android13/external/ComputeLibrary/examples/graph_inception_v4.cpp

872 lines
64 KiB
C++

/*
* Copyright (c) 2018-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph.h"
#ifdef ARM_COMPUTE_CL
#include "arm_compute/runtime/CL/Utils.h"
#endif /* ARM_COMPUTE_CL */
#include "support/ToolchainSupport.h"
#include "utils/CommonGraphOptions.h"
#include "utils/GraphUtils.h"
#include "utils/Utils.h"
using namespace arm_compute;
using namespace arm_compute::utils;
using namespace arm_compute::graph::frontend;
using namespace arm_compute::graph_utils;
/** Example demonstrating how to implement InceptionV4's network using the Compute Library's graph API */
class InceptionV4Example final : public Example
{
public:
InceptionV4Example()
: cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "InceptionV4")
{
}
bool do_setup(int argc, char **argv) override
{
// Parse arguments
cmd_parser.parse(argc, argv);
cmd_parser.validate();
// Consume common parameters
common_params = consume_common_graph_parameters(common_opts);
// Return when help menu is requested
if(common_params.help)
{
cmd_parser.print_help(argv[0]);
return false;
}
// Print parameter values
std::cout << common_params << std::endl;
// Get trainable parameters data path
std::string data_path = common_params.data_path;
// Create a preprocessor object
std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<TFPreproccessor>();
// Create input descriptor
const auto operation_layout = common_params.data_layout;
const TensorShape tensor_shape = permute_shape(TensorShape(299U, 299U, 3U, 1U), DataLayout::NCHW, operation_layout);
TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
// Set weights trained layout
const DataLayout weights_layout = DataLayout::NCHW;
graph << common_params.target
<< common_params.fast_math_hint
<< InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false))
// Conv2d_1a_3x3
<< ConvolutionLayer(3U, 3U, 32U,
get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_1a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(2, 2, 0, 0))
.set_name("Conv2d_1a_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_1a_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name("Conv2d_1a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_1a_3x3/Relu")
// Conv2d_2a_3x3
<< ConvolutionLayer(3U, 3U, 32U,
get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name("Conv2d_2a_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2a_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name("Conv2d_2a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2a_3x3/Relu")
// Conv2d_2b_3x3
<< ConvolutionLayer(3U, 3U, 64U,
get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2b_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 1, 1))
.set_name("Conv2d_2b_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2b_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2b_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2b_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name("Conv2d_2b_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2b_3x3/Relu");
graph << get_mixed_3a(data_path, weights_layout).set_name("Mixed_3a/concat");
graph << get_mixed_4a(data_path, weights_layout).set_name("Mixed_4a/concat");
graph << get_mixed_5a(data_path, weights_layout).set_name("Mixed_5a/concat");
// 4 inception A blocks
graph << get_inceptionA_block(data_path, weights_layout, "Mixed_5b").set_name("Mixed_5b/concat");
graph << get_inceptionA_block(data_path, weights_layout, "Mixed_5c").set_name("Mixed_5c/concat");
graph << get_inceptionA_block(data_path, weights_layout, "Mixed_5d").set_name("Mixed_5d/concat");
graph << get_inceptionA_block(data_path, weights_layout, "Mixed_5e").set_name("Mixed_5e/concat");
// reduction A block
graph << get_reductionA_block(data_path, weights_layout).set_name("Mixed_6a/concat");
// 7 inception B blocks
graph << get_inceptionB_block(data_path, weights_layout, "Mixed_6b").set_name("Mixed_6b/concat");
graph << get_inceptionB_block(data_path, weights_layout, "Mixed_6c").set_name("Mixed_6c/concat");
graph << get_inceptionB_block(data_path, weights_layout, "Mixed_6d").set_name("Mixed_6d/concat");
graph << get_inceptionB_block(data_path, weights_layout, "Mixed_6e").set_name("Mixed_6e/concat");
graph << get_inceptionB_block(data_path, weights_layout, "Mixed_6f").set_name("Mixed_6f/concat");
graph << get_inceptionB_block(data_path, weights_layout, "Mixed_6g").set_name("Mixed_6g/concat");
graph << get_inceptionB_block(data_path, weights_layout, "Mixed_6h").set_name("Mixed_6h/concat");
// reduction B block
graph << get_reductionB_block(data_path, weights_layout).set_name("Mixed_7a/concat");
// 3 inception C blocks
graph << get_inceptionC_block(data_path, weights_layout, "Mixed_7b").set_name("Mixed_7b/concat");
graph << get_inceptionC_block(data_path, weights_layout, "Mixed_7c").set_name("Mixed_7c/concat");
graph << get_inceptionC_block(data_path, weights_layout, "Mixed_7d").set_name("Mixed_7d/concat");
graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("Logits/AvgPool_1a/AvgPool")
