android13/external/ComputeLibrary/examples/graph_resnet12.cpp

222 lines
10 KiB
C++

/*
* Copyright (c) 2018-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph.h"
#include "support/ToolchainSupport.h"
#include "utils/CommonGraphOptions.h"
#include "utils/GraphUtils.h"
#include "utils/Utils.h"
using namespace arm_compute::utils;
using namespace arm_compute::graph::frontend;
using namespace arm_compute::graph_utils;
/** Example demonstrating how to implement ResNet12 network using the Compute Library's graph API */
class GraphResNet12Example : public Example
{
public:
GraphResNet12Example()
: cmd_parser(), common_opts(cmd_parser), model_input_width(nullptr), model_input_height(nullptr), common_params(), graph(0, "ResNet12")
{
model_input_width = cmd_parser.add_option<SimpleOption<unsigned int>>("image-width", 192);
model_input_height = cmd_parser.add_option<SimpleOption<unsigned int>>("image-height", 128);
// Add model id option
model_input_width->set_help("Input image width.");
model_input_height->set_help("Input image height.");
}
GraphResNet12Example(const GraphResNet12Example &) = delete;
GraphResNet12Example &operator=(const GraphResNet12Example &) = delete;
~GraphResNet12Example() override = default;
bool do_setup(int argc, char **argv) override
{
// Parse arguments
cmd_parser.parse(argc, argv);
cmd_parser.validate();
// Consume common parameters
common_params = consume_common_graph_parameters(common_opts);
// Return when help menu is requested
if(common_params.help)
{
cmd_parser.print_help(argv[0]);
return false;
}
// Get input image width and height
const unsigned int image_width = model_input_width->value();
const unsigned int image_height = model_input_height->value();
// Checks
ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
// Print parameter values
std::cout << common_params << std::endl;
std::cout << "Image width: " << image_width << std::endl;
std::cout << "Image height: " << image_height << std::endl;
// Get trainable parameters data path
const std::string data_path = common_params.data_path;
const std::string model_path = "/cnn_data/resnet12_model/";
// Create a preprocessor object
std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<TFPreproccessor>();
// Create input descriptor
const TensorShape tensor_shape = permute_shape(TensorShape(image_width, image_height, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
// Set weights trained layout
const DataLayout weights_layout = DataLayout::NCHW;
graph << common_params.target
<< common_params.fast_math_hint
<< InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false /* Do not convert to BGR */))
<< ConvolutionLayer(
9U, 9U, 64U,
get_weights_accessor(data_path, "conv1_weights.npy", weights_layout),
get_weights_accessor(data_path, "conv1_biases.npy", weights_layout),
PadStrideInfo(1, 1, 4, 4))
.set_name("conv1/convolution")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1/Relu");
add_residual_block(data_path, "block1", weights_layout);
add_residual_block(data_path, "block2", weights_layout);
add_residual_block(data_path, "block3", weights_layout);
add_residual_block(data_path, "block4", weights_layout);
graph << ConvolutionLayer(
3U, 3U, 64U,
get_weights_accessor(data_path, "conv10_weights.npy", weights_layout),
get_weights_accessor(data_path, "conv10_biases.npy"),
PadStrideInfo(1, 1, 1, 1))
.set_name("conv10/convolution")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv10/Relu")
<< ConvolutionLayer(
3U, 3U, 64U,
get_weights_accessor(data_path, "conv11_weights.npy", weights_layout),
get_weights_accessor(data_path, "conv11_biases.npy"),
PadStrideInfo(1, 1, 1, 1))
.set_name("conv11/convolution")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv11/Relu")
<< ConvolutionLayer(
9U, 9U, 3U,
get_weights_accessor(data_path, "conv12_weights.npy", weights_layout),
get_weights_accessor(data_path, "conv12_biases.npy"),
PadStrideInfo(1, 1, 4, 4))
.set_name("conv12/convolution")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH)).set_name("conv12/Tanh")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 0.58f, 0.5f)).set_name("conv12/Linear")
<< OutputLayer(arm_compute::support::cpp14::make_unique<DummyAccessor>(0));
// Finalize graph
GraphConfig config;
config.num_threads = common_params.threads;
config.use_tuner = common_params.enable_tuner;
config.tuner_mode = common_params.tuner_mode;
config.tuner_file = common_params.tuner_file;
graph.finalize(common_params.target, config);
return true;
}
void do_run() override
{
// Run graph
graph.run();
}
private:
CommandLineParser cmd_parser;
CommonGraphOptions common_opts;
SimpleOption<unsigned int> *model_input_width{ nullptr };
SimpleOption<unsigned int> *model_input_height{ nullptr };
CommonGraphParams common_params;
Stream graph;
void add_residual_block(const std::string &data_path, const std::string &name, DataLayout weights_layout)
{
std::stringstream unit_path_ss;
unit_path_ss << data_path << name << "_";
std::stringstream unit_name_ss;
unit_name_ss << name << "/";
std::string unit_path = unit_path_ss.str();
std::string unit_name = unit_name_ss.str();
SubStream left(graph);
SubStream right(graph);
right << ConvolutionLayer(
3U, 3U, 64U,
get_weights_accessor(data_path, unit_path + "conv1_weights.npy", weights_layout),
get_weights_accessor(data_path, unit_path + "conv1_biases.npy", weights_layout),
PadStrideInfo(1, 1, 1, 1))
.set_name(unit_name + "conv1/convolution")
<< BatchNormalizationLayer(
get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_variance.npy"),
get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_gamma.npy"),
get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_beta.npy"),
0.0000100099996416f)
.set_name(unit_name + "conv1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
<< ConvolutionLayer(
3U, 3U, 64U,
get_weights_accessor(data_path, unit_path + "conv2_weights.npy", weights_layout),
get_weights_accessor(data_path, unit_path + "conv2_biases.npy", weights_layout),
PadStrideInfo(1, 1, 1, 1))
.set_name(unit_name + "conv2/convolution")
<< BatchNormalizationLayer(
get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_variance.npy"),
get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_gamma.npy"),
get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_beta.npy"),
0.0000100099996416f)
.set_name(unit_name + "conv2/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv2/Relu");
graph << EltwiseLayer(std::move(left), std::move(right), EltwiseOperation::Add).set_name(unit_name + "add");
}
};
/** Main program for ResNet12
*
* Model is based on:
* https://arxiv.org/pdf/1709.01118.pdf
* "WESPE: Weakly Supervised Photo Enhancer for Digital Cameras"
* Andrey Ignatov, Nikolay Kobyshev, Kenneth Vanhoey, Radu Timofte, Luc Van Gool
*
* @note To list all the possible arguments execute the binary appended with the --help option
*
* @param[in] argc Number of arguments
* @param[in] argv Arguments
*/
int main(int argc, char **argv)
{
return arm_compute::utils::run_example<GraphResNet12Example>(argc, argv);
}