android13/external/ComputeLibrary/tests/Utils.h

824 lines
28 KiB
C++

/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_UTILS_H
#define ARM_COMPUTE_TEST_UTILS_H
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/HOGInfo.h"
#include "arm_compute/core/PyramidInfo.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "support/StringSupport.h"
#include "support/ToolchainSupport.h"
#ifdef ARM_COMPUTE_CL
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#endif /* ARM_COMPUTE_CL */
#ifdef ARM_COMPUTE_GC
#include "arm_compute/core/GLES_COMPUTE/OpenGLES.h"
#include "arm_compute/runtime/GLES_COMPUTE/GCTensor.h"
#endif /* ARM_COMPUTE_GC */
#include <cmath>
#include <cstddef>
#include <limits>
#include <memory>
#include <random>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>
#include "arm_compute/runtime/CPP/CPPScheduler.h"
#include "arm_compute/runtime/RuntimeContext.h"
namespace arm_compute
{
#ifdef ARM_COMPUTE_CL
class CLTensor;
#endif /* ARM_COMPUTE_CL */
namespace test
{
/** Round floating-point value with half value rounding to positive infinity.
*
* @param[in] value floating-point value to be rounded.
*
* @return Floating-point value of rounded @p value.
*/
template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
inline T round_half_up(T value)
{
return std::floor(value + 0.5f);
}
/** Round floating-point value with half value rounding to nearest even.
*
* @param[in] value floating-point value to be rounded.
* @param[in] epsilon precision.
*
* @return Floating-point value of rounded @p value.
*/
template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
inline T round_half_even(T value, T epsilon = std::numeric_limits<T>::epsilon())
{
T positive_value = std::abs(value);
T ipart = 0;
std::modf(positive_value, &ipart);
// If 'value' is exactly halfway between two integers
if(std::abs(positive_value - (ipart + 0.5f)) < epsilon)
{
// If 'ipart' is even then return 'ipart'
if(std::fmod(ipart, 2.f) < epsilon)
{
return support::cpp11::copysign(ipart, value);
}
// Else return the nearest even integer
return support::cpp11::copysign(std::ceil(ipart + 0.5f), value);
}
// Otherwise use the usual round to closest
return support::cpp11::copysign(support::cpp11::round(positive_value), value);
}
namespace traits
{
// *INDENT-OFF*
// clang-format off
/** Promote a type */
template <typename T> struct promote { };
/** Promote uint8_t to uint16_t */
template <> struct promote<uint8_t> { using type = uint16_t; /**< Promoted type */ };
/** Promote int8_t to int16_t */
template <> struct promote<int8_t> { using type = int16_t; /**< Promoted type */ };
/** Promote uint16_t to uint32_t */
template <> struct promote<uint16_t> { using type = uint32_t; /**< Promoted type */ };
/** Promote int16_t to int32_t */
template <> struct promote<int16_t> { using type = int32_t; /**< Promoted type */ };
/** Promote uint32_t to uint64_t */
template <> struct promote<uint32_t> { using type = uint64_t; /**< Promoted type */ };
/** Promote int32_t to int64_t */
template <> struct promote<int32_t> { using type = int64_t; /**< Promoted type */ };
/** Promote float to float */
template <> struct promote<float> { using type = float; /**< Promoted type */ };
/** Promote half to half */
template <> struct promote<half> { using type = half; /**< Promoted type */ };
/** Get promoted type */
template <typename T>
using promote_t = typename promote<T>::type;
template <typename T>
using make_signed_conditional_t = typename std::conditional<std::is_integral<T>::value, std::make_signed<T>, std::common_type<T>>::type;
template <typename T>
using make_unsigned_conditional_t = typename std::conditional<std::is_integral<T>::value, std::make_unsigned<T>, std::common_type<T>>::type;
// clang-format on
// *INDENT-ON*
}
/** Look up the format corresponding to a channel.
*
* @param[in] channel Channel type.
*
* @return Format that contains the given channel.
*/
inline Format get_format_for_channel(Channel channel)
{
switch(channel)
{
case Channel::R:
case Channel::G:
case Channel::B:
return Format::RGB888;
default:
throw std::runtime_error("Unsupported channel");
}
}
/** Return the format of a channel.
*
* @param[in] channel Channel type.
*
* @return Format of the given channel.
