android13/external/ComputeLibrary/examples/graph_inception_resnet_v2.cpp

804 lines
56 KiB
C++

/*
* Copyright (c) 2018-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph.h"
#include "support/ToolchainSupport.h"
#include "utils/CommonGraphOptions.h"
#include "utils/GraphUtils.h"
#include "utils/Utils.h"
using namespace arm_compute::utils;
using namespace arm_compute::graph::frontend;
using namespace arm_compute::graph_utils;
/** Example demonstrating how to implement InceptionV4's network using the Compute Library's graph API */
class InceptionResNetV2Example final : public Example
{
public:
InceptionResNetV2Example()
: cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "InceptionResNetV2")
{
}
bool do_setup(int argc, char **argv) override
{
// Parse arguments
cmd_parser.parse(argc, argv);
cmd_parser.validate();
// Consume common parameters
common_params = consume_common_graph_parameters(common_opts);
// Return when help menu is requested
if(common_params.help)
{
cmd_parser.print_help(argv[0]);
return false;
}
// Set default layout if needed
if(!common_opts.data_layout->is_set() && common_params.target == Target::NEON)
{
common_params.data_layout = DataLayout::NCHW;
}
// Checks
ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
// Print parameter values
std::cout << common_params << std::endl;
// Create model path
std::string data_path = common_params.data_path;
std::string model_path = "/cnn_data/inception_resnet_v2_model/";
if(!data_path.empty())
{
data_path += model_path;
}
// Create a preprocessor object
std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<TFPreproccessor>(0.f, 1.f);
// Create input descriptor
const auto operation_layout = common_params.data_layout;
const TensorShape tensor_shape = permute_shape(TensorShape(299U, 299U, 3U, 1U), DataLayout::NCHW, operation_layout);
TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
// Set weights trained layout
const DataLayout weights_layout = DataLayout::NCHW;
graph << common_params.target
<< common_params.fast_math_hint
<< InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false))
// Conv2d_1a_3x3
<< ConvolutionLayer(3U, 3U, 32U,
get_weights_accessor(data_path, "Conv2d_1a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(2, 2, 0, 0))
.set_name("Conv2d_1a_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Conv2d_1a_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Conv2d_1a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_1a_3x3/Relu")
// Conv2d_2a_3x3
<< ConvolutionLayer(3U, 3U, 32U,
get_weights_accessor(data_path, "Conv2d_2a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name("Conv2d_2a_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_2a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Conv2d_2a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Conv2d_2a_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Conv2d_2a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2a_3x3/Relu")
// Conv2d_2b_3x3
<< ConvolutionLayer(3U, 3U, 64U,
get_weights_accessor(data_path, "Conv2d_2b_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 1, 1))
.set_name("Conv2d_2b_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_2b_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Conv2d_2b_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Conv2d_2b_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Conv2d_2b_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2b_3x3/Relu")
// MaxPool_3a_3x3
<< PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL), true)).set_name("MaxPool_3a_3x3/MaxPool")
// Conv2d_3b_1x1
<< ConvolutionLayer(1U, 1U, 80U,
get_weights_accessor(data_path, "Conv2d_3b_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name("Conv2d_3b_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_3b_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Conv2d_3b_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Conv2d_3b_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Conv2d_3b_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_3b_1x1/Relu")
// Conv2d_4a_3x3
<< ConvolutionLayer(3U, 3U, 192U,
get_weights_accessor(data_path, "Conv2d_4a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name("Conv2d_4a_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_4a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Conv2d_4a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Conv2d_4a_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Conv2d_4a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_4a_3x3/Relu")
// MaxPool_5a_3x3
<< PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0), true)).set_name("MaxPool_5a_3x3/MaxPool");
block_mixed_5b(data_path, weights_layout);
block35_repeat(data_path, weights_layout, 10);
block_mixed_6a(data_path, weights_layout);
block17_repeat(data_path, weights_layout, 20);
block_mixed_7a(data_path, weights_layout);
block8_repeat(data_path, weights_layout, 9, 0.2f, true);
