773 lines
26 KiB
C++
773 lines
26 KiB
C++
/*
|
|
* Copyright (c) 2017-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "utils/GraphUtils.h"
|
|
|
|
#include "arm_compute/core/Helpers.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "arm_compute/graph/Logger.h"
|
|
#include "arm_compute/runtime/SubTensor.h"
|
|
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
|
#include "utils/ImageLoader.h"
|
|
#pragma GCC diagnostic pop
|
|
#include "utils/Utils.h"
|
|
|
|
#include <inttypes.h>
|
|
#include <iomanip>
|
|
#include <limits>
|
|
|
|
using namespace arm_compute::graph_utils;
|
|
|
|
namespace
|
|
{
|
|
std::pair<arm_compute::TensorShape, arm_compute::PermutationVector> compute_permutation_parameters(const arm_compute::TensorShape &shape,
|
|
arm_compute::DataLayout data_layout)
|
|
{
|
|
// Set permutation parameters if needed
|
|
arm_compute::TensorShape permuted_shape = shape;
|
|
arm_compute::PermutationVector perm;
|
|
// Permute only if num_dimensions greater than 2
|
|
if(shape.num_dimensions() > 2)
|
|
{
|
|
perm = (data_layout == arm_compute::DataLayout::NHWC) ? arm_compute::PermutationVector(2U, 0U, 1U) : arm_compute::PermutationVector(1U, 2U, 0U);
|
|
|
|
arm_compute::PermutationVector perm_shape = (data_layout == arm_compute::DataLayout::NCHW) ? arm_compute::PermutationVector(2U, 0U, 1U) : arm_compute::PermutationVector(1U, 2U, 0U);
|
|
arm_compute::permute(permuted_shape, perm_shape);
|
|
}
|
|
|
|
return std::make_pair(permuted_shape, perm);
|
|
}
|
|
} // namespace
|
|
|
|
TFPreproccessor::TFPreproccessor(float min_range, float max_range)
|
|
: _min_range(min_range), _max_range(max_range)
|
|
{
|
|
}
|
|
void TFPreproccessor::preprocess(ITensor &tensor)
|
|
{
|
|
if(tensor.info()->data_type() == DataType::F32)
|
|
{
|
|
preprocess_typed<float>(tensor);
|
|
}
|
|
else if(tensor.info()->data_type() == DataType::F16)
|
|
{
|
|
preprocess_typed<half>(tensor);
|
|
}
|
|
else
|
|
{
|
|
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void TFPreproccessor::preprocess_typed(ITensor &tensor)
|
|
{
|
|
Window window;
|
|
window.use_tensor_dimensions(tensor.info()->tensor_shape());
|
|
|
|
const float range = _max_range - _min_range;
|
|
execute_window_loop(window, [&](const Coordinates & id)
|
|
{
|
|
const T value = *reinterpret_cast<T *>(tensor.ptr_to_element(id));
|
|
float res = value / 255.f; // Normalize to [0, 1]
|
|
res = res * range + _min_range; // Map to [min_range, max_range]
|
|
*reinterpret_cast<T *>(tensor.ptr_to_element(id)) = res;
|
|
});
|
|
}
|
|
|
|
CaffePreproccessor::CaffePreproccessor(std::array<float, 3> mean, bool bgr, float scale)
|
|
: _mean(mean), _bgr(bgr), _scale(scale)
|
|
{
|
|
if(_bgr)
|
|
{
|
|
std::swap(_mean[0], _mean[2]);
|
|
}
|
|
}
|
|
|
|
void CaffePreproccessor::preprocess(ITensor &tensor)
|
|
{
|
|
if(tensor.info()->data_type() == DataType::F32)
|
|
{
|
|
preprocess_typed<float>(tensor);
|
|
}
|
|
else if(tensor.info()->data_type() == DataType::F16)
|
|
{
|
|
preprocess_typed<half>(tensor);
|
|
}
|
|
else
|
|
{
|
|
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void CaffePreproccessor::preprocess_typed(ITensor &tensor)
|
|
{
|
|
Window window;
|
|
window.use_tensor_dimensions(tensor.info()->tensor_shape());
|
|
const int channel_idx = get_data_layout_dimension_index(tensor.info()->data_layout(), DataLayoutDimension::CHANNEL);
|
|
|
|
