "-entry symbol table\n", numRelocs, numSyms);
|
|
|
|
//handle relocs
|
|
nanoRelocs = malloc(sizeof(struct NanoRelocEntry[numRelocs]));
|
|
if (!nanoRelocs) {
|
|
fprintf(stderr, "Failed to allocate a nano-reloc table\n");
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < numRelocs; i++) {
|
|
uint32_t relocType = relocs[i].info & 0xff;
|
|
uint32_t whichSym = relocs[i].info >> 8;
|
|
uint32_t *valThereP;
|
|
|
|
if (whichSym >= numSyms) {
|
|
fprintf(stderr, "Reloc %" PRIu32 " references a nonexistent symbol!\n"
|
|
"INFO:\n"
|
|
" Where: 0x%08" PRIX32 "\n"
|
|
" type: %" PRIu32 "\n"
|
|
" sym: %" PRIu32 "\n",
|
|
i, relocs[i].where, relocs[i].info & 0xff, whichSym);
|
|
goto out;
|
|
}
|
|
|
|
if (verbose) {
|
|
const char *seg;
|
|
|
|
fprintf(stderr, "Reloc[%3" PRIu32 "]:\n {@0x%08" PRIX32 ", type %3" PRIu32 ", -> sym[%3" PRIu32 "]: {@0x%08" PRIX32 "}, ",
|
|
i, relocs[i].where, relocs[i].info & 0xff, whichSym, syms[whichSym].addr);
|
|
|
|
if (IS_IN_RANGE_E(relocs[i].where, sect->bss_start, sect->bss_end))
|
|
seg = ".bss";
|
|
else if (IS_IN_RANGE_E(relocs[i].where, sect->data_start, sect->data_end))
|
|
seg = ".data";
|
|
else if (IS_IN_RANGE_E(relocs[i].where, sect->got_start, sect->got_end))
|
|
seg = ".got";
|
|
else if (IS_IN_RANGE_E(relocs[i].where, FLASH_BASE, FLASH_BASE + sizeof(struct BinHdr)))
|
|
seg = "APPHDR";
|
|
else
|
|
seg = "???";
|
|
|
|
fprintf(stderr, "in %s}\n", seg);
|
|
}
|
|
/* handle relocs inside the header */
|
|
if (IS_IN_FLASH(relocs[i].where) && relocs[i].where - FLASH_BASE < sizeof(struct BinHdr) && relocType == RELOC_TYPE_SECT) {
|
|
/* relocs in header are special - runtime corrects for them */
|
|
if (syms[whichSym].addr) {
|
|
fprintf(stderr, "Weird in-header sect reloc %" PRIu32 " to symbol %" PRIu32 " with nonzero addr 0x%08" PRIX32 "\n",
|
|
i, whichSym, syms[whichSym].addr);
|
|
goto out;
|
|
}
|
|
|
|
valThereP = (uint32_t*)(buf + relocs[i].where - FLASH_BASE);
|
|
if (!IS_IN_FLASH(*valThereP)) {
|
|
fprintf(stderr, "In-header reloc %" PRIu32 " of location 0x%08" PRIX32 " is outside of FLASH!\n"
|
|
"INFO:\n"
|
|
" type: %" PRIu32 "\n"
|
|
" sym: %" PRIu32 "\n"
|
|
" Sym Addr: 0x%08" PRIX32 "\n",
|
|
i, relocs[i].where, relocType, whichSym, syms[whichSym].addr);
|
|
goto out;
|
|
}
|
|
|
|
// binary header generated by objcopy, .napp header and final FW header in flash are of different size.
|
|
// we subtract binary header offset here, so all the entry points are relative to beginning of "sect".
|
|
// FW will use § as a base to call these vectors; no more problems with different header sizes;
|
|
// Assumption: offsets between sect & vec, vec & code are the same in all images (or, in a simpler words, { sect, vec, code }
|
|
// must go together). this is enforced by linker script, and maintained by all tools and FW download code in the OS.