*/
inline Format get_channel_format(Channel channel)
{
switch(channel)
{
case Channel::R:
case Channel::G:
case Channel::B:
return Format::U8;
default:
throw std::runtime_error("Unsupported channel");
}
}
/** Base case of foldl.
*
* @return value.
*/
template <typename F, typename T>
inline T foldl(F &&, const T &value)
{
return value;
}
/** Base case of foldl.
*
* @return func(value1, value2).
*/
template <typename F, typename T, typename U>
inline auto foldl(F &&func, T &&value1, U &&value2) -> decltype(func(value1, value2))
{
return func(value1, value2);
}
/** Fold left.
*
* @param[in] func Binary function to be called.
* @param[in] initial Initial value.
* @param[in] value Argument passed to the function.
* @param[in] values Remaining arguments.
*/
template <typename F, typename I, typename T, typename... Vs>
inline I foldl(F &&func, I &&initial, T &&value, Vs &&... values)
{
return foldl(std::forward<F>(func), func(std::forward<I>(initial), std::forward<T>(value)), std::forward<Vs>(values)...);
}
/** Create a valid region based on tensor shape, border mode and border size
*
* @param[in] a_shape Shape used as size of the valid region.
* @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined.
* @param[in] border_size (Optional) Border size used to specify the region to exclude.
*
* @return A valid region starting at (0, 0, ...) with size of @p shape if @p border_undefined is false; otherwise
* return A valid region starting at (@p border_size.left, @p border_size.top, ...) with reduced size of @p shape.
*/
inline ValidRegion shape_to_valid_region(const TensorShape &a_shape, bool border_undefined = false, BorderSize border_size = BorderSize(0))
{
ValidRegion valid_region{ Coordinates(), a_shape };
Coordinates &anchor = valid_region.anchor;
TensorShape &shape = valid_region.shape;
if(border_undefined)
{
ARM_COMPUTE_ERROR_ON(shape.num_dimensions() < 2);
anchor.set(0, border_size.left);
anchor.set(1, border_size.top);
const int valid_shape_x = std::max(0, static_cast<int>(shape.x()) - static_cast<int>(border_size.left) - static_cast<int>(border_size.right));
const int valid_shape_y = std::max(0, static_cast<int>(shape.y()) - static_cast<int>(border_size.top) - static_cast<int>(border_size.bottom));
shape.set(0, valid_shape_x);
shape.set(1, valid_shape_y);
}
return valid_region;
}
/** Create a valid region for Gaussian Pyramid Half based on tensor shape and valid region at level "i - 1" and border mode
*
* @note The border size is 2 in case of Gaussian Pyramid Half
*
* @param[in] a_shape Shape used at level "i - 1" of Gaussian Pyramid Half
* @param[in] a_valid_region Valid region used at level "i - 1" of Gaussian Pyramid Half
* @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined.
*
* return The valid region for the level "i" of Gaussian Pyramid Half
*/
inline ValidRegion shape_to_valid_region_gaussian_pyramid_half(const TensorShape &a_shape, const ValidRegion &a_valid_region, bool border_undefined = false)
{
constexpr int border_size = 2;
ValidRegion valid_region{ Coordinates(), a_shape };
Coordinates &anchor = valid_region.anchor;
TensorShape &shape = valid_region.shape;
// Compute tensor shape for level "i" of Gaussian Pyramid Half
// dst_width = (src_width + 1) * 0.5f
// dst_height = (src_height + 1) * 0.5f
shape.set(0, (a_shape[0] + 1) * 0.5f);
shape.set(1, (a_shape[1] + 1) * 0.5f);
if(border_undefined)
{
ARM_COMPUTE_ERROR_ON(shape.num_dimensions() < 2);
// Compute the left and top invalid borders
float invalid_border_left = static_cast<float>(a_valid_region.anchor.x() + border_size) / 2.0f;
float invalid_border_top = static_cast<float>(a_valid_region.anchor.y() + border_size) / 2.0f;
// For the new anchor point we can have 2 cases:
// 1) If the width/height of the tensor shape is odd, we have to take the ceil value of (a_valid_region.anchor.x() + border_size) / 2.0f or (a_valid_region.anchor.y() + border_size / 2.0f
// 2) If the width/height of the tensor shape is even, we have to take the floor value of (a_valid_region.anchor.x() + border_size) / 2.0f or (a_valid_region.anchor.y() + border_size) / 2.0f
// In this manner we should be able to propagate correctly the valid region along all levels of the pyramid
invalid_border_left = (a_shape[0] % 2) ? std::ceil(invalid_border_left) : std::floor(invalid_border_left);