execute_window_loop(window, [&](const Coordinates & id)
|
|
{
|
|
const T value = *reinterpret_cast<T *>(tensor.ptr_to_element(id)) - T(_mean[id[channel_idx]]);
|
|
*reinterpret_cast<T *>(tensor.ptr_to_element(id)) = value * T(_scale);
|
|
});
|
|
}
|
|
|
|
PPMWriter::PPMWriter(std::string name, unsigned int maximum)
|
|
: _name(std::move(name)), _iterator(0), _maximum(maximum)
|
|
{
|
|
}
|
|
|
|
bool PPMWriter::access_tensor(ITensor &tensor)
|
|
{
|
|
std::stringstream ss;
|
|
ss << _name << _iterator << ".ppm";
|
|
|
|
arm_compute::utils::save_to_ppm(tensor, ss.str());
|
|
|
|
_iterator++;
|
|
if(_maximum == 0)
|
|
{
|
|
return true;
|
|
}
|
|
return _iterator < _maximum;
|
|
}
|
|
|
|
DummyAccessor::DummyAccessor(unsigned int maximum)
|
|
: _iterator(0), _maximum(maximum)
|
|
{
|
|
}
|
|
|
|
bool DummyAccessor::access_tensor(ITensor &tensor)
|
|
{
|
|
ARM_COMPUTE_UNUSED(tensor);
|
|
bool ret = _maximum == 0 || _iterator < _maximum;
|
|
if(_iterator == _maximum)
|
|
{
|
|
_iterator = 0;
|
|
}
|
|
else
|
|
{
|
|
_iterator++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
NumPyAccessor::NumPyAccessor(std::string npy_path, TensorShape shape, DataType data_type, DataLayout data_layout, std::ostream &output_stream)
|
|
: _npy_tensor(), _filename(std::move(npy_path)), _output_stream(output_stream)
|
|
{
|
|
NumPyBinLoader loader(_filename, data_layout);
|
|
|
|
TensorInfo info(shape, 1, data_type);
|
|
info.set_data_layout(data_layout);
|
|
|
|
_npy_tensor.allocator()->init(info);
|
|
_npy_tensor.allocator()->allocate();
|
|
|
|
loader.access_tensor(_npy_tensor);
|
|
}
|
|
|
|
template <typename T>
|
|
void NumPyAccessor::access_numpy_tensor(ITensor &tensor, T tolerance)
|
|
{
|
|
const int num_elements = tensor.info()->tensor_shape().total_size();
|
|
int num_mismatches = utils::compare_tensor<T>(tensor, _npy_tensor, tolerance);
|
|
float percentage_mismatches = static_cast<float>(num_mismatches) / num_elements;
|
|
|
|
_output_stream << "Results: " << 100.f - (percentage_mismatches * 100) << " % matches with the provided output[" << _filename << "]." << std::endl;
|
|
_output_stream << " " << num_elements - num_mismatches << " out of " << num_elements << " matches with the provided output[" << _filename << "]." << std::endl
|
|
<< std::endl;
|
|
}
|
|
|
|
bool NumPyAccessor::access_tensor(ITensor &tensor)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32, DataType::QASYMM8);
|
|
ARM_COMPUTE_ERROR_ON(_npy_tensor.info()->dimension(0) != tensor.info()->dimension(0));
|
|
|
|
switch(tensor.info()->data_type())
|
|
{
|
|
case DataType::QASYMM8:
|
|
access_numpy_tensor<qasymm8_t>(tensor, 0);
|
|
break;
|
|
case DataType::F32:
|
|
access_numpy_tensor<float>(tensor, 0.0001f);
|
|
break;
|
|
default:
|
|
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#ifdef ARM_COMPUTE_ASSERTS_ENABLED
|
|
PrintAccessor::PrintAccessor(std::ostream &output_stream, IOFormatInfo io_fmt)
|
|
: _output_stream(output_stream), _io_fmt(io_fmt)
|
|
{
|
|
}
|
|
|
|
bool PrintAccessor::access_tensor(ITensor &tensor)
|
|
{
|
|
tensor.print(_output_stream, _io_fmt);
|
|
return false;
|
|
}
|
|
#endif /* ARM_COMPUTE_ASSERTS_ENABLED */
|
|
|
|
SaveNumPyAccessor::SaveNumPyAccessor(std::string npy_name, const bool is_fortran)
|
|
: _npy_name(std::move(npy_name)), _is_fortran(is_fortran)
|
|
{
|
|
}
|
|
|
|