|
|
*valThereP -= FLASH_BASE + BINARY_RELOC_OFFSET;
|
|
|
|
if (verbose)
|
|
fprintf(stderr, " -> Nano reloc skipped for in-header reloc\n");
|
|
|
|
continue; /* do not produce an output reloc */
|
|
}
|
|
|
|
if (!IS_IN_RAM(relocs[i].where)) {
|
|
fprintf(stderr, "In-header reloc %" PRIu32 " of location 0x%08" PRIX32 " is outside of RAM!\n"
|
|
"INFO:\n"
|
|
" type: %" PRIu32 "\n"
|
|
" sym: %" PRIu32 "\n"
|
|
" Sym Addr: 0x%08" PRIX32 "\n",
|
|
i, relocs[i].where, relocType, whichSym, syms[whichSym].addr);
|
|
goto out;
|
|
}
|
|
|
|
valThereP = (uint32_t*)(buf + relocs[i].where + sect->data_data - RAM_BASE - FLASH_BASE);
|
|
|
|
nanoRelocs[outNumRelocs].ofstInRam = relocs[i].where - RAM_BASE;
|
|
|
|
switch (relocType) {
|
|
case RELOC_TYPE_ABS_S:
|
|
case RELOC_TYPE_ABS_D:
|
|
t = *valThereP;
|
|
|
|
(*valThereP) += syms[whichSym].addr;
|
|
|
|
if (IS_IN_FLASH(syms[whichSym].addr)) {
|
|
(*valThereP) -= FLASH_BASE + BINARY_RELOC_OFFSET;
|
|
nanoRelocs[outNumRelocs].type = NANO_RELOC_TYPE_FLASH;
|
|
}
|
|
else if (IS_IN_RAM(syms[whichSym].addr)) {
|
|
(*valThereP) -= RAM_BASE;
|
|
nanoRelocs[outNumRelocs].type = NANO_RELOC_TYPE_RAM;
|
|
}
|
|
else {
|
|
fprintf(stderr, "Weird reloc %" PRIu32 " to symbol %" PRIu32 " in unknown memory space (addr 0x%08" PRIX32 ")\n",
|
|
i, whichSym, syms[whichSym].addr);
|
|
goto out;
|
|
}
|
|
if (verbose)
|
|
fprintf(stderr, " -> Abs reference fixed up 0x%08" PRIX32 " -> 0x%08" PRIX32 "\n", t, *valThereP);
|
|
break;
|
|
|
|
case RELOC_TYPE_SECT:
|
|
if (syms[whichSym].addr) {
|
|
fprintf(stderr, "Weird sect reloc %" PRIu32 " to symbol %" PRIu32 " with nonzero addr 0x%08" PRIX32 "\n",
|
|
i, whichSym, syms[whichSym].addr);
|
|
goto out;
|
|
}
|
|
|
|
t = *valThereP;
|
|
|
|
if (IS_IN_FLASH(*valThereP)) {
|
|
nanoRelocs[outNumRelocs].type = NANO_RELOC_TYPE_FLASH;
|
|
*valThereP -= FLASH_BASE + BINARY_RELOC_OFFSET;
|
|
}
|
|
else if (IS_IN_RAM(*valThereP)) {
|
|
nanoRelocs[outNumRelocs].type = NANO_RELOC_TYPE_RAM;
|
|
*valThereP -= RAM_BASE;
|
|
}
|
|
else {
|
|
fprintf(stderr, "Weird sec reloc %" PRIu32 " to symbol %" PRIu32
|
|
" in unknown memory space (addr 0x%08" PRIX32 ")\n",
|
|
i, whichSym, *valThereP);
|
|
goto out;
|
|
}
|
|
if (verbose)
|
|
fprintf(stderr, " -> Sect reference fixed up 0x%08" PRIX32 " -> 0x%08" PRIX32 "\n", t, *valThereP);
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr, "Weird reloc %" PRIX32 " type %" PRIX32 " to symbol %" PRIX32 "\n", i, relocType, whichSym);
|
|
goto out;
|
|
}
|
|
|
|
if (verbose)
|
|
fprintf(stderr, " -> Nano reloc calculated as 0x%08" PRIX32 ",0x%02" PRIX8 "\n", nanoRelocs[i].ofstInRam, nanoRelocs[i].type);
|
|
outNumRelocs++;
|
|
}
|
|
|
|
packedNanoRelocs = packNanoRelocs(nanoRelocs, outNumRelocs, &packedNanoRelocSz, verbose);
|
|
|
|