block8_repeat(data_path, weights_layout, 1, 1.f, false);
// Conv2d_7b_1x1
graph << ConvolutionLayer(1U, 1U, 1536U,
get_weights_accessor(data_path, "Conv2d_7b_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name("Conv2d_7b_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_7b_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Conv2d_7b_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Conv2d_7b_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Conv2d_7b_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_7b_1x1/Relu")
<< PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("Logits/AvgPool_1a_8x8")
<< FlattenLayer().set_name("Logits/Flatten")
<< FullyConnectedLayer(
1001U,
get_weights_accessor(data_path, "Logits_Logits_weights.npy", weights_layout),
get_weights_accessor(data_path, "Logits_Logits_biases.npy"))
.set_name("Logits/Logits")
<< SoftmaxLayer().set_name("Logits/Predictions")
<< OutputLayer(get_output_accessor(common_params, 5));
// Finalize graph
GraphConfig config;
config.num_threads = common_params.threads;
config.use_tuner = common_params.enable_tuner;
config.tuner_mode = common_params.tuner_mode;
config.tuner_file = common_params.tuner_file;
graph.finalize(common_params.target, config);
return true;
}
void do_run() override
{
graph.run();
}
private:
CommandLineParser cmd_parser;
CommonGraphOptions common_opts;
CommonGraphParams common_params;
Stream graph;
private:
void block_mixed_5b(const std::string &data_path, DataLayout weights_layout)
{
// Branch 0
SubStream i_a(graph);
i_a << ConvolutionLayer(1U, 1U, 96U,
get_weights_accessor(data_path, "Mixed_5b_Branch_0_Conv2d_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_5b/Branch_0/Conv2d_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_5b_Branch_0_Conv2d_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_5b_Branch_0_Conv2d_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_5b_Branch_0_Conv2d_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_5b/Branch_0/Conv2d_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_5b/Branch_0/Conv2d_1x1/Relu");
// Branch 1
SubStream i_b(graph);
i_b << ConvolutionLayer(1U, 1U, 48U,
get_weights_accessor(data_path, "Mixed_5b_Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_5b/Branch_1/Conv2d_0a_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_5b_Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_5b_Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_5b_Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_5b/Branch_1/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_5b/Branch_1/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(5U, 5U, 64U,
get_weights_accessor(data_path, "Mixed_5b_Branch_1_Conv2d_0b_5x5_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 2, 2))
.set_name("Mixed_5b/Branch_1/Conv2d_0b_5x5/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_5b_Branch_1_Conv2d_0b_5x5_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_5b_Branch_1_Conv2d_0b_5x5_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_5b_Branch_1_Conv2d_0b_5x5_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_5b/Branch_1/Conv2d_0b_5x5/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_5b/Branch_1/Conv2d_0b_5x5/Relu");
// Branch 2
SubStream i_c(graph);
i_c << ConvolutionLayer(1U, 1U, 64U,
get_weights_accessor(data_path, "Mixed_5b_Branch_2_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_5b/Branch_2/Conv2d_0a_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_5b_Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_5b_Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_5b_Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_5b/Branch_2/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_5b/Branch_2/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(3U, 3U, 96U,
get_weights_accessor(data_path, "Mixed_5b_Branch_2_Conv2d_0b_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 1, 1))
.set_name("Mixed_5b/Branch_2/Conv2d_0b_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_5b_Branch_2_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_5b_Branch_2_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_5b_Branch_2_Conv2d_0b_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_5b/Branch_2/Conv2d_0b_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_5b/Branch_2/Conv2d_0b_3x3/Relu")
<< ConvolutionLayer(3U, 3U, 96U,
get_weights_accessor(data_path, "Mixed_5b_Branch_2_Conv2d_0c_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 1, 1))
.set_name("Mixed_5b/Branch_2/Conv2d_0c_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_5b_Branch_2_Conv2d_0c_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_5b_Branch_2_Conv2d_0c_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_5b_Branch_2_Conv2d_0c_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_5b/Branch_2/Conv2d_0c_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_5b/Branch_2/Conv2d_0c_3x3/Relu");
