android13/external/ComputeLibrary/examples/graph_resnet_v2_50.cpp

252 lines
12 KiB
C++

/*
* Copyright (c) 2018-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph.h"
#include "support/ToolchainSupport.h"
#include "utils/CommonGraphOptions.h"
#include "utils/GraphUtils.h"
#include "utils/Utils.h"
using namespace arm_compute::utils;
using namespace arm_compute::graph::frontend;
using namespace arm_compute::graph_utils;
/** Example demonstrating how to implement ResNetV2_50 network using the Compute Library's graph API */
class GraphResNetV2_50Example : public Example
{
public:
GraphResNetV2_50Example()
: cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "ResNetV2_50")
{
}
bool do_setup(int argc, char **argv) override
{
// Parse arguments
cmd_parser.parse(argc, argv);
cmd_parser.validate();
// Consume common parameters
common_params = consume_common_graph_parameters(common_opts);
// Return when help menu is requested
if(common_params.help)
{
cmd_parser.print_help(argv[0]);
return false;
}
// Print parameter values
std::cout << common_params << std::endl;
// Get trainable parameters data path
std::string data_path = common_params.data_path;
std::string model_path = "/cnn_data/resnet_v2_50_model/";
if(!data_path.empty())
{
data_path += model_path;
}
// Create a preprocessor object
std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<TFPreproccessor>();
// Create input descriptor
const auto operation_layout = common_params.data_layout;
const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, 1U), DataLayout::NCHW, operation_layout);
TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
// Set weights trained layout
const DataLayout weights_layout = DataLayout::NCHW;
graph << common_params.target
<< common_params.fast_math_hint
<< InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false /* Do not convert to BGR */))
<< ConvolutionLayer(
7U, 7U, 64U,
get_weights_accessor(data_path, "conv1_weights.npy", weights_layout),
get_weights_accessor(data_path, "conv1_biases.npy", weights_layout),
PadStrideInfo(2, 2, 3, 3))
.set_name("conv1/convolution")
<< PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR))).set_name("pool1/MaxPool");
add_residual_block(data_path, "block1", weights_layout, 64, 3, 2);
add_residual_block(data_path, "block2", weights_layout, 128, 4, 2);
add_residual_block(data_path, "block3", weights_layout, 256, 6, 2);
add_residual_block(data_path, "block4", weights_layout, 512, 3, 1);
graph << BatchNormalizationLayer(
get_weights_accessor(data_path, "postnorm_moving_mean.npy"),
get_weights_accessor(data_path, "postnorm_moving_variance.npy"),
get_weights_accessor(data_path, "postnorm_gamma.npy"),
get_weights_accessor(data_path, "postnorm_beta.npy"),
0.000009999999747378752f)
.set_name("postnorm/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("postnorm/Relu")
<< PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("pool5")
<< ConvolutionLayer(
1U, 1U, 1001U,
get_weights_accessor(data_path, "logits_weights.npy", weights_layout),
get_weights_accessor(data_path, "logits_biases.npy"),
PadStrideInfo(1, 1, 0, 0))
.set_name("logits/convolution")
<< FlattenLayer().set_name("predictions/Reshape")
<< SoftmaxLayer().set_name("predictions/Softmax")
<< OutputLayer(get_output_accessor(common_params, 5));
// Finalize graph
GraphConfig config;
config.num_threads = common_params.threads;
config.use_tuner = common_params.enable_tuner;
config.tuner_mode = common_params.tuner_mode;
config.tuner_file = common_params.tuner_file;
config.convert_to_uint8 = (common_params.data_type == DataType::QASYMM8);
graph.finalize(common_params.target, config);
return true;
}
void do_run() override
{
// Run graph
graph.run();
}
private:
CommandLineParser cmd_parser;
CommonGraphOptions common_opts;
CommonGraphParams common_params;
Stream graph;
void add_residual_block(const std::string &data_path, const std::string &name, DataLayout weights_layout,
unsigned int base_depth, unsigned int num_units, unsigned int stride)
{
for(unsigned int i = 0; i < num_units; ++i)
{
// Generate unit names