//overwrite original relocs and symtab with nanorelocs and adjust sizes
|
|
memcpy(relocs, packedNanoRelocs, packedNanoRelocSz);
|
|
bufUsed -= sizeof(struct RelocEntry[numRelocs]);
|
|
bufUsed -= sizeof(struct SymtabEntry[numSyms]);
|
|
bufUsed += packedNanoRelocSz;
|
|
assertMem(bufUsed, bufSz);
|
|
sect->rel_end = sect->rel_start + packedNanoRelocSz;
|
|
|
|
//sanity
|
|
if (sect->rel_end - FLASH_BASE != bufUsed) {
|
|
fprintf(stderr, "Relocs end and file end not coincident\n");
|
|
goto out;
|
|
}
|
|
|
|
//adjust headers for easy access (RAM)
|
|
if (!IS_IN_RAM(sect->data_start) || !IS_IN_RAM(sect->data_end) || !IS_IN_RAM(sect->bss_start) ||
|
|
!IS_IN_RAM(sect->bss_end) || !IS_IN_RAM(sect->got_start) || !IS_IN_RAM(sect->got_end)) {
|
|
fprintf(stderr, "data, bss, or got not in ram\n");
|
|
goto out;
|
|
}
|
|
sect->data_start -= RAM_BASE;
|
|
sect->data_end -= RAM_BASE;
|
|
sect->bss_start -= RAM_BASE;
|
|
sect->bss_end -= RAM_BASE;
|
|
sect->got_start -= RAM_BASE;
|
|
sect->got_end -= RAM_BASE;
|
|
|
|
//adjust headers for easy access (FLASH)
|
|
if (!IS_IN_FLASH(sect->data_data) || !IS_IN_FLASH(sect->rel_start) || !IS_IN_FLASH(sect->rel_end)) {
|
|
fprintf(stderr, "data.data, or rel not in flash\n");
|
|
goto out;
|
|
}
|
|
sect->data_data -= FLASH_BASE + BINARY_RELOC_OFFSET;
|
|
sect->rel_start -= FLASH_BASE + BINARY_RELOC_OFFSET;
|
|
sect->rel_end -= FLASH_BASE + BINARY_RELOC_OFFSET;
|
|
|
|
ret = finalizeAndWrite(buf, bufUsed, bufSz, out, layoutFlags, appId, chreApi);
|
|
out:
|
|
free(nanoRelocs);
|
|
return ret;
|
|
}
|
|
|
|
static void elfExtractSectionPointer(const Elf_Data *data, const char *name, struct ElfNanoApp *app)
|
|
{
|
|
// Maps section names to their byte offset in struct ElfNanoApp. Note that
|
|
// this assumes that the linker script puts text/code in the .flash section,
|
|
// RW data in .data, that relocs for .data are included in .rel.data, and
|
|
// the symbol table is emitted in .symtab
|
|
const struct SectionMap {
|
|
const char *name;
|
|
size_t offset;
|
|
} sectionMap[] = {
|
|
{
|
|
.name = ".flash",
|
|
.offset = offsetof(struct ElfNanoApp, flash),
|
|
},
|
|
{
|
|
.name = ".data",
|
|
.offset = offsetof(struct ElfNanoApp, data),
|
|
},
|
|
{
|
|
.name = ".rel.data",
|
|
.offset = offsetof(struct ElfNanoApp, relocs),
|
|
},
|
|
{
|
|
.name = ".symtab",
|
|
.offset = offsetof(struct ElfNanoApp, symtab),
|
|
},
|
|
};
|
|
struct ElfAppSection *appSection;
|
|
uint8_t *appBytes = (uint8_t *) app;
|
|
|
|
for (size_t i = 0; i < ARRAY_SIZE(sectionMap); i++) {
|
|
if (strcmp(name, sectionMap[i].name) != 0) {
|
|
continue;
|
|
}
|
|
appSection = (struct ElfAppSection *) &appBytes[sectionMap[i].offset];
|
|
|
|
appSection->data = data->d_buf;
|
|
appSection->size = data->d_size;
|
|
|
|