bool SaveNumPyAccessor::access_tensor(ITensor &tensor)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32);
|
|
|
|
utils::save_to_npy(tensor, _npy_name, _is_fortran);
|
|
|
|
return false;
|
|
}
|
|
|
|
ImageAccessor::ImageAccessor(std::string filename, bool bgr, std::unique_ptr<IPreprocessor> preprocessor)
|
|
: _already_loaded(false), _filename(std::move(filename)), _bgr(bgr), _preprocessor(std::move(preprocessor))
|
|
{
|
|
}
|
|
|
|
bool ImageAccessor::access_tensor(ITensor &tensor)
|
|
{
|
|
if(!_already_loaded)
|
|
{
|
|
auto image_loader = utils::ImageLoaderFactory::create(_filename);
|
|
ARM_COMPUTE_EXIT_ON_MSG(image_loader == nullptr, "Unsupported image type");
|
|
|
|
// Open image file
|
|
image_loader->open(_filename);
|
|
|
|
// Get permutated shape and permutation parameters
|
|
TensorShape permuted_shape = tensor.info()->tensor_shape();
|
|
arm_compute::PermutationVector perm;
|
|
if(tensor.info()->data_layout() != DataLayout::NCHW)
|
|
{
|
|
std::tie(permuted_shape, perm) = compute_permutation_parameters(tensor.info()->tensor_shape(), tensor.info()->data_layout());
|
|
}
|
|
|
|
ARM_COMPUTE_EXIT_ON_MSG_VAR(image_loader->width() != permuted_shape.x() || image_loader->height() != permuted_shape.y(),
|
|
"Failed to load image file: dimensions [%d,%d] not correct, expected [%zu ,%zu ].",
|
|
image_loader->width(), image_loader->height(), permuted_shape.x(), permuted_shape.y());
|
|
|
|
// Fill the tensor with the PPM content (BGR)
|
|
image_loader->fill_planar_tensor(tensor, _bgr);
|
|
|
|
// Preprocess tensor
|
|
if(_preprocessor)
|
|
{
|
|
_preprocessor->preprocess(tensor);
|
|
}
|
|
}
|
|
|
|
_already_loaded = !_already_loaded;
|
|
return _already_loaded;
|
|
}
|
|
|
|
ValidationInputAccessor::ValidationInputAccessor(const std::string &image_list,
|
|
std::string images_path,
|
|
std::unique_ptr<IPreprocessor> preprocessor,
|
|
bool bgr,
|
|
unsigned int start,
|
|
unsigned int end,
|
|
std::ostream &output_stream)
|
|
: _path(std::move(images_path)), _images(), _preprocessor(std::move(preprocessor)), _bgr(bgr), _offset(0), _output_stream(output_stream)
|
|
{
|
|
ARM_COMPUTE_EXIT_ON_MSG(start > end, "Invalid validation range!");
|
|
|
|
std::ifstream ifs;
|
|
try
|
|
{
|
|
ifs.exceptions(std::ifstream::badbit);
|
|
ifs.open(image_list, std::ios::in | std::ios::binary);
|
|
|
|
// Parse image names
|
|
unsigned int counter = 0;
|
|
for(std::string line; !std::getline(ifs, line).fail() && counter <= end; ++counter)
|
|
{
|
|
// Add image to process if withing range
|
|
if(counter >= start)
|
|
{
|
|
std::stringstream linestream(line);
|
|
std::string image_name;
|
|
|
|
linestream >> image_name;
|
|
_images.emplace_back(std::move(image_name));
|
|
}
|
|
}
|
|
}
|
|
catch(const std::ifstream::failure &e)
|
|
{
|
|
ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", image_list.c_str(), e.what());
|
|
}
|
|
}
|
|
|
|
bool ValidationInputAccessor::access_tensor(arm_compute::ITensor &tensor)
|
|
{
|
|
bool ret = _offset < _images.size();
|
|
if(ret)
|
|
{
|
|
utils::JPEGLoader jpeg;
|
|
|
|
// Open JPEG file
|
|
std::string image_name = _path + _images[_offset++];
|
|
jpeg.open(image_name);
|
|
_output_stream << "[" << _offset << "/" << _images.size() << "] Validating " << image_name << std::endl;
|
|
|
|
// Get permutated shape and permutation parameters
|
|
TensorShape permuted_shape = tensor.info()->tensor_shape();
|
|
arm_compute::PermutationVector perm;