std::stringstream unit_path_ss;
unit_path_ss << name << "_unit_" << (i + 1) << "_bottleneck_v2_";
std::stringstream unit_name_ss;
unit_name_ss << name << "/unit" << (i + 1) << "/bottleneck_v2/";
std::string unit_path = unit_path_ss.str();
std::string unit_name = unit_name_ss.str();
const TensorShape last_shape = graph.graph().node(graph.tail_node())->output(0)->desc().shape;
unsigned int depth_in = last_shape[arm_compute::get_data_layout_dimension_index(common_params.data_layout, DataLayoutDimension::CHANNEL)];
unsigned int depth_out = base_depth * 4;
// All units have stride 1 apart from last one
unsigned int middle_stride = (i == (num_units - 1)) ? stride : 1;
// Preact
SubStream preact(graph);
preact << BatchNormalizationLayer(
get_weights_accessor(data_path, unit_path + "preact_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "preact_moving_variance.npy"),
get_weights_accessor(data_path, unit_path + "preact_gamma.npy"),
get_weights_accessor(data_path, unit_path + "preact_beta.npy"),
0.000009999999747378752f)
.set_name(unit_name + "preact/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "preact/Relu");
// Create bottleneck path
SubStream shortcut(graph);
if(depth_in == depth_out)
{
if(middle_stride != 1)
{
shortcut << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 1, common_params.data_layout, PadStrideInfo(middle_stride, middle_stride, 0, 0), true)).set_name(unit_name + "shortcut/MaxPool");
}
}
else
{
shortcut.forward_tail(preact.tail_node());
shortcut << ConvolutionLayer(
1U, 1U, depth_out,
get_weights_accessor(data_path, unit_path + "shortcut_weights.npy", weights_layout),
get_weights_accessor(data_path, unit_path + "shortcut_biases.npy", weights_layout),
PadStrideInfo(1, 1, 0, 0))
.set_name(unit_name + "shortcut/convolution");
}
// Create residual path
SubStream residual(preact);
residual << ConvolutionLayer(
1U, 1U, base_depth,
get_weights_accessor(data_path, unit_path + "conv1_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(1, 1, 0, 0))
.set_name(unit_name + "conv1/convolution")
<< BatchNormalizationLayer(
get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_variance.npy"),
get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_gamma.npy"),
get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_beta.npy"),
0.000009999999747378752f)
.set_name(unit_name + "conv1/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
<< ConvolutionLayer(
3U, 3U, base_depth,
get_weights_accessor(data_path, unit_path + "conv2_weights.npy", weights_layout),
std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
PadStrideInfo(middle_stride, middle_stride, 1, 1))
.set_name(unit_name + "conv2/convolution")
<< BatchNormalizationLayer(
get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_mean.npy"),
get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_variance.npy"),
get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_gamma.npy"),
get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_beta.npy"),
0.000009999999747378752f)
.set_name(unit_name + "conv2/BatchNorm")
<< ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
<< ConvolutionLayer(
1U, 1U, depth_out,
get_weights_accessor(data_path, unit_path + "conv3_weights.npy", weights_layout),
get_weights_accessor(data_path, unit_path + "conv3_biases.npy", weights_layout),
PadStrideInfo(1, 1, 0, 0))
.set_name(unit_name + "conv3/convolution");
graph << EltwiseLayer(std::move(shortcut), std::move(residual), EltwiseOperation::Add).set_name(unit_name + "add");
}
}
};
/** Main program for ResNetV2_50
*
* Model is based on:
* https://arxiv.org/abs/1603.05027
* "Identity Mappings in Deep Residual Networks"
* Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
*
* Provenance: download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz
*
* @note To list all the possible arguments execute the binary appended with the --help option
*
* @param[in] argc Number of arguments
* @param[in] argv Arguments
*/
int main(int argc, char **argv)
{
return arm_compute::utils::run_example<GraphResNetV2_50Example>(argc, argv);
}