DBG("Found section %s with size %zu", name, appSection->size);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Populates a struct ElfNanoApp with data parsed from the ELF
|
|
static bool elfParse(Elf *elf, struct ElfNanoApp *app)
|
|
{
|
|
size_t shdrstrndx;
|
|
Elf_Scn *scn = NULL;
|
|
GElf_Shdr shdr;
|
|
char *sectionName;
|
|
Elf_Data *elf_data;
|
|
|
|
memset(app, 0, sizeof(*app));
|
|
if (elf_getshdrstrndx(elf, &shdrstrndx) != 0) {
|
|
ELF_ERR("Couldn't get section name string table index");
|
|
return false;
|
|
}
|
|
|
|
while ((scn = elf_nextscn(elf, scn)) != NULL) {
|
|
if (gelf_getshdr(scn, &shdr) != &shdr) {
|
|
ELF_ERR("Error getting section header");
|
|
return false;
|
|
}
|
|
sectionName = elf_strptr(elf, shdrstrndx, shdr.sh_name);
|
|
|
|
elf_data = elf_getdata(scn, NULL);
|
|
if (!elf_data) {
|
|
ELF_ERR("Error getting data for section %s", sectionName);
|
|
return false;
|
|
}
|
|
|
|
elfExtractSectionPointer(elf_data, sectionName, app);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool loadNanoappElfFile(const char *fileName, struct ElfNanoApp *app)
|
|
{
|
|
int fd;
|
|
Elf *elf;
|
|
|
|
if (elf_version(EV_CURRENT) == EV_NONE) {
|
|
ELF_ERR("Failed to initialize ELF library");
|
|
return false;
|
|
}
|
|
|
|
fd = open(fileName, O_RDONLY, 0);
|
|
if (fd < 0) {
|
|
ERR("Failed to open file %s for reading: %s", fileName, strerror(errno));
|
|
return false;
|
|
}
|
|
|
|
elf = elf_begin(fd, ELF_C_READ, NULL);
|
|
if (elf == NULL) {
|
|
ELF_ERR("Failed to open ELF");
|
|
return false;
|
|
}
|
|
|
|
if (!elfParse(elf, app)) {
|
|
ERR("Failed to parse ELF file");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Subtracts the fixed memory region offset from an absolute address and returns
|
|
// the associated NANO_RELOC_* value, or NANO_RELOC_LAST if the address is not
|
|
// in the expected range.
|
|
// Not strictly tied to ELF usage, but handled slightly differently.
|
|
static uint8_t fixupAddrElf(uint32_t *addr)
|
|
{
|
|
uint8_t type;
|
|
|
|
// TODO: this assumes that the host running this tool has the same
|
|
// endianness as the image file/target processor
|
|
if (IS_IN_FLASH(*addr)) {
|
|
DBG("Fixup addr 0x%08" PRIX32 " (flash) --> 0x%08" PRIX32, *addr,
|
|
(uint32_t) (*addr - (FLASH_BASE + BINARY_RELOC_OFFSET)));
|
|
*addr -= FLASH_BASE + BINARY_RELOC_OFFSET;
|
|
type = NANO_RELOC_TYPE_FLASH;
|
|
} else if (IS_IN_RAM(*addr)) {
|
|
DBG("Fixup addr 0x%08" PRIX32 " (ram) --> 0x%08" PRIX32, *addr,
|
|
*addr - RAM_BASE);
|
|
*addr -= RAM_BASE;
|
|
type = NANO_RELOC_TYPE_RAM;
|
|
} else {
|
|
DBG("Error: invalid address 0x%08" PRIX32, *addr);
|
|
type = NANO_RELOC_LAST;
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
// Fixup addresses in the header to be relative. Not strictly tied to the ELF
|
|
// format, but used only in that program flow in the current implementation.