|
|
if(tensor.info()->data_layout() != DataLayout::NCHW)
|
|
{
|
|
std::tie(permuted_shape, perm) = compute_permutation_parameters(tensor.info()->tensor_shape(),
|
|
tensor.info()->data_layout());
|
|
}
|
|
|
|
ARM_COMPUTE_EXIT_ON_MSG_VAR(jpeg.width() != permuted_shape.x() || jpeg.height() != permuted_shape.y(),
|
|
"Failed to load image file: dimensions [%d,%d] not correct, expected [%zu,%zu ].",
|
|
jpeg.width(), jpeg.height(), permuted_shape.x(), permuted_shape.y());
|
|
|
|
// Fill the tensor with the JPEG content (BGR)
|
|
jpeg.fill_planar_tensor(tensor, _bgr);
|
|
|
|
// Preprocess tensor
|
|
if(_preprocessor)
|
|
{
|
|
_preprocessor->preprocess(tensor);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
ValidationOutputAccessor::ValidationOutputAccessor(const std::string &image_list,
|
|
std::ostream &output_stream,
|
|
unsigned int start,
|
|
unsigned int end)
|
|
: _results(), _output_stream(output_stream), _offset(0), _positive_samples_top1(0), _positive_samples_top5(0)
|
|
{
|
|
ARM_COMPUTE_EXIT_ON_MSG(start > end, "Invalid validation range!");
|
|
|
|
std::ifstream ifs;
|
|
try
|
|
{
|
|
ifs.exceptions(std::ifstream::badbit);
|
|
ifs.open(image_list, std::ios::in | std::ios::binary);
|
|
|
|
// Parse image correctly classified labels
|
|
unsigned int counter = 0;
|
|
for(std::string line; !std::getline(ifs, line).fail() && counter <= end; ++counter)
|
|
{
|
|
// Add label if within range
|
|
if(counter >= start)
|
|
{
|
|
std::stringstream linestream(line);
|
|
std::string image_name;
|
|
int result;
|
|
|
|
linestream >> image_name >> result;
|
|
_results.emplace_back(result);
|
|
}
|
|
}
|
|
}
|
|
catch(const std::ifstream::failure &e)
|
|
{
|
|
ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", image_list.c_str(), e.what());
|
|
}
|
|
}
|
|
|
|
void ValidationOutputAccessor::reset()
|
|
{
|
|
_offset = 0;
|
|
_positive_samples_top1 = 0;
|
|
_positive_samples_top5 = 0;
|
|
}
|
|
|
|
bool ValidationOutputAccessor::access_tensor(arm_compute::ITensor &tensor)
|
|
{
|
|
bool ret = _offset < _results.size();
|
|
if(ret)
|
|
{
|
|
// Get results
|
|
std::vector<size_t> tensor_results;
|
|
switch(tensor.info()->data_type())
|
|
{
|
|
case DataType::QASYMM8:
|
|
tensor_results = access_predictions_tensor<uint8_t>(tensor);
|
|
break;
|
|
case DataType::F16:
|
|
tensor_results = access_predictions_tensor<half>(tensor);
|
|
break;
|
|
case DataType::F32:
|
|
tensor_results = access_predictions_tensor<float>(tensor);
|
|
break;
|
|
default:
|
|
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
|
|
}
|
|
|
|
// Check if tensor results are within top-n accuracy
|
|
size_t correct_label = _results[_offset++];
|
|
|
|
aggregate_sample(tensor_results, _positive_samples_top1, 1, correct_label);
|
|
aggregate_sample(tensor_results, _positive_samples_top5, 5, correct_label);
|
|
}
|
|
|
|
// Report top_n accuracy
|
|
if(_offset >= _results.size())
|
|
{
|
|
report_top_n(1, _results.size(), _positive_samples_top1);
|
|
report_top_n(5, _results.size(), _positive_samples_top5);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
template <typename T>
|
|
std::vector<size_t> ValidationOutputAccessor::access_predictions_tensor(arm_compute::ITensor &tensor)
|
|
{
|
|
// Get the predicted class
|
|
std::vector<size_t> index;
|
|
|
|
const auto output_net = reinterpret_cast<T *>(tensor.buffer() + tensor.info()->offset_first_element_in_bytes());
