android13/external/ComputeLibrary/examples/neon_gemm_qasymm8.cpp

261 lines
9.2 KiB
C++

/*
* Copyright (c) 2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Types.h"
#include "arm_compute/core/WindowIterator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/NEON/NEFunctions.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "utils/Utils.h"
#include "support/ToolchainSupport.h"
#include <cstdlib>
using namespace arm_compute;
using namespace utils;
// Find min and max value in a float array
void find_min_max(int size, const float *data, float *min, float *max)
{
*min = *max = data[0];
for(int i = 0; i < size; i++)
{
const float val = data[i];
*min = std::min(*min, val);
*max = std::max(*max, val);
}
}
// Return reasonable quantisation parameters to use for an array of floats
// based on min and max values
QuantizationInfo choose_quantization_params(float min, float max)
{
// Extend the [min,max] interval to contain 0 so we can represent it exactly
min = std::min(min, 0.f);
max = std::max(max, 0.f);
// Set the quantized min and max in float values
const float qmin = 0;
const float qmax = 255;
// Determine the scale
const float scale = (max - min) / (qmax - qmin);
// Determine the zero-point; using affine equation val = (qval-zerop) * scale
const float zero_point_real = qmin - min / scale;
// But we need to nudge the zero_point to an integer (exact quantized value)
std::uint8_t zero_point_nudged = 0;
if(zero_point_real < qmin)
{
zero_point_nudged = qmin;
}
else if(zero_point_real > qmax)
{
zero_point_nudged = qmax;
}
else
{
zero_point_nudged = static_cast<std::uint8_t>(support::cpp11::round(zero_point_real));
}
QuantizationInfo qinfo = QuantizationInfo(scale, zero_point_nudged);
return qinfo;
}
void quantize_values(int size, qasymm8_t *output, float *input, const QuantizationInfo qinfo)
{
for(int i = 0; i < size; i++)
{
output[i] = quantize_qasymm8(input[i], qinfo);
}
std::cout << "\n";
}
int main(int argc, char **argv)
{
Tensor src1;
Tensor src2;
Tensor dst0;
Tensor q_src1;
Tensor q_src2;
Tensor q_dst0;
Tensor q_res;
Tensor q_res_output;
size_t M = 4;
size_t N = 4;
size_t K = 4;
bool default_input = true;
// Parse args
if(argc < 3) /* case default matrix sizes */
{
// Print help
std::cout << "Usage: ./build/neon_gemm_qasymm8 M N K\n";
std::cout << "Too few or no inputs provided. Using default M=4, N=4, K=4\n\n";
}
else /* case M N K arguments provided */
{
M = strtol(argv[1], nullptr, 10);
N = strtol(argv[2], nullptr, 10);
K = strtol(argv[3], nullptr, 10);
default_input = false;
}
/*** Floating point matrix multiplication ***/
// Initialise input matrices
NEGEMM fgemm{};
src1.allocator()->init(TensorInfo(TensorShape(K, M), 1, DataType::F32));
src2.allocator()->init(TensorInfo(TensorShape(N, K), 1, DataType::F32));
dst0.allocator()->init(TensorInfo(TensorShape(N, M), 1, DataType::F32));
fgemm.configure(&src1, &src2, nullptr, &dst0, 1, 0);
// Allocate matrices
src1.allocator()->allocate();
src2.allocator()->allocate();
dst0.allocator()->allocate();
// Fill in tensors, by default fill in with known data - for easy testing
auto *src1_ptr = reinterpret_cast<float *>(src1.buffer());
auto *src2_ptr = reinterpret_cast<float *>(src2.buffer());
auto *dst0_ptr = reinterpret_cast<float *>(dst0.buffer());
// Fill in: one is the identity matrix, other is sequential values
// src1: Identity matrix
for(size_t i = 0; i < M * K; i++) {
src1_ptr[i] = 0;
}
for(size_t i = 0; i < M; i++) {
src1_ptr[i * K + i] = 1.0f;
}
// src2: Sequential values matrix
for(size_t i = 0; i < K * N; i++) {
src2_ptr[i] = i * 1.123f;
}
// Otherwise if M, N, K is given, fill in with random values
if(!default_input)
{
fill_random_tensor(src1, 0.f, 1.f);
fill_random_tensor(src2, 0.f, 1.f);