|
|
static bool fixupHeaderElf(const struct ElfNanoApp *app)
|
|
{
|
|
struct BinHdr *hdr = (struct BinHdr *) app->flash.data;
|
|
|
|
DBG("Appyling fixups to header");
|
|
if (fixupAddrElf(&hdr->sect.data_start) != NANO_RELOC_TYPE_RAM ||
|
|
fixupAddrElf(&hdr->sect.data_end) != NANO_RELOC_TYPE_RAM ||
|
|
fixupAddrElf(&hdr->sect.bss_start) != NANO_RELOC_TYPE_RAM ||
|
|
fixupAddrElf(&hdr->sect.bss_end) != NANO_RELOC_TYPE_RAM ||
|
|
fixupAddrElf(&hdr->sect.got_start) != NANO_RELOC_TYPE_RAM ||
|
|
fixupAddrElf(&hdr->sect.got_end) != NANO_RELOC_TYPE_RAM) {
|
|
ERR(".data, .bss, or .got not in RAM address space!");
|
|
return false;
|
|
}
|
|
|
|
if (fixupAddrElf(&hdr->sect.rel_start) != NANO_RELOC_TYPE_FLASH ||
|
|
fixupAddrElf(&hdr->sect.rel_end) != NANO_RELOC_TYPE_FLASH ||
|
|
fixupAddrElf(&hdr->sect.data_data) != NANO_RELOC_TYPE_FLASH) {
|
|
ERR(".data loadaddr, or .relocs not in flash address space!");
|
|
return false;
|
|
}
|
|
|
|
if (fixupAddrElf(&hdr->vec.init) != NANO_RELOC_TYPE_FLASH ||
|
|
fixupAddrElf(&hdr->vec.end) != NANO_RELOC_TYPE_FLASH ||
|
|
fixupAddrElf(&hdr->vec.handle) != NANO_RELOC_TYPE_FLASH) {
|
|
ERR("Entry point(s) not in flash address space!");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Fixup addresses in .data, .init_array/.fini_array, and .got, and generates
|
|
// packed array of nano reloc entries. The app header must have already been
|
|
// fixed up.
|
|
static bool genElfNanoRelocs(struct ElfNanoApp *app, bool verbose)
|
|
{
|
|
const struct BinHdr *hdr = (const struct BinHdr *) app->flash.data;
|
|
const struct SectInfo *sect = &hdr->sect;
|
|
bool success = false;
|
|
|
|
size_t numDataRelocs = app->relocs.size / sizeof(Elf32_Rel);
|
|
size_t gotCount = (sect->got_end - sect->got_start) / sizeof(uint32_t);
|
|
size_t numInitFuncs = (sect->bss_start - sect->data_end) / sizeof(uint32_t);
|
|
|
|
size_t totalRelocCount = (numDataRelocs + numInitFuncs + gotCount);
|
|
struct NanoRelocEntry *nanoRelocs = malloc(
|
|
totalRelocCount * sizeof(struct NanoRelocEntry));
|
|
if (!nanoRelocs) {
|
|
ERR("Couldn't allocate memory for nano relocs! Needed %zu bytes",
|
|
totalRelocCount * sizeof(struct NanoRelocEntry));
|
|
return false;
|
|
}
|
|
|
|
uint8_t *data = app->data.data;
|
|
const Elf32_Rel *relocs = (const Elf32_Rel *) app->relocs.data;
|
|
const Elf32_Sym *syms = (const Elf32_Sym *) app->symtab.data;
|
|
size_t numRelocs = 0;
|
|
|
|
DBG("Parsing relocs for .data (%zu):", numDataRelocs);
|
|
for (size_t i = 0; i < numDataRelocs; i++) {
|
|
uint32_t type = ELF32_R_TYPE(relocs[i].r_info);
|
|
uint32_t sym = ELF32_R_SYM(relocs[i].r_info);
|
|
|
|
DBG(" [%3zu] 0x%08" PRIx32 " type %2" PRIu32 " symIdx %3" PRIu32
|
|
" --> 0x%08" PRIx32, i, relocs[i].r_offset, type, sym,
|
|
syms[sym].st_value);
|
|
// Note that R_ARM_TARGET1 is used for .init_array/.fini_array support,
|
|
// and can be interpreted either as ABS32 or REL32, depending on the
|
|
// runtime; we expect it to be ABS32.
