android13/external/ImageMagick/MagickCore/attribute.c

2273 lines
70 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% AAA TTTTT TTTTT RRRR IIIII BBBB U U TTTTT EEEEE %
% A A T T R R I B B U U T E %
% AAAAA T T RRRR I BBBB U U T EEE %
% A A T T R R I B B U U T E %
% A A T T R R IIIII BBBB UUU T EEEEE %
% %
% %
% MagickCore Get / Set Image Attributes %
% %
% Software Design %
% Cristy %
% October 2002 %
% %
% %
% Copyright 1999-2021 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% https://imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
*/
/*
Include declarations.
*/
#include "MagickCore/studio.h"
#include "MagickCore/artifact.h"
#include "MagickCore/attribute.h"
#include "MagickCore/blob.h"
#include "MagickCore/blob-private.h"
#include "MagickCore/cache.h"
#include "MagickCore/cache-private.h"
#include "MagickCore/cache-view.h"
#include "MagickCore/channel.h"
#include "MagickCore/client.h"
#include "MagickCore/color.h"
#include "MagickCore/color-private.h"
#include "MagickCore/colormap.h"
#include "MagickCore/colormap-private.h"
#include "MagickCore/colorspace.h"
#include "MagickCore/colorspace-private.h"
#include "MagickCore/composite.h"
#include "MagickCore/composite-private.h"
#include "MagickCore/constitute.h"
#include "MagickCore/draw.h"
#include "MagickCore/draw-private.h"
#include "MagickCore/effect.h"
#include "MagickCore/enhance.h"
#include "MagickCore/exception.h"
#include "MagickCore/exception-private.h"
#include "MagickCore/geometry.h"
#include "MagickCore/histogram.h"
#include "MagickCore/identify.h"
#include "MagickCore/image.h"
#include "MagickCore/image-private.h"
#include "MagickCore/list.h"
#include "MagickCore/log.h"
#include "MagickCore/memory_.h"
#include "MagickCore/magick.h"
#include "MagickCore/monitor.h"
#include "MagickCore/monitor-private.h"
#include "MagickCore/option.h"
#include "MagickCore/paint.h"
#include "MagickCore/pixel.h"
#include "MagickCore/pixel-accessor.h"
#include "MagickCore/property.h"
#include "MagickCore/quantize.h"
#include "MagickCore/quantum-private.h"
#include "MagickCore/random_.h"
#include "MagickCore/resource_.h"
#include "MagickCore/semaphore.h"
#include "MagickCore/segment.h"
#include "MagickCore/splay-tree.h"
#include "MagickCore/string_.h"
#include "MagickCore/string-private.h"
#include "MagickCore/thread-private.h"
#include "MagickCore/threshold.h"
#include "MagickCore/transform.h"
#include "MagickCore/utility.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t I m a g e B o u n d i n g B o x %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageBoundingBox() returns the bounding box of an image canvas.
%
% The format of the GetImageBoundingBox method is:
%
% RectangleInfo GetImageBoundingBox(const Image *image,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o bounds: Method GetImageBoundingBox returns the bounding box of an
% image canvas.
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
typedef struct _EdgeInfo
{
double
left,
right,
top,
bottom;
} EdgeInfo;
static double GetEdgeBackgroundCensus(const Image *image,
const CacheView *image_view,const GravityType gravity,const size_t width,
const size_t height,const ssize_t x_offset,const ssize_t y_offset,
ExceptionInfo *exception)
{
CacheView
*edge_view;
const char
*artifact;
double
census;
Image
*edge_image;
PixelInfo
background,
pixel;
RectangleInfo
edge_geometry;
const Quantum
*p;
ssize_t
y;
/*
Determine the percent of image background for this edge.