// Branch 3
SubStream i_d(graph);
i_d << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 3, common_params.data_layout, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL), true)).set_name("Mixed_5b/Branch_3/AvgPool_0a_3x3")
<< ConvolutionLayer(1U, 1U, 64U,
get_weights_accessor(data_path, "Mixed_5b_Branch_3_Conv2d_0b_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_5b/Branch_3/Conv2d_0b_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_5b_Branch_3_Conv2d_0b_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_5b_Branch_3_Conv2d_0b_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_5b_Branch_3_Conv2d_0b_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_5b/Branch_3/Conv2d_0b_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_5b/Branch_3/Conv2d_0b_1x1/Relu");
// Concatenate
graph << ConcatLayer(std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d)).set_name("Mixed_5a/concat");
}
void block_mixed_6a(const std::string &data_path, DataLayout weights_layout)
{
// Branch 0
SubStream i_a(graph);
i_a << ConvolutionLayer(3U, 3U, 384U,
get_weights_accessor(data_path, "Mixed_6a_Branch_0_Conv2d_1a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(2, 2, 0, 0))
.set_name("Mixed_6a/Branch_0/Conv2d_1a_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_6a_Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_6a_Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_6a_Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_6a/Branch_0/Conv2d_1a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_0/Conv2d_1a_3x3/Relu");
// Branch 1
SubStream i_b(graph);
i_b << ConvolutionLayer(1U, 1U, 256U,
get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_6a/Branch_1/Conv2d_0a_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_6a/Branch_1/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_1/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(3U, 3U, 256U,
get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0b_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 1, 1))
.set_name("Mixed_6a/Branch_1/Conv2d_0b_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0b_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_6a/Branch_1/Conv2d_0b_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_1/Conv2d_0b_3x3/Relu")
<< ConvolutionLayer(3U, 3U, 384U,
get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_1a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(2, 2, 0, 0))
.set_name("Mixed_6a/Branch_1/Conv2d_1a_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_1a_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_6a/Branch_1/Conv2d_1a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_1/Conv2d_1a_3x3/Relu");
// Branch 2
SubStream i_c(graph);
i_c << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, common_params.data_layout, PadStrideInfo(2, 2, 0, 0), true)).set_name("Mixed_6a/Branch_2/MaxPool_1a_3x3");
// Concatenate
graph << ConcatLayer(std::move(i_a), std::move(i_b), std::move(i_c)).set_name("Mixed_6a/concat");
}
void block_mixed_7a(const std::string &data_path, DataLayout weights_layout)
{
// Branch 0
SubStream i_a(graph);
i_a << ConvolutionLayer(1U, 1U, 256U,
get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_7a/Branch_0/Conv2d_0a_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_7a/Branch_0/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_0/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(3U, 3U, 384U,
get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_1a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(2, 2, 0, 0))
.set_name("Mixed_7a/Branch_0/Conv2d_1a_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_7a/Branch_0/Conv2d_1a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_0/Conv2d_1a_3x3/Relu");
// Branch 1
SubStream i_b(graph);
i_b << ConvolutionLayer(1U, 1U, 256U,
get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(3U, 3U, 288U,
get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_1a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(2, 2, 0, 0))
.set_name("Mixed_7a/Branch_1/Conv2d_1a_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_1a_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_7a/Branch_1/Conv2d_1a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_1/Conv2d_1a_3x3/Relu");
// Branch 2
SubStream i_c(graph);
i_c << ConvolutionLayer(1U, 1U, 256U,
get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_7a/Branch_2/Conv2d_0a_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_7a/Branch_2/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_2/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(3U, 3U, 288U,
get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0b_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 1, 1))