|
|
if (type == R_ARM_ABS32 || type == R_ARM_TARGET1) {
|
|
if (!IS_IN_RAM(relocs[i].r_offset)) {
|
|
ERR("Reloc for .data not in RAM address range!");
|
|
goto out;
|
|
}
|
|
uint32_t offset = relocs[i].r_offset - RAM_BASE;
|
|
uint32_t *addr = (uint32_t *) &data[offset];
|
|
|
|
nanoRelocs[numRelocs].type = fixupAddrElf(addr);
|
|
nanoRelocs[numRelocs].ofstInRam = offset;
|
|
numRelocs++;
|
|
} else {
|
|
// TODO: Assuming that the ELF only contains absolute addresses in
|
|
// the .data section; may need to handle other relocation types in
|
|
// the future
|
|
ERR("Error: Unexpected reloc type %" PRIu32 " at index %zu",
|
|
type, i);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
DBG("Updating GOT entries (%zu):", gotCount);
|
|
for (uint32_t offset = sect->got_start; offset < sect->got_end;
|
|
offset += sizeof(uint32_t)) {
|
|
uint32_t *addr = (uint32_t *) &data[offset];
|
|
// Skip values that are set to 0, these seem to be padding (?)
|
|
if (*addr) {
|
|
nanoRelocs[numRelocs].type = fixupAddrElf(addr);
|
|
nanoRelocs[numRelocs].ofstInRam = offset;
|
|
numRelocs++;
|
|
}
|
|
}
|
|
|
|
uint32_t packedNanoRelocSz = 0;
|
|
app->packedNanoRelocs.data = packNanoRelocs(
|
|
nanoRelocs, numRelocs, &packedNanoRelocSz, verbose);
|
|
app->packedNanoRelocs.size = packedNanoRelocSz;
|
|
success = true;
|
|
out:
|
|
free(nanoRelocs);
|
|
return success;
|
|
}
|
|
|
|
static int handleAppStatic(const char *fileName, FILE *out, uint32_t layoutFlags, uint64_t appId, uint32_t appVer, uint32_t chreApi, bool verbose)
|
|
{
|
|
struct ElfNanoApp app;
|
|
|
|
if (!loadNanoappElfFile(fileName, &app)
|
|
|| !fixupHeaderElf(&app)
|
|
|| !genElfNanoRelocs(&app, verbose)) {
|
|
exit(2);
|
|
}
|
|
|
|
// Construct a single contiguous buffer, with extra room to fit the
|
|
// ImageHeader that will be prepended by finalizeAndWrite(). Note that this
|
|
// will allocate a bit more space than is needed, because some of the data
|
|
// from BinHdr will get discarded.
|
|
// TODO: this should be refactored to just write the binary components in
|
|
// order rather than allocating a big buffer, and moving data around
|
|
size_t bufSize = app.flash.size + app.data.size + app.packedNanoRelocs.size
|
|
+ sizeof(struct ImageHeader);
|
|
uint8_t *buf = malloc(bufSize);
|
|
if (!buf) {
|
|
ERR("Failed to allocate %zu bytes for final app", bufSize);
|
|
exit(2);
|
|
}
|
|
|
|
size_t offset = 0;
|
|
memcpy(buf, app.flash.data, app.flash.size);
|
|
offset += app.flash.size;
|
|
memcpy(&buf[offset], app.data.data, app.data.size);
|
|
offset += app.data.size;
|
|
memcpy(&buf[offset], app.packedNanoRelocs.data, app.packedNanoRelocs.size);
|
|
offset += app.packedNanoRelocs.size;
|
|
|
|
// Update rel_end in the header to reflect the packed reloc size
|
|