<< FlattenLayer().set_name("Logits/Flatten")
<< FullyConnectedLayer(
1001U,
get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Logits_Logits_weights.npy", weights_layout),
get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Logits_Logits_biases.npy"))
.set_name("Logits/MatMul")
<< SoftmaxLayer().set_name("Logits/Predictions")
<< OutputLayer(get_output_accessor(common_params, 5));
// Finalize graph
GraphConfig config;
config.num_threads = common_params.threads;
config.use_tuner = common_params.enable_tuner;
config.tuner_mode = common_params.tuner_mode;
config.tuner_file = common_params.tuner_file;
config.convert_to_uint8 = (common_params.data_type == DataType::QASYMM8);
// Load the precompiled kernels from a file into the kernel library, in this way the next time they are needed
// compilation won't be required.
if(common_params.enable_cl_cache)
{
#ifdef ARM_COMPUTE_CL
restore_program_cache_from_file();
#endif /* ARM_COMPUTE_CL */
}
graph.finalize(common_params.target, config);
// Save the opencl kernels to a file
if(common_opts.enable_cl_cache)
{
#ifdef ARM_COMPUTE_CL
save_program_cache_to_file();
#endif /* ARM_COMPUTE_CL */
}
return true;
}
void do_run() override
{
graph.run();
}
private:
CommandLineParser cmd_parser;
CommonGraphOptions common_opts;
CommonGraphParams common_params;
Stream graph;
private:
ConcatLayer get_mixed_3a(const std::string &data_path, DataLayout weights_layout)
{
std::string total_path = "/cnn_data/inceptionv4_model/Mixed_3a_";
SubStream i_a(graph);
i_a << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, common_params.data_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL),
true))
.set_name("Mixed_3a/Branch_0/MaxPool_0a_3x3/MaxPool");
SubStream i_b(graph);
i_b << ConvolutionLayer(3U, 3U, 96U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(2, 2, 0, 0))
.set_name("Mixed_3a/Branch_1/Conv2d_0a_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_3a/Branch_1/Conv2d_0a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_3a/Branch_1/Conv2d_0a_3x3/Relu");
return ConcatLayer(std::move(i_a), std::move(i_b));
}
ConcatLayer get_mixed_4a(const std::string &data_path, DataLayout weights_layout)
{
std::string total_path = "/cnn_data/inceptionv4_model/Mixed_4a_";
SubStream i_a(graph);
i_a << ConvolutionLayer(1U, 1U, 64U,
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_4a/Branch_0/Conv2d_0a_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_4a/Branch_0/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_4a/Branch_0/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(3U, 3U, 96U,
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_4a/Branch_0/Conv2d_1a_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_4a/Branch_0/Conv2d_1a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_4a/Branch_0/Conv2d_1a_3x3/Relu");
SubStream i_b(graph);
i_b << ConvolutionLayer(1U, 1U, 64U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_4a/Branch_1/Conv2d_0a_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_4a/Branch_1/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_4a/Branch_1/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(7U, 1U, 64U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 3, 0))
.set_name("Mixed_4a/Branch_1/Conv2d_0b_1x7/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_4a/Branch_1/Conv2d_0b_1x7/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_4a/Branch_1/Conv2d_0b_1x7/Relu")
<< ConvolutionLayer(1U, 7U, 64U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 3))
.set_name("Mixed_4a/Branch_1/Conv2d_0c_7x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_4a/Branch_1/Conv2d_0c_7x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_4a/Branch_1/Conv2d_0c_7x1/Relu")
<< ConvolutionLayer(3U, 3U, 96U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_4a/Branch_1/Conv2d_1a_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_4a/Branch_1/Conv2d_1a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_4a/Branch_1/Conv2d_1a_3x3/Relu");
return ConcatLayer(std::move(i_a), std::move(i_b));
}
ConcatLayer get_mixed_5a(const std::string &data_path, DataLayout weights_layout)
{
std::string total_path = "/cnn_data/inceptionv4_model/Mixed_5a_";
SubStream i_a(graph);
i_a << ConvolutionLayer(3U, 3U, 192U,
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(2, 2, 0, 0))
.set_name("Mixed_5a/Branch_0/Conv2d_1a_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_5a/Branch_0/Conv2d_1a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_5a/Branch_0/Conv2d_1a_3x3/Relu");
SubStream i_b(graph);
i_b << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, common_params.data_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL),
true))
.set_name("Mixed_5a/Branch_1/MaxPool_1a_3x3/MaxPool");
return ConcatLayer(std::move(i_a), std::move(i_b));
}
ConcatLayer get_inceptionA_block(const std::string &data_path, DataLayout weights_layout, std::string &&param_path)
{
std::string total_path = "/cnn_data/inceptionv4_model/" + param_path + "_";
SubStream i_a(graph);
i_a << ConvolutionLayer(1U, 1U, 96U,