invalid_border_top = (a_shape[1] % 2) ? std::ceil(invalid_border_top) : std::floor(invalid_border_top);
// Set the anchor point
anchor.set(0, static_cast<int>(invalid_border_left));
anchor.set(1, static_cast<int>(invalid_border_top));
// Compute shape
// Calculate the right and bottom invalid borders at the previous level of the pyramid
const float prev_invalid_border_right = static_cast<float>(a_shape[0] - (a_valid_region.anchor.x() + a_valid_region.shape[0]));
const float prev_invalid_border_bottom = static_cast<float>(a_shape[1] - (a_valid_region.anchor.y() + a_valid_region.shape[1]));
// Calculate the right and bottom invalid borders at the current level of the pyramid
const float invalid_border_right = std::ceil((prev_invalid_border_right + static_cast<float>(border_size)) / 2.0f);
const float invalid_border_bottom = std::ceil((prev_invalid_border_bottom + static_cast<float>(border_size)) / 2.0f);
const int valid_shape_x = std::max(0, static_cast<int>(shape.x()) - static_cast<int>(invalid_border_left) - static_cast<int>(invalid_border_right));
const int valid_shape_y = std::max(0, static_cast<int>(shape.y()) - static_cast<int>(invalid_border_top) - static_cast<int>(invalid_border_bottom));
shape.set(0, valid_shape_x);
shape.set(1, valid_shape_y);
}
return valid_region;
}
/** Create a valid region for Laplacian Pyramid based on tensor shape and valid region at level "i - 1" and border mode
*
* @note The border size is 2 in case of Laplacian Pyramid
*
* @param[in] a_shape Shape used at level "i - 1" of Laplacian Pyramid
* @param[in] a_valid_region Valid region used at level "i - 1" of Laplacian Pyramid
* @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined.
*
* return The valid region for the level "i" of Laplacian Pyramid
*/
inline ValidRegion shape_to_valid_region_laplacian_pyramid(const TensorShape &a_shape, const ValidRegion &a_valid_region, bool border_undefined = false)
{
ValidRegion valid_region = shape_to_valid_region_gaussian_pyramid_half(a_shape, a_valid_region, border_undefined);
if(border_undefined)
{
const BorderSize gaussian5x5_border(2);
auto border_left = static_cast<int>(gaussian5x5_border.left);
auto border_right = static_cast<int>(gaussian5x5_border.right);
auto border_top = static_cast<int>(gaussian5x5_border.top);
auto border_bottom = static_cast<int>(gaussian5x5_border.bottom);
valid_region.anchor.set(0, valid_region.anchor[0] + border_left);
valid_region.anchor.set(1, valid_region.anchor[1] + border_top);
valid_region.shape.set(0, std::max(0, static_cast<int>(valid_region.shape[0]) - border_right - border_left));
valid_region.shape.set(1, std::max(0, static_cast<int>(valid_region.shape[1]) - border_top - border_bottom));
}
return valid_region;
}
/** Write the value after casting the pointer according to @p data_type.
*
* @warning The type of the value must match the specified data type.
*
* @param[out] ptr Pointer to memory where the @p value will be written.
* @param[in] value Value that will be written.
* @param[in] data_type Data type that will be written.
*/
template <typename T>
void store_value_with_data_type(void *ptr, T value, DataType data_type)
{
switch(data_type)
{
case DataType::U8:
case DataType::QASYMM8:
*reinterpret_cast<uint8_t *>(ptr) = value;
break;
case DataType::S8:
case DataType::QASYMM8_SIGNED:
case DataType::QSYMM8:
case DataType::QSYMM8_PER_CHANNEL:
*reinterpret_cast<int8_t *>(ptr) = value;
break;
case DataType::U16:
case DataType::QASYMM16:
*reinterpret_cast<uint16_t *>(ptr) = value;
break;
case DataType::S16:
case DataType::QSYMM16:
*reinterpret_cast<int16_t *>(ptr) = value;
break;
case DataType::U32:
*reinterpret_cast<uint32_t *>(ptr) = value;
break;
case DataType::S32:
*reinterpret_cast<int32_t *>(ptr) = value;
break;
case DataType::U64:
*reinterpret_cast<uint64_t *>(ptr) = value;
break;
case DataType::S64:
*reinterpret_cast<int64_t *>(ptr) = value;
break;
case DataType::BFLOAT16:
*reinterpret_cast<bfloat16 *>(ptr) = bfloat16(value);
break;
case DataType::F16:
*reinterpret_cast<half *>(ptr) = value;
break;
case DataType::F32:
*reinterpret_cast<float *>(ptr) = value;
break;
case DataType::F64:
*reinterpret_cast<double *>(ptr) = value;
break;
case DataType::SIZET:
*reinterpret_cast<size_t *>(ptr) = value;
break;
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
}
/** Saturate a value of type T against the numeric limits of type U.