struct BinHdr *hdr = (struct BinHdr *) buf;
|
|
hdr->sect.rel_end = hdr->sect.rel_start + app.packedNanoRelocs.size;
|
|
hdr->hdr.appVer = appVer;
|
|
|
|
return finalizeAndWrite(buf, offset, bufSize, out, layoutFlags, appId, chreApi);
|
|
// TODO: should free all memory we allocated... just letting the OS handle
|
|
// it for now
|
|
}
|
|
|
|
static int handleKey(uint8_t **pbuf, uint32_t bufUsed, FILE *out, uint32_t layoutFlags, uint64_t appId, uint64_t keyId)
|
|
{
|
|
uint8_t *buf = *pbuf;
|
|
struct KeyInfo ki = { .data = keyId };
|
|
bool good = true;
|
|
|
|
struct ImageHeader outHeader = {
|
|
.aosp = (struct nano_app_binary_t) {
|
|
.header_version = 1,
|
|
.magic = NANOAPP_AOSP_MAGIC,
|
|
.app_id = appId,
|
|
},
|
|
.layout = (struct ImageLayout) {
|
|
.magic = GOOGLE_LAYOUT_MAGIC,
|
|
.version = 1,
|
|
.payload = LAYOUT_KEY,
|
|
.flags = layoutFlags,
|
|
},
|
|
};
|
|
|
|
good = good && fwrite(&outHeader, sizeof(outHeader), 1, out) == 1;
|
|
good = good && fwrite(&ki, sizeof(ki), 1, out) == 1;
|
|
good = good && fwrite(buf, bufUsed, 1, out) == 1;
|
|
|
|
return good ? 0 : 2;
|
|
}
|
|
|
|
static int handleOs(uint8_t **pbuf, uint32_t bufUsed, FILE *out, uint32_t layoutFlags, bool bare)
|
|
{
|
|
uint8_t *buf = *pbuf;
|
|
bool good;
|
|
|
|
struct OsUpdateHdr os = {
|
|
.magic = OS_UPDT_MAGIC,
|
|
.marker = OS_UPDT_MARKER_INPROGRESS,
|
|
.size = bufUsed
|
|
};
|
|
|
|
struct ImageHeader outHeader = {
|
|
.aosp = (struct nano_app_binary_t) {
|
|
.header_version = 1,
|
|
.magic = NANOAPP_AOSP_MAGIC,
|
|
},
|
|
.layout = (struct ImageLayout) {
|
|
.magic = GOOGLE_LAYOUT_MAGIC,
|
|
.version = 1,
|
|
.payload = LAYOUT_OS,
|
|
.flags = layoutFlags,
|
|
},
|
|
};
|
|
|
|
if (!bare)
|
|
good = fwrite(&outHeader, sizeof(outHeader), 1, out) == 1;
|
|
else
|
|
good = fwrite(&os, sizeof(os), 1, out) == 1;
|
|
good = good && fwrite(buf, bufUsed, 1, out) == 1;
|
|
|
|
return good ? 0 : 2;
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
uint32_t bufUsed = 0;
|
|
bool verbose = false;
|
|
uint8_t *buf = NULL;
|
|
uint64_t appId = 0;
|
|
uint64_t keyId = 0;
|
|
uint32_t appVer = 0;
|
|
uint32_t chreApi = 0;
|
|
uint32_t layoutId = 0;
|
|
uint32_t layoutFlags = 0;
|
|
int ret = -1;
|
|
uint32_t *u32Arg = NULL;
|
|
uint64_t *u64Arg = NULL;
|
|
const char **strArg = NULL;
|
|
const char *appName = argv[0];
|
|
int posArgCnt = 0;
|
|
const char *posArg[2] = { NULL };
|
|
FILE *out = NULL;
|
|
const char *layoutName = "app";
|
|
const char *prev = NULL;
|
|
bool bareData = false;
|
|
bool staticElf = false;
|
|
|
|
for (int i = 1; i < argc; i++) {
|
|
char *end = NULL;
|
|
if (argv[i][0] == '-') {
|
|
prev = argv[i];
|
|
if (!strcmp(argv[i], "-v"))
|
|
verbose = true;
|
|
else if (!strcmp(argv[i], "-r"))
|
|
bareData = true;
|
|
else if (!strcmp(argv[i], "-s"))