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name(param_path + "/Branch_0/Conv2d_0a_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_0/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_0/Conv2d_0a_1x1/Relu");
SubStream i_b(graph);
i_b << ConvolutionLayer(1U, 1U, 64U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name(param_path + "/Branch_1/Conv2d_0a_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_1/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_1/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(3U, 3U, 96U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 1, 1))
.set_name(param_path + "/Branch_1/Conv2d_0b_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_1/Conv2d_0b_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_1/Conv2d_0b_3x3/Relu");
SubStream i_c(graph);
i_c << ConvolutionLayer(1U, 1U, 64U,
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name(param_path + "/Branch_2/Conv2d_0a_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_2/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(3U, 3U, 96U,
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 1, 1))
.set_name(param_path + "/Branch_2/Conv2d_0b_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_2/Conv2d_0b_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0b_3x3/Relu")
<< ConvolutionLayer(3U, 3U, 96U,
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 1, 1))
.set_name(param_path + "/Branch_2/Conv2d_0c_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_2/Conv2d_0c_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0c_3x3/Relu");
SubStream i_d(graph);
i_d << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 3, common_params.data_layout, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL),
true))
.set_name(param_path + "/Branch_3/AvgPool_0a_3x3/AvgPool")
<< ConvolutionLayer(1U, 1U, 96U,
get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name(param_path + "/Branch_3/Conv2d_0b_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_3/Conv2d_0b_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_3/Conv2d_0b_1x1/Relu");
return ConcatLayer(std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d));
}
ConcatLayer get_reductionA_block(const std::string &data_path, DataLayout weights_layout)
{
std::string total_path = "/cnn_data/inceptionv4_model/Mixed_6a_";
SubStream i_a(graph);
i_a << ConvolutionLayer(3U, 3U, 384U,
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(2, 2, 0, 0))
.set_name("Mixed_6a/Branch_0/Conv2d_1a_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_6a/Branch_0/Conv2d_1a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_0/Conv2d_1a_3x3/Relu");
SubStream i_b(graph);
i_b << ConvolutionLayer(1U, 1U, 192U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_6a/Branch_1/Conv2d_0a_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_6a/Branch_1/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_1/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(3U, 3U, 224U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 1, 1))
.set_name("Mixed_6a/Branch_1/Conv2d_0b_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_6a/Branch_1/Conv2d_0b_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_1/Conv2d_0b_3x3/Relu")
<< ConvolutionLayer(3U, 3U, 256U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(2, 2, 0, 0))
.set_name("Mixed_6a/Branch_1/Conv2d_1a_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_6a/Branch_1/Conv2d_1a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_1/Conv2d_1a_3x3/Relu");
SubStream i_c(graph);
i_c << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, common_params.data_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL),
true))
.set_name("Mixed_6a/Branch_2/MaxPool_1a_3x3/MaxPool");
return ConcatLayer(std::move(i_a), std::move(i_b), std::move(i_c));
}
ConcatLayer get_inceptionB_block(const std::string &data_path, DataLayout weights_layout, std::string &&param_path)
{
std::string total_path = "/cnn_data/inceptionv4_model/" + param_path + "_";
SubStream i_a(graph);
i_a << ConvolutionLayer(1U, 1U, 384U,
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name(param_path + "/Branch_0/Conv2d_0a_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_0/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_0/Conv2d_0a_1x1/Relu");
SubStream i_b(graph);
i_b << ConvolutionLayer(1U, 1U, 192U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name(param_path + "/Branch_1/Conv2d_0a_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_1/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_1/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(7U, 1U, 224U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 3, 0))
.set_name(param_path + "/Branch_1/Conv2d_0b_1x7/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_1/Conv2d_0b_1x7/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_1/Conv2d_0b_1x7/Relu")
<< ConvolutionLayer(1U, 7U, 256U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 3))