|
|
const size_t num_classes = tensor.info()->dimension(0);
|
|
|
|
index.resize(num_classes);
|
|
|
|
// Sort results
|
|
std::iota(std::begin(index), std::end(index), static_cast<size_t>(0));
|
|
std::sort(std::begin(index), std::end(index),
|
|
[&](size_t a, size_t b)
|
|
{
|
|
return output_net[a] > output_net[b];
|
|
});
|
|
|
|
return index;
|
|
}
|
|
|
|
void ValidationOutputAccessor::aggregate_sample(const std::vector<size_t> &res, size_t &positive_samples, size_t top_n, size_t correct_label)
|
|
{
|
|
auto is_valid_label = [correct_label](size_t label)
|
|
{
|
|
return label == correct_label;
|
|
};
|
|
|
|
if(std::any_of(std::begin(res), std::begin(res) + top_n, is_valid_label))
|
|
{
|
|
++positive_samples;
|
|
}
|
|
}
|
|
|
|
void ValidationOutputAccessor::report_top_n(size_t top_n, size_t total_samples, size_t positive_samples)
|
|
{
|
|
size_t negative_samples = total_samples - positive_samples;
|
|
float accuracy = positive_samples / static_cast<float>(total_samples);
|
|
|
|
_output_stream << "----------Top " << top_n << " accuracy ----------" << std::endl
|
|
<< std::endl;
|
|
_output_stream << "Positive samples : " << positive_samples << std::endl;
|
|
_output_stream << "Negative samples : " << negative_samples << std::endl;
|
|
_output_stream << "Accuracy : " << accuracy << std::endl;
|
|
}
|
|
|
|
DetectionOutputAccessor::DetectionOutputAccessor(const std::string &labels_path, std::vector<TensorShape> &imgs_tensor_shapes, std::ostream &output_stream)
|
|
: _labels(), _tensor_shapes(std::move(imgs_tensor_shapes)), _output_stream(output_stream)
|
|
{
|
|
_labels.clear();
|
|
|
|
std::ifstream ifs;
|
|
|
|
try
|
|
{
|
|
ifs.exceptions(std::ifstream::badbit);
|
|
ifs.open(labels_path, std::ios::in | std::ios::binary);
|
|
|
|
for(std::string line; !std::getline(ifs, line).fail();)
|
|
{
|
|
_labels.emplace_back(line);
|
|
}
|
|
}
|
|
catch(const std::ifstream::failure &e)
|
|
{
|
|
ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", labels_path.c_str(), e.what());
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void DetectionOutputAccessor::access_predictions_tensor(ITensor &tensor)
|
|
{
|
|
const size_t num_detection = tensor.info()->valid_region().shape.y();
|
|
const auto output_prt = reinterpret_cast<T *>(tensor.buffer() + tensor.info()->offset_first_element_in_bytes());
|
|
|
|
if(num_detection > 0)
|
|
{
|
|
_output_stream << "---------------------- Detections ----------------------" << std::endl
|
|
<< std::endl;
|
|
|
|
_output_stream << std::left << std::setprecision(4) << std::setw(8) << "Image | " << std::setw(8) << "Label | " << std::setw(12) << "Confidence | "
|
|
<< "[ xmin, ymin, xmax, ymax ]" << std::endl;
|
|
|
|
for(size_t i = 0; i < num_detection; ++i)
|
|
{
|
|
auto im = static_cast<const int>(output_prt[i * 7]);
|
|
_output_stream << std::setw(8) << im << std::setw(8)
|
|
<< _labels[output_prt[i * 7 + 1]] << std::setw(12) << output_prt[i * 7 + 2]
|
|
<< " [" << (output_prt[i * 7 + 3] * _tensor_shapes[im].x())
|
|
<< ", " << (output_prt[i * 7 + 4] * _tensor_shapes[im].y())
|
|
<< ", " << (output_prt[i * 7 + 5] * _tensor_shapes[im].x())
|
|
<< ", " << (output_prt[i * 7 + 6] * _tensor_shapes[im].y())
|
|
<< "]" << std::endl;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
_output_stream << "No detection found." << std::endl;
|
|