*
* @param[in] val Value to be saturated.
*
* @return saturated value.
*/
template <typename U, typename T>
T saturate_cast(T val)
{
if(val > static_cast<T>(std::numeric_limits<U>::max()))
{
val = static_cast<T>(std::numeric_limits<U>::max());
}
if(val < static_cast<T>(std::numeric_limits<U>::lowest()))
{
val = static_cast<T>(std::numeric_limits<U>::lowest());
}
return val;
}
/** Find the signed promoted common type.
*/
template <typename... T>
struct common_promoted_signed_type
{
/** Common type */
using common_type = typename std::common_type<T...>::type;
/** Promoted type */
using promoted_type = traits::promote_t<common_type>;
/** Intermediate type */
using intermediate_type = typename traits::make_signed_conditional_t<promoted_type>::type;
};
/** Find the unsigned promoted common type.
*/
template <typename... T>
struct common_promoted_unsigned_type
{
/** Common type */
using common_type = typename std::common_type<T...>::type;
/** Promoted type */
using promoted_type = traits::promote_t<common_type>;
/** Intermediate type */
using intermediate_type = typename traits::make_unsigned_conditional_t<promoted_type>::type;
};
/** Convert a linear index into n-dimensional coordinates.
*
* @param[in] shape Shape of the n-dimensional tensor.
* @param[in] index Linear index specifying the i-th element.
*
* @return n-dimensional coordinates.
*/
inline Coordinates index2coord(const TensorShape &shape, int index)
{
int num_elements = shape.total_size();
ARM_COMPUTE_ERROR_ON_MSG(index < 0 || index >= num_elements, "Index has to be in [0, num_elements]");
ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create coordinate from empty shape");
Coordinates coord{ 0 };
for(int d = shape.num_dimensions() - 1; d >= 0; --d)
{
num_elements /= shape[d];
coord.set(d, index / num_elements);
index %= num_elements;
}
return coord;
}
/** Linearise the given coordinate.
*
* Transforms the given coordinate into a linear offset in terms of
* elements.
*
* @param[in] shape Shape of the n-dimensional tensor.
* @param[in] coord The to be converted coordinate.
*
* @return Linear offset to the element.
*/
inline int coord2index(const TensorShape &shape, const Coordinates &coord)
{
ARM_COMPUTE_ERROR_ON_MSG(shape.total_size() == 0, "Cannot get index from empty shape");
ARM_COMPUTE_ERROR_ON_MSG(coord.num_dimensions() == 0, "Cannot get index of empty coordinate");
int index = 0;
int dim_size = 1;
for(unsigned int i = 0; i < coord.num_dimensions(); ++i)
{
index += coord[i] * dim_size;
dim_size *= shape[i];
}
return index;
}
/** Check if a coordinate is within a valid region */
inline bool is_in_valid_region(const ValidRegion &valid_region, Coordinates coord)
{
for(size_t d = 0; d < Coordinates::num_max_dimensions; ++d)
{
if(coord[d] < valid_region.start(d) || coord[d] >= valid_region.end(d))
{
return false;
}
}
return true;
}
/** Create and initialize a tensor of the given type.
*
* @param[in] shape Tensor shape.
* @param[in] data_type Data type.
* @param[in] num_channels (Optional) Number of channels.
* @param[in] quantization_info (Optional) Quantization info for asymmetric quantized types.
* @param[in] data_layout (Optional) Data layout. Default is NCHW.
* @param[in] ctx (Optional) Pointer to the runtime context.
*
* @return Initialized tensor of given type.