*/
switch (gravity)
{
case NorthWestGravity:
case NorthGravity:
default:
{
p=GetCacheViewVirtualPixels(image_view,0,0,1,1,exception);
break;
}
case NorthEastGravity:
case EastGravity:
{
p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1,0,1,1,
exception);
break;
}
case SouthEastGravity:
case SouthGravity:
{
p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1,
(ssize_t) image->rows-1,1,1,exception);
break;
}
case SouthWestGravity:
case WestGravity:
{
p=GetCacheViewVirtualPixels(image_view,0,(ssize_t) image->rows-1,1,1,
exception);
break;
}
}
GetPixelInfoPixel(image,p,&background);
artifact=GetImageArtifact(image,"background");
if (artifact != (const char *) NULL)
(void) QueryColorCompliance(artifact,AllCompliance,&background,exception);
artifact=GetImageArtifact(image,"trim:background-color");
if (artifact != (const char *) NULL)
(void) QueryColorCompliance(artifact,AllCompliance,&background,exception);
edge_geometry.width=width;
edge_geometry.height=height;
edge_geometry.x=x_offset;
edge_geometry.y=y_offset;
GravityAdjustGeometry(image->columns,image->rows,gravity,&edge_geometry);
edge_image=CropImage(image,&edge_geometry,exception);
if (edge_image == (Image *) NULL)
return(0.0);
census=0.0;
edge_view=AcquireVirtualCacheView(edge_image,exception);
for (y=0; y < (ssize_t) edge_image->rows; y++)
{
ssize_t
x;
p=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) edge_image->columns; x++)
{
GetPixelInfoPixel(edge_image,p,&pixel);
if (IsFuzzyEquivalencePixelInfo(&pixel,&background) == MagickFalse)
census++;
p+=GetPixelChannels(edge_image);
}
}
census/=((double) edge_image->columns*edge_image->rows);
edge_view=DestroyCacheView(edge_view);
edge_image=DestroyImage(edge_image);
return(census);
}
static inline double GetMinEdgeBackgroundCensus(const EdgeInfo *edge)
{
double
census;
census=MagickMin(MagickMin(MagickMin(edge->left,edge->right),edge->top),
edge->bottom);
return(census);
}
static RectangleInfo GetEdgeBoundingBox(const Image *image,
ExceptionInfo *exception)
{
CacheView
*edge_view;
const char
*artifact;
double
background_census,
percent_background;
EdgeInfo
edge,
vertex;
Image
*edge_image;
RectangleInfo
bounds;
/*
Get the image bounding box.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
SetGeometry(image,&bounds);
edge_image=CloneImage(image,0,0,MagickTrue,exception);
if (edge_image == (Image *) NULL)
return(bounds);
(void) ParseAbsoluteGeometry("0x0+0+0",&edge_image->page);
(void) memset(&vertex,0,sizeof(vertex));
edge_view=AcquireVirtualCacheView(edge_image,exception);
edge.left=GetEdgeBackgroundCensus(edge_image,edge_view,WestGravity,
1,0,0,0,exception);
edge.right=GetEdgeBackgroundCensus(edge_image,edge_view,EastGravity,
1,0,0,0,exception);
edge.top=GetEdgeBackgroundCensus(edge_image,edge_view,NorthGravity,
0,1,0,0,exception);
edge.bottom=GetEdgeBackgroundCensus(edge_image,edge_view,SouthGravity,
0,1,0,0,exception);
percent_background=1.0;
artifact=GetImageArtifact(edge_image,"trim:percent-background");
if (artifact != (const char *) NULL)
percent_background=StringToDouble(artifact,(char **) NULL)/100.0;
percent_background=MagickMin(MagickMax(1.0-percent_background,MagickEpsilon),
1.0);
background_census=GetMinEdgeBackgroundCensus(&edge);
for ( ; background_census < percent_background;
background_census=GetMinEdgeBackgroundCensus(&edge))
{
if ((bounds.width == 0) || (bounds.height == 0))
break;
if (fabs(edge.left-background_census) < MagickEpsilon)
{
/*
Trim left edge.
*/
vertex.left++;
bounds.width--;
edge.left=GetEdgeBackgroundCensus(edge_image,edge_view,
NorthWestGravity,1,bounds.height,(ssize_t) vertex.left,(ssize_t)
vertex.top,exception);
edge.top=GetEdgeBackgroundCensus(edge_image,edge_view,
NorthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t)
vertex.top,exception);
edge.bottom=GetEdgeBackgroundCensus(edge_image,edge_view,
SouthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t)
vertex.bottom,exception);
continue;
}
if (fabs(edge.right-background_census) < MagickEpsilon)
{
/*
Trim right edge.
*/
vertex.right++;
bounds.width--;
edge.right=GetEdgeBackgroundCensus(edge_image,edge_view,
NorthEastGravity,1,bounds.height,(ssize_t) vertex.right,(ssize_t)
vertex.top,exception);
edge.top=GetEdgeBackgroundCensus(edge_image,edge_view,
NorthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t)
vertex.top,exception);
edge.bottom=GetEdgeBackgroundCensus(edge_image,edge_view,
SouthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t)
vertex.bottom,exception);
continue;
}
if (fabs(edge.top-background_census) < MagickEpsilon)
{
/*
Trim top edge.
