android13/external/ComputeLibrary/tests/AssetsLibrary.cpp

558 lines
15 KiB
C++

/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "tests/AssetsLibrary.h"
#include "Utils.h"
#include "utils/TypePrinter.h"
#include "arm_compute/core/ITensor.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#include "libnpy/npy.hpp"
#pragma GCC diagnostic pop
#include <cctype>
#include <fstream>
#include <limits>
#include <map>
#include <mutex>
#include <sstream>
#include <stdexcept>
#include <tuple>
#include <unordered_map>
#include <utility>
namespace arm_compute
{
namespace test
{
namespace
{
template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
void rgb_to_luminance(const RawTensor &src, RawTensor &dst)
{
// Ensure in/out tensors have same image dimensions (independent of element size and number of channels)
ARM_COMPUTE_ERROR_ON_MSG(src.num_elements() != dst.num_elements(), "Input and output images must have equal dimensions");
const size_t num_elements = dst.num_elements();
// Currently, input is always RGB888 (3 U8 channels per element). Output can be U8, U16/S16 or U32
// Note that src.data()[i] returns pointer to first channel of element[i], so RGB values have [0,1,2] offsets
for(size_t i = 0, j = 0; j < num_elements; i += 3, ++j)
{
reinterpret_cast<T *>(dst.data())[j] = 0.2126f * src.data()[i] + 0.7152f * src.data()[i + 1] + 0.0722f * src.data()[i + 2];
}
}
void extract_r_from_rgb(const RawTensor &src, RawTensor &dst)
{
ARM_COMPUTE_ERROR_ON(src.size() != 3 * dst.size());
const size_t num_elements = dst.num_elements();
for(size_t i = 0, j = 0; j < num_elements; i += 3, ++j)
{
dst.data()[j] = src.data()[i];
}
}
void extract_g_from_rgb(const RawTensor &src, RawTensor &dst)
{
ARM_COMPUTE_ERROR_ON(src.size() != 3 * dst.size());
const size_t num_elements = dst.num_elements();
for(size_t i = 1, j = 0; j < num_elements; i += 3, ++j)
{
dst.data()[j] = src.data()[i];
}
}
void extract_b_from_rgb(const RawTensor &src, RawTensor &dst)
{
ARM_COMPUTE_ERROR_ON(src.size() != 3 * dst.size());
const size_t num_elements = dst.num_elements();
for(size_t i = 2, j = 0; j < num_elements; i += 3, ++j)
{
dst.data()[j] = src.data()[i];
}
}
void discard_comments(std::ifstream &fs)
{
while(fs.peek() == '#')
{
fs.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
}
}
void discard_comments_and_spaces(std::ifstream &fs)
{
while(true)
{
discard_comments(fs);
if(isspace(fs.peek()) == 0)
{
break;
}
fs.ignore(1);
}
}
std::tuple<unsigned int, unsigned int, int> parse_netpbm_format_header(std::ifstream &fs, char number)
{
// check file type magic number is valid
std::array<char, 2> magic_number{ { 0 } };
fs >> magic_number[0] >> magic_number[1];
if(magic_number[0] != 'P' || magic_number[1] != number)
{
throw std::runtime_error("File type magic number not supported");
}
discard_comments_and_spaces(fs);
unsigned int width = 0;
fs >> width;
discard_comments_and_spaces(fs);
unsigned int height = 0;
fs >> height;
discard_comments_and_spaces(fs);
int max_value = 0;
fs >> max_value;
if(!fs.good())
{
throw std::runtime_error("Cannot read image dimensions");
}
if(max_value != 255)
{
throw std::runtime_error("RawTensor doesn't have 8-bit values");
}
discard_comments(fs);
if(isspace(fs.peek()) == 0)
{
throw std::runtime_error("Invalid image header");
}
fs.ignore(1);
return std::make_tuple(width, height, max_value);
}
std::tuple<unsigned int, unsigned int, int> parse_ppm_header(std::ifstream &fs)
{
return parse_netpbm_format_header(fs, '6');
}
std::tuple<unsigned int, unsigned int, int> parse_pgm_header(std::ifstream &fs)
{
return parse_netpbm_format_header(fs, '5');
}
void check_image_size(std::ifstream &fs, size_t raw_size)
{
const size_t current_position = fs.tellg();
fs.seekg(0, std::ios_base::end);
const size_t end_position = fs.tellg();
fs.seekg(current_position, std::ios_base::beg);
if((end_position - current_position) < raw_size)
{
throw std::runtime_error("Not enough data in file");
}
}
void read_image_buffer(std::ifstream &fs, RawTensor &raw)
{
fs.read(reinterpret_cast<std::fstream::char_type *>(raw.data()), raw.size());
if(!fs.good())
{
throw std::runtime_error("Failure while reading image buffer");
}
}
RawTensor load_ppm(const std::string &path)
{
std::ifstream file(path, std::ios::in | std::ios::binary);
if(!file.good())
{
throw framework::FileNotFound("Could not load PPM image: " + path);
}
unsigned int width = 0;
unsigned int height = 0;