}
|
|
}
|
|
|
|
bool DetectionOutputAccessor::access_tensor(ITensor &tensor)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32);
|
|
|
|
switch(tensor.info()->data_type())
|
|
{
|
|
case DataType::F32:
|
|
access_predictions_tensor<float>(tensor);
|
|
break;
|
|
default:
|
|
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
TopNPredictionsAccessor::TopNPredictionsAccessor(const std::string &labels_path, size_t top_n, std::ostream &output_stream)
|
|
: _labels(), _output_stream(output_stream), _top_n(top_n)
|
|
{
|
|
_labels.clear();
|
|
|
|
std::ifstream ifs;
|
|
|
|
try
|
|
{
|
|
ifs.exceptions(std::ifstream::badbit);
|
|
ifs.open(labels_path, std::ios::in | std::ios::binary);
|
|
|
|
for(std::string line; !std::getline(ifs, line).fail();)
|
|
{
|
|
_labels.emplace_back(line);
|
|
}
|
|
}
|
|
catch(const std::ifstream::failure &e)
|
|
{
|
|
ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", labels_path.c_str(), e.what());
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void TopNPredictionsAccessor::access_predictions_tensor(ITensor &tensor)
|
|
{
|
|
// Get the predicted class
|
|
std::vector<T> classes_prob;
|
|
std::vector<size_t> index;
|
|
|
|
const auto output_net = reinterpret_cast<T *>(tensor.buffer() + tensor.info()->offset_first_element_in_bytes());
|
|
const size_t num_classes = tensor.info()->dimension(0);
|
|
|
|
classes_prob.resize(num_classes);
|
|
index.resize(num_classes);
|
|
|
|
std::copy(output_net, output_net + num_classes, classes_prob.begin());
|
|
|
|
// Sort results
|
|
std::iota(std::begin(index), std::end(index), static_cast<size_t>(0));
|
|
std::sort(std::begin(index), std::end(index),
|
|
[&](size_t a, size_t b)
|
|
{
|
|
return classes_prob[a] > classes_prob[b];
|
|
});
|
|
|
|
_output_stream << "---------- Top " << _top_n << " predictions ----------" << std::endl
|
|
<< std::endl;
|
|
for(size_t i = 0; i < _top_n; ++i)
|
|
{
|
|
_output_stream << std::fixed << std::setprecision(4)
|
|
<< +classes_prob[index.at(i)]
|
|
<< " - [id = " << index.at(i) << "]"
|
|
<< ", " << _labels[index.at(i)] << std::endl;
|
|
}
|
|
}
|
|
|
|
bool TopNPredictionsAccessor::access_tensor(ITensor &tensor)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32, DataType::QASYMM8);
|
|
ARM_COMPUTE_ERROR_ON(_labels.size() != tensor.info()->dimension(0));
|
|
|
|
switch(tensor.info()->data_type())
|
|
{
|
|
case DataType::QASYMM8:
|
|
access_predictions_tensor<uint8_t>(tensor);
|
|
break;
|
|
case DataType::F32:
|
|
access_predictions_tensor<float>(tensor);
|
|
break;
|
|
default:
|
|
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
RandomAccessor::RandomAccessor(PixelValue lower, PixelValue upper, std::random_device::result_type seed)
|
|
: _lower(lower), _upper(upper), _seed(seed)
|
|
{
|
|
}
|
|
|
|
template <typename T, typename D>
|
|
void RandomAccessor::fill(ITensor &tensor, D &&distribution)
|
|
{
|
|
std::mt19937 gen(_seed);
|
|
|
|
if(tensor.info()->padding().empty() && (dynamic_cast<SubTensor *>(&tensor) == nullptr))
|
|
{
|
|
for(size_t offset = 0; offset < tensor.info()->total_size(); offset += tensor.info()->element_size())
|
|
{
|
|
const auto value = static_cast<T>(distribution(gen));
|
|
*reinterpret_cast<T *>(tensor.buffer() + offset) = value;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// If tensor has padding accessing tensor elements through execution window.