*/
vertex.top++;
bounds.height--;
edge.left=GetEdgeBackgroundCensus(edge_image,edge_view,
NorthWestGravity,1,bounds.height,(ssize_t) vertex.left,(ssize_t)
vertex.top,exception);
edge.right=GetEdgeBackgroundCensus(edge_image,edge_view,
NorthEastGravity,1,bounds.height,(ssize_t) vertex.right,(ssize_t)
vertex.top,exception);
edge.top=GetEdgeBackgroundCensus(edge_image,edge_view,
NorthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t)
vertex.top,exception);
continue;
}
if (fabs(edge.bottom-background_census) < MagickEpsilon)
{
/*
Trim bottom edge.
*/
vertex.bottom++;
bounds.height--;
edge.left=GetEdgeBackgroundCensus(edge_image,edge_view,
NorthWestGravity,1,bounds.height,(ssize_t) vertex.left,(ssize_t)
vertex.top,exception);
edge.right=GetEdgeBackgroundCensus(edge_image,edge_view,
NorthEastGravity,1,bounds.height,(ssize_t) vertex.right,(ssize_t)
vertex.top,exception);
edge.bottom=GetEdgeBackgroundCensus(edge_image,edge_view,
SouthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t)
vertex.bottom,exception);
continue;
}
}
edge_view=DestroyCacheView(edge_view);
edge_image=DestroyImage(edge_image);
bounds.x=(ssize_t) vertex.left;
bounds.y=(ssize_t) vertex.top;
if ((bounds.width == 0) || (bounds.height == 0))
(void) ThrowMagickException(exception,GetMagickModule(),OptionWarning,
"GeometryDoesNotContainImage","`%s'",image->filename);
return(bounds);
}
MagickExport RectangleInfo GetImageBoundingBox(const Image *image,
ExceptionInfo *exception)
{
CacheView
*image_view;
const char
*artifact;
MagickBooleanType
status;
PixelInfo
target[4],
zero;
RectangleInfo
bounds;
const Quantum
*p;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
artifact=GetImageArtifact(image,"trim:percent-background");
if (artifact != (const char *) NULL)
return(GetEdgeBoundingBox(image,exception));
artifact=GetImageArtifact(image, "trim:edges");
if (artifact == (const char *) NULL)
{
bounds.width=0;
bounds.height=0;
bounds.x=(ssize_t) image->columns;
bounds.y=(ssize_t) image->rows;
}
else
{
char
*edges,
*p,
*q;
bounds.width=(size_t) image->columns;
bounds.height=(size_t) image->rows;
bounds.x=0;
bounds.y=0;
edges=AcquireString(artifact);
q=edges;
while ((p=StringToken(",",&q)) != (char *) NULL)
{
if (LocaleCompare(p,"north") == 0)
bounds.y=(ssize_t) image->rows;
if (LocaleCompare(p,"east") == 0)
bounds.width=0;
if (LocaleCompare(p,"south") == 0)
bounds.height=0;
if (LocaleCompare(p,"west") == 0)
bounds.x=(ssize_t) image->columns;
}
edges=DestroyString(edges);
}
GetPixelInfo(image,&target[0]);
image_view=AcquireVirtualCacheView(image,exception);
p=GetCacheViewVirtualPixels(image_view,0,0,1,1,exception);
if (p == (const Quantum *) NULL)
{
image_view=DestroyCacheView(image_view);
return(bounds);
}
GetPixelInfoPixel(image,p,&target[0]);
GetPixelInfo(image,&target[1]);
p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1,0,1,1,
exception);
if (p != (const Quantum *) NULL)
GetPixelInfoPixel(image,p,&target[1]);
GetPixelInfo(image,&target[2]);
p=GetCacheViewVirtualPixels(image_view,0,(ssize_t) image->rows-1,1,1,
exception);
if (p != (const Quantum *) NULL)
GetPixelInfoPixel(image,p,&target[2]);