.set_name(param_path + "/Branch_1/Conv2d_0c_7x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_1/Conv2d_0c_7x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_1/Conv2d_0c_7x1/Relu");
SubStream i_c(graph);
i_c << ConvolutionLayer(1U, 1U, 192U,
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name(param_path + "/Branch_2/Conv2d_0a_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_2/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(1U, 7U, 192U,
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_7x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 3))
.set_name(param_path + "/Branch_2/Conv2d_0b_7x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_7x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_7x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_7x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_2/Conv2d_0b_7x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0b_7x1/Relu")
<< ConvolutionLayer(7U, 1U, 224U,
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x7_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 3, 0))
.set_name(param_path + "/Branch_2/Conv2d_0c_1x7/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x7_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x7_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x7_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_2/Conv2d_0c_1x7/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0c_1x7/Relu")
<< ConvolutionLayer(1U, 7U, 224U,
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_7x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 3))
.set_name(param_path + "/Branch_2/Conv2d_0d_7x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_7x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_7x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_7x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_2/Conv2d_0d_7x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0d_7x1/Relu")
<< ConvolutionLayer(7U, 1U, 256U,
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_1x7_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 3, 0))
.set_name(param_path + "/Branch_2/Conv2d_0e_1x7/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_1x7_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_1x7_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_1x7_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_2/Conv2d_0e_1x7/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0e_1x7/Relu");
SubStream i_d(graph);
i_d << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 3, common_params.data_layout, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL),
true))
.set_name(param_path + "/Branch_3/AvgPool_0a_3x3/AvgPool")
<< ConvolutionLayer(1U, 1U, 128U,
get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name(param_path + "/Branch_3/Conv2d_0b_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_3/Conv2d_0b_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_3/Conv2d_0b_1x1/Relu");
return ConcatLayer(std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d));
}
ConcatLayer get_reductionB_block(const std::string &data_path, DataLayout weights_layout)
{
std::string total_path = "/cnn_data/inceptionv4_model/Mixed_7a_";
SubStream i_a(graph);
i_a << ConvolutionLayer(1U, 1U, 192U,
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(3U, 3U, 192U,
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(2, 2, 0, 0))
.set_name("Mixed_7a/Branch_0/Conv2d_1a_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_7a/Branch_0/Conv2d_1a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_0/Conv2d_1a_3x3/Relu");
SubStream i_b(graph);
i_b << ConvolutionLayer(1U, 1U, 256U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(7U, 1U, 256U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 3, 0))
.set_name("Mixed_7a/Branch_1/Conv2d_0b_1x7/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_7a/Branch_1/Conv2d_0b_1x7/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_1/Conv2d_0b_1x7/Relu")
<< ConvolutionLayer(1U, 7U, 320U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 3))
.set_name("Mixed_7a/Branch_1/Conv2d_0c_7x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_7a/Branch_1/Conv2d_0c_7x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_1/Conv2d_0c_7x1/Relu")
<< ConvolutionLayer(3U, 3U, 320U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(2, 2, 0, 0))
.set_name("Mixed_7a/Branch_1/Conv2d_1a_3x3/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_beta.npy"),
0.001f)
.set_name("Mixed_7a/Branch_1/Conv2d_1a_3x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_1/Conv2d_1a_3x3/Relu");
SubStream i_c(graph);
i_c << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, common_params.data_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL),
true))
.set_name("Mixed_7a/Branch_2/MaxPool_1a_3x3/MaxPool");
return ConcatLayer(std::move(i_a), std::move(i_b), std::move(i_c));
}
ConcatLayer get_inceptionC_block(const std::string &data_path, DataLayout weights_layout, std::string &&param_path)
{
std::string total_path = "/cnn_data/inceptionv4_model/" + param_path + "_";
SubStream i_a(graph);
i_a << ConvolutionLayer(1U, 1U, 256U,