.set_name("Mixed_7a/Branch_2/Conv2d_0b_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0b_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_7a/Branch_2/Conv2d_0b_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_2/Conv2d_0b_3x3/Relu")
<< ConvolutionLayer(3U, 3U, 320U,
get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_1a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(2, 2, 0, 0))
.set_name("Mixed_7a/Branch_2/Conv2d_1a_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_1a_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name("Mixed_7a/Branch_2/Conv2d_1a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_2/Conv2d_1a_3x3/Relu");
// Branch 3
SubStream i_d(graph);
i_d << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, common_params.data_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL), true)).set_name("Mixed_7a/Branch_3/MaxPool_1a_3x3");
// Concatenate
graph << ConcatLayer(std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d)).set_name("Mixed_7a/concat");
}
void block35_repeat(const std::string &data_path, DataLayout weights_layout, unsigned int num_blocks)
{
for(unsigned int i = 0; i < num_blocks; ++i)
{
std::stringstream unit_path_ss;
unit_path_ss << "Repeat_block35_" << (i + 1) << "_";
std::stringstream unit_name_ss;
unit_name_ss << "Repeat/block35_" << (i + 1) << "/";
std::string unit_path = unit_path_ss.str();
std::string unit_name = unit_name_ss.str();
// Create left and write substreams
SubStream i_l(graph);
SubStream i_r(graph);
// Branch 0
SubStream i_la(i_l);
i_la << ConvolutionLayer(1U, 1U, 32U,
get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name(unit_name + "Branch_0/Conv2d_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name(unit_name + "Branch_0/Conv2d_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_0/Conv2d_1x1/Relu");
// Branch 1
SubStream i_lb(i_l);
i_lb << ConvolutionLayer(1U, 1U, 32U,
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name(unit_name + "Branch_1/Conv2d_0a_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name(unit_name + "Branch_1/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(3U, 3U, 32U,
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 1, 1))
.set_name(unit_name + "Branch_1/Conv2d_0b_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name(unit_name + "Branch_1/Conv2d_0b_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0b_3x3/Relu");
// Branch 2
SubStream i_lc(i_l);
i_lc << ConvolutionLayer(1U, 1U, 32U,
get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name(unit_name + "Branch_2/Conv2d_0a_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name(unit_name + "Branch_2/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_2/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(3U, 3U, 48U,
get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0b_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 1, 1))
.set_name(unit_name + "Branch_2/Conv2d_0b_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name(unit_name + "Branch_2/Conv2d_0b_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_2/Conv2d_0b_3x3/Relu")
<< ConvolutionLayer(3U, 3U, 64U,
get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0c_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 1, 1))
.set_name(unit_name + "Branch_2/Conv2d_0c_3x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name(unit_name + "Branch_2/Conv2d_0c_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_2/Conv2d_0c_3x3/Relu");
// Concatenate
i_l << ConcatLayer(std::move(i_la), std::move(i_lb), std::move(i_lc)).set_name(unit_name + "concat")
<< ConvolutionLayer(1U, 1U, 320U,
get_weights_accessor(data_path, unit_path + "Conv2d_1x1_weights.npy", weights_layout),
get_weights_accessor(data_path, unit_path + "Conv2d_1x1_biases.npy", weights_layout),
PadStrideInfo(1, 1, 0, 0))
.set_name(unit_name + "Conv2d_1x1/convolution")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 0.17f, 0.f)).set_name(unit_name + "mul");
graph << EltwiseLayer(std::move(i_l), std::move(i_r), EltwiseOperation::Add).set_name(unit_name + "add")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Relu");
}
}
void block17_repeat(const std::string &data_path, DataLayout weights_layout, unsigned int num_blocks)
{
for(unsigned int i = 0; i < num_blocks; ++i)
{
std::stringstream unit_path_ss;
unit_path_ss << "Repeat_1_block17_" << (i + 1) << "_";
std::stringstream unit_name_ss;
unit_name_ss << "Repeat_1/block17_" << (i + 1) << "/";
std::string unit_path = unit_path_ss.str();
std::string unit_name = unit_name_ss.str();
// Create left and write substreams
SubStream i_l(graph);
SubStream i_r(graph);
// Branch 0
SubStream i_la(i_l);
i_la << ConvolutionLayer(1U, 1U, 192U,
get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name(unit_name + "Branch_0/Conv2d_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name(unit_name + "Branch_0/Conv2d_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_0/Conv2d_1x1/Relu");
// Branch 1
SubStream i_lb(i_l);