p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1,(ssize_t)
image->rows-1,1,1,exception);
if (p != (const Quantum *) NULL)
GetPixelInfoPixel(image,p,&target[3]);
status=MagickTrue;
GetPixelInfo(image,&zero);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
PixelInfo
pixel;
RectangleInfo
bounding_box;
const Quantum
*magick_restrict p;
ssize_t
x;
if (status == MagickFalse)
continue;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
# pragma omp critical (MagickCore_GetImageBoundingBox)
#endif
bounding_box=bounds;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
pixel=zero;
for (x=0; x < (ssize_t) image->columns; x++)
{
GetPixelInfoPixel(image,p,&pixel);
if ((x < bounding_box.x) &&
(IsFuzzyEquivalencePixelInfo(&pixel,&target[0]) == MagickFalse))
bounding_box.x=x;
if ((x > (ssize_t) bounding_box.width) &&
(IsFuzzyEquivalencePixelInfo(&pixel,&target[1]) == MagickFalse))
bounding_box.width=(size_t) x;
if ((y < bounding_box.y) &&
(IsFuzzyEquivalencePixelInfo(&pixel,&target[0]) == MagickFalse))
bounding_box.y=y;
if ((y > (ssize_t) bounding_box.height) &&
(IsFuzzyEquivalencePixelInfo(&pixel,&target[2]) == MagickFalse))
bounding_box.height=(size_t) y;
if ((x < (ssize_t) bounding_box.width) &&
(y > (ssize_t) bounding_box.height) &&
(IsFuzzyEquivalencePixelInfo(&pixel,&target[3]) == MagickFalse))
{
bounding_box.width=(size_t) x;
bounding_box.height=(size_t) y;
}
p+=GetPixelChannels(image);
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
# pragma omp critical (MagickCore_GetImageBoundingBox)
#endif
{
if (bounding_box.x < bounds.x)
bounds.x=bounding_box.x;
if (bounding_box.y < bounds.y)
bounds.y=bounding_box.y;
if (bounding_box.width > bounds.width)
bounds.width=bounding_box.width;
if (bounding_box.height > bounds.height)
bounds.height=bounding_box.height;
}
}
image_view=DestroyCacheView(image_view);
if ((bounds.width == 0) || (bounds.height == 0))
(void) ThrowMagickException(exception,GetMagickModule(),OptionWarning,
"GeometryDoesNotContainImage","`%s'",image->filename);
else
{
bounds.width-=(bounds.x-1);
bounds.height-=(bounds.y-1);
}
return(bounds);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e C o n v e x H u l l %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageConvexHull() returns the convex hull points of an image canvas.
%
% The format of the GetImageConvexHull method is:
%
% PointInfo *GetImageConvexHull(const Image *image,
% size_t number_vertices,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o number_vertices: the number of vertices in the convex hull.
%
% o exception: return any errors or warnings in this structure.
%
*/
static double LexicographicalOrder(PointInfo *a,PointInfo *b,PointInfo *c)
{
/*
Order by x-coordinate, and in case of a tie, by y-coordinate.
*/
return((b->x-a->x)*(c->y-a->y)-(b->y-a->y)*(c->x-a->x));
}
static PixelInfo GetEdgeBackgroundColor(const Image *image,
const CacheView *image_view,ExceptionInfo *exception)
{
const char
*artifact;
double
census[4],
edge_census;
PixelInfo
background[4],
edge_background;
ssize_t
i;
/*
Most dominant color of edges/corners is the background color of the image.