*/
template <typename T>
inline T create_tensor(const TensorShape &shape, DataType data_type, int num_channels = 1,
QuantizationInfo quantization_info = QuantizationInfo(), DataLayout data_layout = DataLayout::NCHW, IRuntimeContext *ctx = nullptr)
{
T tensor(ctx);
TensorInfo info(shape, num_channels, data_type);
info.set_quantization_info(quantization_info);
info.set_data_layout(data_layout);
tensor.allocator()->init(info);
return tensor;
}
/** Create and initialize a tensor of the given type.
*
* @param[in] shape Tensor shape.
* @param[in] format Format type.
* @param[in] ctx (Optional) Pointer to the runtime context.
*
* @return Initialized tensor of given type.
*/
template <typename T>
inline T create_tensor(const TensorShape &shape, Format format, IRuntimeContext *ctx = nullptr)
{
TensorInfo info(shape, format);
T tensor(ctx);
tensor.allocator()->init(info);
return tensor;
}
/** Create and initialize a multi-image of the given type.
*
* @param[in] shape Tensor shape.
* @param[in] format Format type.
*
* @return Initialized tensor of given type.
*/
template <typename T>
inline T create_multi_image(const TensorShape &shape, Format format)
{
T multi_image;
multi_image.init(shape.x(), shape.y(), format);
return multi_image;
}
/** Create and initialize a HOG (Histogram of Oriented Gradients) of the given type.
*
* @param[in] hog_info HOGInfo object
*
* @return Initialized HOG of given type.
*/
template <typename T>
inline T create_HOG(const HOGInfo &hog_info)
{
T hog;
hog.init(hog_info);
return hog;
}
/** Create and initialize a Pyramid of the given type.
*
* @param[in] pyramid_info The PyramidInfo object.
*
* @return Initialized Pyramid of given type.
*/
template <typename T>
inline T create_pyramid(const PyramidInfo &pyramid_info)
{
T pyramid;
pyramid.init_auto_padding(pyramid_info);
return pyramid;
}
/** Initialize a convolution matrix.
*
* @param[in, out] conv The input convolution matrix.
* @param[in] width The width of the convolution matrix.
* @param[in] height The height of the convolution matrix.
* @param[in] seed The random seed to be used.
*/
inline void init_conv(int16_t *conv, unsigned int width, unsigned int height, std::random_device::result_type seed)
{
std::mt19937 gen(seed);
std::uniform_int_distribution<int16_t> distribution_int16(-32768, 32767);
for(unsigned int i = 0; i < width * height; ++i)
{
conv[i] = distribution_int16(gen);
}
}
/** Initialize a separable convolution matrix.
*
* @param[in, out] conv The input convolution matrix.
* @param[in] width The width of the convolution matrix.
* @param[in] height The height of the convolution matrix.
* @param[in] seed The random seed to be used.
*/
inline void init_separable_conv(int16_t *conv, unsigned int width, unsigned int height, std::random_device::result_type seed)
{
std::mt19937 gen(seed);
// Set it between -128 and 127 to ensure the matrix does not overflow
std::uniform_int_distribution<int16_t> distribution_int16(-128, 127);
int16_t *conv_row = new int16_t[width];
int16_t *conv_col = new int16_t[height];
conv_row[0] = conv_col[0] = 1;
for(unsigned int i = 1; i < width; ++i)
{
conv_row[i] = distribution_int16(gen);
}
for(unsigned int i = 1; i < height; ++i)
{
conv_col[i] = distribution_int16(gen);
}
// Multiply two matrices
for(unsigned int i = 0; i < width; ++i)
{
for(unsigned int j = 0; j < height; ++j)
{
conv[i * width + j] = conv_col[i] * conv_row[j];
}
}
delete[] conv_row;
delete[] conv_col;
}
/** Create a vector with a uniform distribution of floating point values across the specified range.
*
* @param[in] num_values The number of values to be created.
* @param[in] min The minimum value in distribution (inclusive).
* @param[in] max The maximum value in distribution (inclusive).
* @param[in] seed The random seed to be used.
*
* @return A vector that contains the requested number of random floating point values
*/
template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
inline std::vector<T> generate_random_real(unsigned int num_values, T min, T max, std::random_device::result_type seed)
{
std::vector<T> v(num_values);
std::mt19937 gen(seed);
std::uniform_real_distribution<T> dist(min, max);
for(unsigned int i = 0; i < num_values; ++i)
{
v.at(i) = dist(gen);
}
return v;
}
/** Create a vector of random keypoints for pyramid representation.