}
// Run single precision gemm and print result
fgemm.run();
#if ARM_COMPUTE_DEBUG_ENABLED
std::cout << "Result matrix:\n";
src1.print(std::cout);
src2.print(std::cout);
dst0.print(std::cout);
#endif // ARM_COMPUTE_DEBUG_ENABLED
/*** Quantised asymmetric 8bit matrix multiplication ***/
// Start by finding the quantisation parameters for each set of values
float src1_min;
float src1_max;
float src2_min;
float src2_max;
float dst0_min;
float dst0_max;
find_min_max(M * K, src1_ptr, &src1_min, &src1_max);
find_min_max(K * N, src2_ptr, &src2_min, &src2_max);
find_min_max(M * N, dst0_ptr, &dst0_min, &dst0_max);
const QuantizationInfo src1_qinfo = choose_quantization_params(src1_min, src1_max);
const QuantizationInfo src2_qinfo = choose_quantization_params(src2_min, src2_max);
const QuantizationInfo dst0_qinfo = choose_quantization_params(dst0_min, dst0_max);
std::cout << "Matrix 1: min=" << src1_min << ", max=" << src1_max << ", ";
std::cout << "QuantisationInfo(" << src1_qinfo.scale()[0] << ", " << src1_qinfo.offset()[0] << ")\n";
std::cout << "Matrix 2: min=" << src2_min << ", max=" << src2_max << ", ";
std::cout << "QuantisationInfo(" << src2_qinfo.scale()[0] << ", " << src2_qinfo.offset()[0] << ")\n";
std::cout << "Result : min=" << dst0_min << ", max=" << dst0_max << ", ";
std::cout << "QuantisationInfo(" << dst0_qinfo.scale()[0] << ", " << dst0_qinfo.offset()[0] << ")\n";
// We now have the quantisation info and can configure the quantised tensors
q_src1.allocator()->init(TensorInfo(TensorShape(K, M), 1, DataType::QASYMM8, src1_qinfo));
q_src2.allocator()->init(TensorInfo(TensorShape(N, K), 1, DataType::QASYMM8, src2_qinfo));
q_dst0.allocator()->init(TensorInfo(TensorShape(N, M), 1, DataType::QASYMM8, dst0_qinfo));
// In this approach we use the QuantizationLayer construct to perform quantization
NEQuantizationLayer q1;
NEQuantizationLayer q2;
NEQuantizationLayer q3;
q1.configure(&src1, &q_src1);
q2.configure(&src2, &q_src2);
q3.configure(&dst0, &q_dst0);
// Configure low precision gemm and initialise result tensor (pre-output)
NEGEMMLowpMatrixMultiplyCore qgemm;
q_res.allocator()->init(TensorInfo(TensorShape(N, M), 1, DataType::S32));
qgemm.configure(&q_src1, &q_src2, nullptr, &q_res);
// Configure output stage after computing shift and multiplier parameters
NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint gemmlowp_output_stage;
int output_multiplier;
int output_shift;
float multiplier = (src1_qinfo.uniform().scale * src2_qinfo.uniform().scale) / dst0_qinfo.uniform().scale;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
std::cout << "(q_multiplier, q_shift) = (" << output_multiplier << ", " << output_shift << ")\n\n";
gemmlowp_output_stage.configure(&q_res, nullptr, &q_res_output, output_multiplier, output_shift, dst0_qinfo.uniform().offset);
// Allocate all tensors
q_src1.allocator()->allocate();
q_src2.allocator()->allocate();
q_dst0.allocator()->allocate();
q_res.allocator()->allocate();
q_res_output.allocator()->allocate();
// Run quantization layers (quantizes values of each tensor)
q1.run();
q2.run();
q3.run();
// Run low precision matrix multiply kernel
qgemm.run();
// Run output stage kernel
gemmlowp_output_stage.run();
std::cout << "Done\n";
#if ARM_COMPUTE_DEBUG_ENABLED
// Print quantized source matrices
q_src1.print(std::cout);
q_src2.print(std::cout);
// Print result matrix in int32 form - before output stage processing
std::cout << "Lowp GEMM output (int32):\n";
q_res.print(std::cout);
// Print QASYMM8 (quantized) matrix
std::cout << "Output pipeline result matrix:\n";
q_res_output.print(std::cout);
// Expected result
std::cout << "Expected result:\n";
q_dst0.print(std::cout);
#endif // ARM_COMPUTE_DEBUG_ENABLED
}