*/
artifact=GetImageArtifact(image,"convex-hull:background-color");
if (artifact == (const char *) NULL)
artifact=GetImageArtifact(image,"background");
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static)
#endif
for (i=0; i < 4; i++)
{
CacheView
*edge_view;
GravityType
gravity;
Image
*edge_image;
PixelInfo
pixel;
RectangleInfo
edge_geometry;
const Quantum
*p;
ssize_t
y;
census[i]=0.0;
(void) memset(&edge_geometry,0,sizeof(edge_geometry));
switch (i)
{
case 0:
default:
{
p=GetCacheViewVirtualPixels(image_view,0,(ssize_t) image->rows-1,1,1,
exception);
gravity=WestGravity;
edge_geometry.width=1;
edge_geometry.height=0;
break;
}
case 1:
{
p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1,0,1,1,
exception);
gravity=EastGravity;
edge_geometry.width=1;
edge_geometry.height=0;
break;
}
case 2:
{
p=GetCacheViewVirtualPixels(image_view,0,0,1,1,exception);
gravity=NorthGravity;
edge_geometry.width=0;
edge_geometry.height=1;
break;
}
case 3:
{
p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1,
(ssize_t) image->rows-1,1,1,exception);
gravity=SouthGravity;
edge_geometry.width=0;
edge_geometry.height=1;
break;
}
}
GetPixelInfoPixel(image,p,background+i);
if (artifact != (const char *) NULL)
(void) QueryColorCompliance(artifact,AllCompliance,background+i,
exception);
GravityAdjustGeometry(image->columns,image->rows,gravity,&edge_geometry);
edge_image=CropImage(image,&edge_geometry,exception);
if (edge_image == (Image *) NULL)
continue;
edge_view=AcquireVirtualCacheView(edge_image,exception);
for (y=0; y < (ssize_t) edge_image->rows; y++)
{
ssize_t
x;
p=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns,1,
exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) edge_image->columns; x++)
{
GetPixelInfoPixel(edge_image,p,&pixel);
if (IsFuzzyEquivalencePixelInfo(&pixel,background+i) == MagickFalse)
census[i]++;
p+=GetPixelChannels(edge_image);
}
}
edge_view=DestroyCacheView(edge_view);
edge_image=DestroyImage(edge_image);
}
edge_census=(-1.0);
for (i=0; i < 4; i++)
if (census[i] > edge_census)
{
edge_background=background[i];
edge_census=census[i];
}
return(edge_background);
}
void TraceConvexHull(PointInfo *vertices,size_t number_vertices,
PointInfo ***monotone_chain,size_t *chain_length)
{
PointInfo
**chain;
ssize_t
i;
size_t
demark,
n;
/*
Construct the upper and lower hulls: rightmost to leftmost counterclockwise.
*/
chain=(*monotone_chain);
n=0;
for (i=0; i < (ssize_t) number_vertices; i++)
{
while ((n >= 2) &&
(LexicographicalOrder(chain[n-2],chain[n-1],&vertices[i]) <= 0.0))
n--;
chain[n++]=(&vertices[i]);
}
demark=n+1;
for (i=(ssize_t) number_vertices-2; i >= 0; i--)
{
while ((n >= demark) &&
(LexicographicalOrder(chain[n-2],chain[n-1],&vertices[i]) <= 0.0))
n--;
chain[n++]=(&vertices[i]);
}
*chain_length=n;
}
MagickExport PointInfo *GetImageConvexHull(const Image *image,
size_t *number_vertices,ExceptionInfo *exception)
{
CacheView
*image_view;
MagickBooleanType
status;
MemoryInfo
*monotone_info,
*vertices_info;
PixelInfo
background;
PointInfo
*convex_hull,
**monotone_chain,
*vertices;
size_t
n;
ssize_t
y;
/*
Identify convex hull vertices of image foreground object(s).
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
*number_vertices=0;
vertices_info=AcquireVirtualMemory(image->columns,image->rows*
sizeof(*vertices));
monotone_info=AcquireVirtualMemory(2*image->columns,2*
image->rows*sizeof(*monotone_chain));
if ((vertices_info == (MemoryInfo *) NULL) ||
(monotone_info == (MemoryInfo *) NULL))
{
if (monotone_info != (MemoryInfo *) NULL)
monotone_info=(MemoryInfo *) RelinquishVirtualMemory(monotone_info);
if (vertices_info != (MemoryInfo *) NULL)
vertices_info=RelinquishVirtualMemory(vertices_info);
return((PointInfo *) NULL);
}
vertices=(PointInfo *) GetVirtualMemoryBlob(vertices_info);
monotone_chain=(PointInfo **) GetVirtualMemoryBlob(monotone_info);
image_view=AcquireVirtualCacheView(image,exception);
background=GetEdgeBackgroundColor(image,image_view,exception);
status=MagickTrue;
n=0;
for (y=0; y < (ssize_t) image->rows; y++)
{
const Quantum
*p;
ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
PixelInfo
pixel;
GetPixelInfoPixel(image,p,&pixel);
if (IsFuzzyEquivalencePixelInfo(&pixel,&background) == MagickFalse)
{
vertices[n].x=(double) x;
vertices[n].y=(double) y;
n++;
}
p+=GetPixelChannels(image);
}
}
image_view=DestroyCacheView(image_view);
/*
Return the convex hull of the image foreground object(s).