*
* @param[in] shape The shape of the input tensor.
* @param[in] num_keypoints The number of keypoints to be created.
* @param[in] seed The random seed to be used.
* @param[in] num_levels The number of pyramid levels.
*
* @return A vector that contains the requested number of random keypoints
*/
inline std::vector<KeyPoint> generate_random_keypoints(const TensorShape &shape, size_t num_keypoints, std::random_device::result_type seed, size_t num_levels = 1)
{
std::vector<KeyPoint> keypoints;
std::mt19937 gen(seed);
// Calculate distribution bounds
const auto min = static_cast<int>(std::pow(2, num_levels));
const auto max_width = static_cast<int>(shape.x());
const auto max_height = static_cast<int>(shape.y());
ARM_COMPUTE_ERROR_ON(min > max_width || min > max_height);
// Create distributions
std::uniform_int_distribution<> dist_w(min, max_width);
std::uniform_int_distribution<> dist_h(min, max_height);
for(unsigned int i = 0; i < num_keypoints; i++)
{
KeyPoint keypoint;
keypoint.x = dist_w(gen);
keypoint.y = dist_h(gen);
keypoint.tracking_status = 1;
keypoints.push_back(keypoint);
}
return keypoints;
}
template <typename T, typename ArrayAccessor_T>
inline void fill_array(ArrayAccessor_T &&array, const std::vector<T> &v)
{
array.resize(v.size());
std::memcpy(array.buffer(), v.data(), v.size() * sizeof(T));
}
/** Obtain numpy type string from DataType.
*
* @param[in] data_type Data type.
*
* @return numpy type string.
*/
inline std::string get_typestring(DataType data_type)
{
// Check endianness
const unsigned int i = 1;
const char *c = reinterpret_cast<const char *>(&i);
std::string endianness;
if(*c == 1)
{
endianness = std::string("<");
}
else
{
endianness = std::string(">");
}
const std::string no_endianness("|");
switch(data_type)
{
case DataType::U8:
return no_endianness + "u" + support::cpp11::to_string(sizeof(uint8_t));
case DataType::S8:
return no_endianness + "i" + support::cpp11::to_string(sizeof(int8_t));
case DataType::U16:
return endianness + "u" + support::cpp11::to_string(sizeof(uint16_t));
case DataType::S16:
return endianness + "i" + support::cpp11::to_string(sizeof(int16_t));
case DataType::U32:
return endianness + "u" + support::cpp11::to_string(sizeof(uint32_t));
case DataType::S32:
return endianness + "i" + support::cpp11::to_string(sizeof(int32_t));
case DataType::U64:
return endianness + "u" + support::cpp11::to_string(sizeof(uint64_t));
case DataType::S64:
return endianness + "i" + support::cpp11::to_string(sizeof(int64_t));
case DataType::F32:
return endianness + "f" + support::cpp11::to_string(sizeof(float));
case DataType::F64:
return endianness + "f" + support::cpp11::to_string(sizeof(double));
case DataType::SIZET:
return endianness + "u" + support::cpp11::to_string(sizeof(size_t));
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
}
/** Sync if necessary.
*/
template <typename TensorType>
inline void sync_if_necessary()
{
#ifdef ARM_COMPUTE_CL
if(opencl_is_available() && std::is_same<typename std::decay<TensorType>::type, arm_compute::CLTensor>::value)
{
CLScheduler::get().sync();
}
#endif /* ARM_COMPUTE_CL */
}
/** Sync tensor if necessary.
*
* @note: If the destination tensor not being used on OpenGL ES, GPU will optimize out the operation.
*
* @param[in] tensor Tensor to be sync.
*/
template <typename TensorType>
inline void sync_tensor_if_necessary(TensorType &tensor)
{
#ifdef ARM_COMPUTE_GC
if(opengles31_is_available() && std::is_same<typename std::decay<TensorType>::type, arm_compute::GCTensor>::value)
{
// Force sync the tensor by calling map and unmap.
IGCTensor &t = dynamic_cast<IGCTensor &>(tensor);
t.map();
t.unmap();
}
#else /* ARM_COMPUTE_GC */
ARM_COMPUTE_UNUSED(tensor);
#endif /* ARM_COMPUTE_GC */
}
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_UTILS_H */