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name(param_path + "/Branch_0/Conv2d_0a_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_0/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_0/Conv2d_0a_1x1/Relu");
SubStream i_b(graph);
i_b << ConvolutionLayer(
1U, 1U, 384U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name(param_path + "/Branch_1/Conv2d_0a_1x1/Conv2D")
<< BatchNormalizationLayer(
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_1/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_1/Conv2d_0a_1x1/Relu");
SubStream i_b1(i_b);
i_b1 << ConvolutionLayer(
3U, 1U, 256U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 1, 0))
.set_name(param_path + "/Branch_1/Conv2d_0b_1x3/Conv2D")
<< BatchNormalizationLayer(
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_1/Conv2d_0b_1x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_1/Conv2d_0b_1x3/Relu");
SubStream i_b2(i_b);
i_b2 << ConvolutionLayer(
1U, 3U, 256U,
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_3x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 1))
.set_name(param_path + "/Branch_1/Conv2d_0c_3x1/Conv2D")
<< BatchNormalizationLayer(
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_1/Conv2d_0c_3x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_1/Conv2d_0c_3x1/Relu");
// Merge b1 and b2
i_b << ConcatLayer(std::move(i_b1), std::move(i_b2)).set_name(param_path + "/Branch_1/concat");
SubStream i_c(graph);
i_c << ConvolutionLayer(
1U, 1U, 384U,
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name(param_path + "/Branch_2/Conv2d_0a_1x1/Conv2D")
<< BatchNormalizationLayer(
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_2/Conv2d_0a_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0a_1x1/Relu")
<< ConvolutionLayer(
1U, 3U, 448U,
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 1))
.set_name(param_path + "/Branch_2/Conv2d_0b_3x1/Conv2D")
<< BatchNormalizationLayer(
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_2/Conv2d_0b_3x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0b_3x1/Relu")
<< ConvolutionLayer(
3U, 1U, 512U,
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 1, 0))
.set_name(param_path + "/Branch_2/Conv2d_0c_1x3/Conv2D")
<< BatchNormalizationLayer(
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x3_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_2/Conv2d_0c_1x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0c_1x3/Relu");
SubStream i_c1(i_c);
i_c1 << ConvolutionLayer(
3U, 1U, 256U,
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_1x3_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 1, 0))
.set_name(param_path + "/Branch_2/Conv2d_0d_1x3/Conv2D")
<< BatchNormalizationLayer(
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_1x3_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_1x3_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_1x3_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_2/Conv2d_0d_1x3/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0d_1x3/Relu");
SubStream i_c2(i_c);
i_c2 << ConvolutionLayer(
1U, 3U, 256U,
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_3x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 1))
.set_name(param_path + "/Branch_2/Conv2d_0e_3x1/Conv2D")
<< BatchNormalizationLayer(
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_3x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_3x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_3x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_2/Conv2d_0e_3x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_2/Conv2d_0e_3x1/Relu");
// Merge i_c1 and i_c2
i_c << ConcatLayer(std::move(i_c1), std::move(i_c2)).set_name(param_path + "/Branch_2/concat");
SubStream i_d(graph);
i_d << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 3, common_params.data_layout, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL),
true))
.set_name(param_path + "/Branch_3/AvgPool_0a_3x3/AvgPool")
<< ConvolutionLayer(1U, 1U, 256U,
get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
.set_name(param_path + "/Branch_3/Conv2d_0b_1x1/Conv2D")
<< BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_variance.npy"),
get_random_accessor(1.f, 1.f),
get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_beta.npy"),
0.001f)
.set_name(param_path + "/Branch_3/Conv2d_0b_1x1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/Branch_3/Conv2d_0b_1x1/Relu");
return ConcatLayer(std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d));
}
};
/** Main program for Inception V4
*
* Model is based on:
* https://arxiv.org/abs/1602.07261
* "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning"
* Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
*
* Provenance: download.tensorflow.org/models/inception_v4_2016_09_09.tar.gz
*
* @note To list all the possible arguments execute the binary appended with the --help option
*
* @param[in] argc Number of arguments
* @param[in] argv Arguments
*/
int main(int argc, char **argv)
{
return arm_compute::utils::run_example<InceptionV4Example>(argc, argv);
}