|
|
Window window;
|
|
window.use_tensor_dimensions(tensor.info()->tensor_shape());
|
|
|
|
execute_window_loop(window, [&](const Coordinates & id)
|
|
{
|
|
const auto value = static_cast<T>(distribution(gen));
|
|
*reinterpret_cast<T *>(tensor.ptr_to_element(id)) = value;
|
|
});
|
|
}
|
|
}
|
|
|
|
bool RandomAccessor::access_tensor(ITensor &tensor)
|
|
{
|
|
switch(tensor.info()->data_type())
|
|
{
|
|
case DataType::QASYMM8:
|
|
case DataType::U8:
|
|
{
|
|
std::uniform_int_distribution<uint8_t> distribution_u8(_lower.get<uint8_t>(), _upper.get<uint8_t>());
|
|
fill<uint8_t>(tensor, distribution_u8);
|
|
break;
|
|
}
|
|
case DataType::S8:
|
|
{
|
|
std::uniform_int_distribution<int8_t> distribution_s8(_lower.get<int8_t>(), _upper.get<int8_t>());
|
|
fill<int8_t>(tensor, distribution_s8);
|
|
break;
|
|
}
|
|
case DataType::U16:
|
|
{
|
|
std::uniform_int_distribution<uint16_t> distribution_u16(_lower.get<uint16_t>(), _upper.get<uint16_t>());
|
|
fill<uint16_t>(tensor, distribution_u16);
|
|
break;
|
|
}
|
|
case DataType::S16:
|
|
{
|
|
std::uniform_int_distribution<int16_t> distribution_s16(_lower.get<int16_t>(), _upper.get<int16_t>());
|
|
fill<int16_t>(tensor, distribution_s16);
|
|
break;
|
|
}
|
|
case DataType::U32:
|
|
{
|
|
std::uniform_int_distribution<uint32_t> distribution_u32(_lower.get<uint32_t>(), _upper.get<uint32_t>());
|
|
fill<uint32_t>(tensor, distribution_u32);
|
|
break;
|
|
}
|
|
case DataType::S32:
|
|
{
|
|
std::uniform_int_distribution<int32_t> distribution_s32(_lower.get<int32_t>(), _upper.get<int32_t>());
|
|
fill<int32_t>(tensor, distribution_s32);
|
|
break;
|
|
}
|
|
case DataType::U64:
|
|
{
|
|
std::uniform_int_distribution<uint64_t> distribution_u64(_lower.get<uint64_t>(), _upper.get<uint64_t>());
|
|
fill<uint64_t>(tensor, distribution_u64);
|
|
break;
|
|
}
|
|
case DataType::S64:
|
|
{
|
|
std::uniform_int_distribution<int64_t> distribution_s64(_lower.get<int64_t>(), _upper.get<int64_t>());
|
|
fill<int64_t>(tensor, distribution_s64);
|
|
break;
|
|
}
|
|
case DataType::F16:
|
|
{
|
|
std::uniform_real_distribution<float> distribution_f16(_lower.get<half>(), _upper.get<half>());
|
|
fill<half>(tensor, distribution_f16);
|
|
break;
|
|
}
|
|
case DataType::F32:
|
|
{
|
|
std::uniform_real_distribution<float> distribution_f32(_lower.get<float>(), _upper.get<float>());
|
|
fill<float>(tensor, distribution_f32);
|
|
break;
|
|
}
|
|
case DataType::F64:
|
|
{
|
|
std::uniform_real_distribution<double> distribution_f64(_lower.get<double>(), _upper.get<double>());
|
|
fill<double>(tensor, distribution_f64);
|
|
break;
|
|
}
|
|
default:
|
|
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
NumPyBinLoader::NumPyBinLoader(std::string filename, DataLayout file_layout)
|
|
: _already_loaded(false), _filename(std::move(filename)), _file_layout(file_layout)
|
|
{
|
|
}
|
|
|
|
bool NumPyBinLoader::access_tensor(ITensor &tensor)
|
|
{
|
|
if(!_already_loaded)
|
|
{
|
|
utils::NPYLoader loader;
|
|
loader.open(_filename, _file_layout);
|
|
loader.fill_tensor(tensor);
|
|
}
|
|
|
|
_already_loaded = !_already_loaded;
|
|
return _already_loaded;
|
|
}
|