std::tie(width, height, std::ignore) = parse_ppm_header(file);
RawTensor raw(TensorShape(width, height), Format::RGB888);
check_image_size(file, raw.size());
read_image_buffer(file, raw);
return raw;
}
RawTensor load_pgm(const std::string &path)
{
std::ifstream file(path, std::ios::in | std::ios::binary);
if(!file.good())
{
throw framework::FileNotFound("Could not load PGM image: " + path);
}
unsigned int width = 0;
unsigned int height = 0;
std::tie(width, height, std::ignore) = parse_pgm_header(file);
RawTensor raw(TensorShape(width, height), Format::U8);
check_image_size(file, raw.size());
read_image_buffer(file, raw);
return raw;
}
} // namespace
AssetsLibrary::AssetsLibrary(std::string path, std::random_device::result_type seed) //NOLINT
: _library_path(std::move(path)),
_seed{ seed }
{
}
std::string AssetsLibrary::path() const
{
return _library_path;
}
std::random_device::result_type AssetsLibrary::seed() const
{
return _seed;
}
void AssetsLibrary::fill(RawTensor &raw, const std::string &name, Format format) const
{
//FIXME: Should be done by swapping cached buffers
const RawTensor &src = get(name, format);
std::copy_n(src.data(), raw.size(), raw.data());
}
void AssetsLibrary::fill(RawTensor &raw, const std::string &name, Channel channel) const
{
fill(raw, name, get_format_for_channel(channel), channel);
}
void AssetsLibrary::fill(RawTensor &raw, const std::string &name, Format format, Channel channel) const
{
const RawTensor &src = get(name, format, channel);
std::copy_n(src.data(), raw.size(), raw.data());
}
const AssetsLibrary::Loader &AssetsLibrary::get_loader(const std::string &extension) const
{
static std::unordered_map<std::string, Loader> loaders =
{
{ "ppm", load_ppm },
{ "pgm", load_pgm }
};
const auto it = loaders.find(extension);
if(it != loaders.end())
{
return it->second;
}
else
{
throw std::invalid_argument("Cannot load image with extension '" + extension + "'");
}
}
const AssetsLibrary::Converter &AssetsLibrary::get_converter(Format src, Format dst) const
{
static std::map<std::pair<Format, Format>, Converter> converters =
{
{ std::make_pair(Format::RGB888, Format::U8), rgb_to_luminance<uint8_t> },
{ std::make_pair(Format::RGB888, Format::U16), rgb_to_luminance<uint16_t> },
{ std::make_pair(Format::RGB888, Format::S16), rgb_to_luminance<int16_t> },
{ std::make_pair(Format::RGB888, Format::U32), rgb_to_luminance<uint32_t> }
};
const auto it = converters.find(std::make_pair(src, dst));
if(it != converters.end())
{
return it->second;
}
else
{
std::stringstream msg;
msg << "Cannot convert from format '" << src << "' to format '" << dst << "'\n";
throw std::invalid_argument(msg.str());
}
}
const AssetsLibrary::Converter &AssetsLibrary::get_converter(DataType src, Format dst) const
{
static std::map<std::pair<DataType, Format>, Converter> converters = {};
const auto it = converters.find(std::make_pair(src, dst));
if(it != converters.end())
{
return it->second;
}
else
{
std::stringstream msg;
msg << "Cannot convert from data type '" << src << "' to format '" << dst << "'\n";
throw std::invalid_argument(msg.str());
}
}
const AssetsLibrary::Converter &AssetsLibrary::get_converter(DataType src, DataType dst) const
{
static std::map<std::pair<DataType, DataType>, Converter> converters = {};
const auto it = converters.find(std::make_pair(src, dst));
if(it != converters.end())
{
return it->second;
}
else
{
std::stringstream msg;
msg << "Cannot convert from data type '" << src << "' to data type '" << dst << "'\n";
throw std::invalid_argument(msg.str());
}
}
const AssetsLibrary::Converter &AssetsLibrary::get_converter(Format src, DataType dst) const
{
static std::map<std::pair<Format, DataType>, Converter> converters = {};
const auto it = converters.find(std::make_pair(src, dst));
if(it != converters.end())
{
return it->second;
}
else
{
std::stringstream msg;
msg << "Cannot convert from format '" << src << "' to data type '" << dst << "'\n";
throw std::invalid_argument(msg.str());
}
}
const AssetsLibrary::Extractor &AssetsLibrary::get_extractor(Format format, Channel channel) const
{
static std::map<std::pair<Format, Channel>, Extractor> extractors =
{
{ std::make_pair(Format::RGB888, Channel::R), extract_r_from_rgb },
{ std::make_pair(Format::RGB888, Channel::G), extract_g_from_rgb },
{ std::make_pair(Format::RGB888, Channel::B), extract_b_from_rgb }
};