i_lb << ConvolutionLayer(1U, 1U, 128U,
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name(unit_name + "Branch_1/Conv2d_0a_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name(unit_name + "Branch_1/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(7U, 1U, 160U,
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x7_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 3, 0))
.set_name(unit_name + "Branch_1/Conv2d_0b_1x7/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name(unit_name + "Branch_1/Conv2d_0b_1x7/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0b_1x7/Relu")
<< ConvolutionLayer(1U, 7U, 192U,
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_7x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 3))
.set_name(unit_name + "Branch_1/Conv2d_0c_7x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name(unit_name + "Branch_1/Conv2d_0c_7x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0c_7x1/Relu");
// Concatenate
i_l << ConcatLayer(std::move(i_la), std::move(i_lb)).set_name(unit_name + "concat")
<< ConvolutionLayer(1U, 1U, 1088U,
get_weights_accessor(data_path, unit_path + "Conv2d_1x1_weights.npy", weights_layout),
get_weights_accessor(data_path, unit_path + "Conv2d_1x1_biases.npy", weights_layout),
PadStrideInfo(1, 1, 0, 0))
.set_name(unit_name + "Conv2d_1x1/convolution")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 0.10f, 0.f)).set_name(unit_name + "mul");
graph << EltwiseLayer(std::move(i_l), std::move(i_r), EltwiseOperation::Add).set_name(unit_name + "add")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Relu");
}
}
void block8_repeat(const std::string &data_path, DataLayout weights_layout, unsigned int num_blocks, float scale, bool has_activation)
{
for(unsigned int i = 0; i < num_blocks; ++i)
{
std::stringstream unit_path_ss;
std::stringstream unit_name_ss;
if(num_blocks != 1)
{
unit_path_ss << "Repeat_2_block8_" << (i + 1) << "_";
unit_name_ss << "Repeat_2/block8_" << (i + 1) << "/";
}
else
{
unit_path_ss << "Block8_";
unit_name_ss << "Block8/";
}
std::string unit_path = unit_path_ss.str();
std::string unit_name = unit_name_ss.str();
// Create left and write substreams
SubStream i_l(graph);
SubStream i_r(graph);
// Branch 0
SubStream i_la(i_l);
i_la << ConvolutionLayer(1U, 1U, 192U,
get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name(unit_name + "Branch_0/Conv2d_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name(unit_name + "Branch_0/Conv2d_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_0/Conv2d_1x1/Relu");
// Branch 1
SubStream i_lb(i_l);
i_lb << ConvolutionLayer(1U, 1U, 192U,
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name(unit_name + "Branch_1/Conv2d_0a_1x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name(unit_name + "Branch_1/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(3U, 1U, 224U,
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 1, 0))
.set_name(unit_name + "Branch_1/Conv2d_0b_1x3/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name(unit_name + "Branch_1/Conv2d_0b_1x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0b_1x3/Relu")
<< ConvolutionLayer(1U, 3U, 256U,
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_3x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 1))
.set_name(unit_name + "Branch_1/Conv2d_0c_3x1/convolution")
<< BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_beta.npy"),
0.0010000000474974513f)
.set_name(unit_name + "Branch_1/Conv2d_0c_3x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0c_3x1/Relu");
// Concatenate
i_l << ConcatLayer(std::move(i_la), std::move(i_lb)).set_name(unit_name + "concat")
<< ConvolutionLayer(1U, 1U, 2080U,
get_weights_accessor(data_path, unit_path + "Conv2d_1x1_weights.npy", weights_layout),
get_weights_accessor(data_path, unit_path + "Conv2d_1x1_biases.npy", weights_layout),
PadStrideInfo(1, 1, 0, 0))
.set_name(unit_name + "Conv2d_1x1/convolution");
// Scale result
if(scale != 1.f)
{
i_l << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, scale, 0.f)).set_name(unit_name + "mul");
}
// Residual add
graph << EltwiseLayer(std::move(i_l), std::move(i_r), EltwiseOperation::Add).set_name(unit_name + "add");
// Apply activation if needed
if(has_activation)
{
graph << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Relu");
}
}
}
};
/** Main program for Inception ResNet V2
*
* Model is based on:
* https://arxiv.org/abs/1602.07261
* "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning"
* Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
*
* Provenance: download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz
*
* @note To list all the possible arguments execute the binary appended with the --help option
*
* @param[in] argc Number of arguments
* @param[in] argv Arguments
*/
int main(int argc, char **argv)
{
return arm_compute::utils::run_example<InceptionResNetV2Example>(argc, argv);
}