|
|
staticElf = true;
|
|
else if (!strcmp(argv[i], "-a"))
|
|
u64Arg = &appId;
|
|
else if (!strcmp(argv[i], "-c"))
|
|
u32Arg = &chreApi;
|
|
else if (!strcmp(argv[i], "-e"))
|
|
u32Arg = &appVer;
|
|
else if (!strcmp(argv[i], "-k"))
|
|
u64Arg = &keyId;
|
|
else if (!strcmp(argv[i], "-n"))
|
|
strArg = &layoutName;
|
|
else if (!strcmp(argv[i], "-i"))
|
|
u32Arg = &layoutId;
|
|
else if (!strcmp(argv[i], "-f"))
|
|
u32Arg = &layoutFlags;
|
|
else
|
|
fatalUsage(appName, "unknown argument", argv[i]);
|
|
} else {
|
|
if (u64Arg) {
|
|
uint64_t tmp = strtoull(argv[i], &end, 16);
|
|
if (*end == '\0')
|
|
*u64Arg = tmp;
|
|
u64Arg = NULL;
|
|
} else if (u32Arg) {
|
|
uint32_t tmp = strtoul(argv[i], &end, 16);
|
|
if (*end == '\0')
|
|
*u32Arg = tmp;
|
|
u32Arg = NULL;
|
|
} else if (strArg) {
|
|
*strArg = argv[i];
|
|
strArg = NULL;
|
|
} else {
|
|
if (posArgCnt < 2)
|
|
posArg[posArgCnt++] = argv[i];
|
|
else
|
|
fatalUsage(appName, "too many positional arguments", argv[i]);
|
|
}
|
|
prev = NULL;
|
|
}
|
|
}
|
|
if (prev)
|
|
fatalUsage(appName, "missing argument after", prev);
|
|
|
|
if (!posArgCnt)
|
|
fatalUsage(appName, "missing input file name", NULL);
|
|
|
|
if (!layoutId) {
|
|
if (strcmp(layoutName, "app") == 0)
|
|
layoutId = LAYOUT_APP;
|
|
else if (strcmp(layoutName, "os") == 0)
|
|
layoutId = LAYOUT_OS;
|
|
else if (strcmp(layoutName, "key") == 0)
|
|
layoutId = LAYOUT_KEY;
|
|
else
|
|
fatalUsage(appName, "Invalid layout name", layoutName);
|
|
}
|
|
|
|
if (staticElf && layoutId != LAYOUT_APP)
|
|
fatalUsage(appName, "Only app layout is supported for static option", NULL);
|
|
|
|
if (layoutId == LAYOUT_APP && !appId)
|
|
fatalUsage(appName, "App layout requires app ID", NULL);
|
|
if (layoutId == LAYOUT_KEY && !keyId)
|
|
fatalUsage(appName, "Key layout requires key ID", NULL);
|
|
if (layoutId == LAYOUT_OS && (keyId || appId))
|
|
fatalUsage(appName, "OS layout does not need any ID", NULL);
|
|
|
|
if (!staticElf) {
|
|
buf = loadFile(posArg[0], &bufUsed);
|
|
fprintf(stderr, "Read %" PRIu32 " bytes\n", bufUsed);
|
|
}
|
|
|
|
if (!posArg[1])
|
|
out = stdout;
|
|
else
|
|
out = fopen(posArg[1], "w");
|
|
if (!out)
|
|
fatalUsage(appName, "failed to create/open output file", posArg[1]);
|
|
|
|
switch(layoutId) {
|
|
case LAYOUT_APP:
|
|
if (staticElf) {
|
|
ret = handleAppStatic(posArg[0], out, layoutFlags, appId, appVer, chreApi, verbose);
|
|
} else {
|
|
ret = handleApp(&buf, bufUsed, out, layoutFlags, appId, appVer, chreApi, verbose);
|
|
}
|
|
break;
|
|
case LAYOUT_KEY:
|
|
ret = handleKey(&buf, bufUsed, out, layoutFlags, appId, keyId);
|
|
break;
|
|
case LAYOUT_OS:
|
|
ret = handleOs(&buf, bufUsed, out, layoutFlags, bareData);
|
|
break;
|
|
}
|
|
|
|
free(buf);
|
|
fclose(out);
|
|
return ret;
|
|
}
|