const auto it = extractors.find(std::make_pair(format, channel));
if(it != extractors.end())
{
return it->second;
}
else
{
std::stringstream msg;
msg << "Cannot extract channel '" << channel << "' from format '" << format << "'\n";
throw std::invalid_argument(msg.str());
}
}
RawTensor AssetsLibrary::load_image(const std::string &name) const
{
#ifdef _WIN32
const std::string image_path = ("\\images\\");
#else /* _WIN32 */
const std::string image_path = ("/images/");
#endif /* _WIN32 */
const std::string path = _library_path + image_path + name;
const std::string extension = path.substr(path.find_last_of('.') + 1);
return (*get_loader(extension))(path);
}
const RawTensor &AssetsLibrary::find_or_create_raw_tensor(const std::string &name, Format format) const
{
std::lock_guard<arm_compute::Mutex> guard(_format_lock);
const RawTensor *ptr = _cache.find(std::forward_as_tuple(name, format));
if(ptr != nullptr)
{
return *ptr;
}
RawTensor raw = load_image(name);
if(raw.format() != format)
{
//FIXME: Remove unnecessary copy
RawTensor dst(raw.shape(), format);
(*get_converter(raw.format(), format))(raw, dst);
raw = std::move(dst);
}
return _cache.add(std::forward_as_tuple(name, format), std::move(raw));
}
const RawTensor &AssetsLibrary::find_or_create_raw_tensor(const std::string &name, Format format, Channel channel) const
{
std::lock_guard<arm_compute::Mutex> guard(_channel_lock);
const RawTensor *ptr = _cache.find(std::forward_as_tuple(name, format, channel));
if(ptr != nullptr)
{
return *ptr;
}
const RawTensor &src = get(name, format);
//FIXME: Need to change shape to match channel
RawTensor dst(src.shape(), get_channel_format(channel));
(*get_extractor(format, channel))(src, dst);
return _cache.add(std::forward_as_tuple(name, format, channel), std::move(dst));
}
TensorShape AssetsLibrary::get_image_shape(const std::string &name)
{
return load_image(name).shape();
}
const RawTensor &AssetsLibrary::get(const std::string &name) const
{
//FIXME: Format should be derived from the image name. Not be fixed to RGB.
return find_or_create_raw_tensor(name, Format::RGB888);
}
RawTensor AssetsLibrary::get(const std::string &name)
{
//FIXME: Format should be derived from the image name. Not be fixed to RGB.
return RawTensor(find_or_create_raw_tensor(name, Format::RGB888));
}
RawTensor AssetsLibrary::get(const std::string &name, DataType data_type, int num_channels) const
{
const RawTensor &raw = get(name);
return RawTensor(raw.shape(), data_type, num_channels);
}
const RawTensor &AssetsLibrary::get(const std::string &name, Format format) const
{
return find_or_create_raw_tensor(name, format);
}
RawTensor AssetsLibrary::get(const std::string &name, Format format)
{
return RawTensor(find_or_create_raw_tensor(name, format));
}
const RawTensor &AssetsLibrary::get(const std::string &name, Channel channel) const
{
return get(name, get_format_for_channel(channel), channel);
}
RawTensor AssetsLibrary::get(const std::string &name, Channel channel)
{
return RawTensor(get(name, get_format_for_channel(channel), channel));
}
const RawTensor &AssetsLibrary::get(const std::string &name, Format format, Channel channel) const
{
return find_or_create_raw_tensor(name, format, channel);
}
RawTensor AssetsLibrary::get(const std::string &name, Format format, Channel channel)
{
return RawTensor(find_or_create_raw_tensor(name, format, channel));
}
namespace detail
{
inline void validate_npy_header(std::ifstream &stream, const std::string &expect_typestr, const TensorShape &expect_shape)
{
ARM_COMPUTE_UNUSED(expect_typestr);
ARM_COMPUTE_UNUSED(expect_shape);
std::string header = npy::read_header(stream);
// Parse header
std::vector<unsigned long> shape;
bool fortran_order = false;
std::string typestr;
npy::parse_header(header, typestr, fortran_order, shape);
// Check if the typestring matches the given one
ARM_COMPUTE_ERROR_ON_MSG(typestr != expect_typestr, "Typestrings mismatch");
// Validate tensor shape
ARM_COMPUTE_ERROR_ON_MSG(shape.size() != expect_shape.num_dimensions(), "Tensor ranks mismatch");
if(fortran_order)
{
for(size_t i = 0; i < shape.size(); ++i)
{
ARM_COMPUTE_ERROR_ON_MSG(expect_shape[i] != shape[i], "Tensor dimensions mismatch");
}
}
else
{
for(size_t i = 0; i < shape.size(); ++i)
{
ARM_COMPUTE_ERROR_ON_MSG(expect_shape[i] != shape[shape.size() - i - 1], "Tensor dimensions mismatch");
}
}
}
} // namespace detail
} // namespace test
} // namespace arm_compute