*/
TraceConvexHull(vertices,n,&monotone_chain,number_vertices);
convex_hull=(PointInfo *) AcquireQuantumMemory(*number_vertices,
sizeof(*convex_hull));
if (convex_hull != (PointInfo *) NULL)
for (n=0; n < *number_vertices; n++)
convex_hull[n]=(*monotone_chain[n]);
monotone_info=RelinquishVirtualMemory(monotone_info);
vertices_info=RelinquishVirtualMemory(vertices_info);
return(convex_hull);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e D e p t h %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageDepth() returns the depth of a particular image channel.
%
% The format of the GetImageDepth method is:
%
% size_t GetImageDepth(const Image *image,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport size_t GetImageDepth(const Image *image,ExceptionInfo *exception)
{
CacheView
*image_view;
MagickBooleanType
status;
ssize_t
i;
size_t
*current_depth,
depth,
number_threads;
ssize_t
y;
/*
Compute image depth.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
number_threads=(size_t) GetMagickResourceLimit(ThreadResource);
current_depth=(size_t *) AcquireQuantumMemory(number_threads,
sizeof(*current_depth));
if (current_depth == (size_t *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
status=MagickTrue;
for (i=0; i < (ssize_t) number_threads; i++)
current_depth[i]=1;
if ((image->storage_class == PseudoClass) &&
(image->alpha_trait == UndefinedPixelTrait))
{
for (i=0; i < (ssize_t) image->colors; i++)
{
const int
id = GetOpenMPThreadId();
while (current_depth[id] < MAGICKCORE_QUANTUM_DEPTH)
{
MagickBooleanType
atDepth;
QuantumAny
range;
atDepth=MagickTrue;
range=GetQuantumRange(current_depth[id]);
if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0)
if (IsPixelAtDepth(ClampToQuantum(image->colormap[i].red),range) == MagickFalse)
atDepth=MagickFalse;
if ((atDepth != MagickFalse) &&
(GetPixelGreenTraits(image) & UpdatePixelTrait) != 0)
if (IsPixelAtDepth(ClampToQuantum(image->colormap[i].green),range) == MagickFalse)
atDepth=MagickFalse;
if ((atDepth != MagickFalse) &&
(GetPixelBlueTraits(image) & UpdatePixelTrait) != 0)
if (IsPixelAtDepth(ClampToQuantum(image->colormap[i].blue),range) == MagickFalse)
atDepth=MagickFalse;
if ((atDepth != MagickFalse))
break;
current_depth[id]++;
}
}
depth=current_depth[0];
for (i=1; i < (ssize_t) number_threads; i++)
if (depth < current_depth[i])
depth=current_depth[i];
current_depth=(size_t *) RelinquishMagickMemory(current_depth);
return(depth);
}
image_view=AcquireVirtualCacheView(image,exception);
#if !defined(MAGICKCORE_HDRI_SUPPORT)
if ((1UL*QuantumRange) <= MaxMap)
{
size_t
*depth_map;
/*
Scale pixels to desired (optimized with depth map).
*/
depth_map=(size_t *) AcquireQuantumMemory(MaxMap+1,sizeof(*depth_map));
if (depth_map == (size_t *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
for (i=0; i <= (ssize_t) MaxMap; i++)
{
unsigned int
depth;
for (depth=1; depth < MAGICKCORE_QUANTUM_DEPTH; depth++)
{
Quantum
pixel;
QuantumAny
range;
range=GetQuantumRange(depth);
pixel=(Quantum) i;
if (pixel == ScaleAnyToQuantum(ScaleQuantumToAny(pixel,range),range))
break;
}
depth_map[i]=depth;
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const int
id = GetOpenMPThreadId();
const Quantum
*magick_restrict p;
ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
continue;
for (x=0; x < (ssize_t) image->columns; x++)
{
ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel = GetPixelChannelChannel(image,i);
PixelTrait traits = GetPixelChannelTraits(image,channel);
if ((traits & UpdatePixelTrait) == 0)
continue;
if (depth_map[ScaleQuantumToMap(p[i])] > current_depth[id])
current_depth[id]=depth_map[ScaleQuantumToMap(p[i])];
}
p+=GetPixelChannels(image);
}
if (current_depth[id] == MAGICKCORE_QUANTUM_DEPTH)
status=MagickFalse;
}
image_view=DestroyCacheView(image_view);
depth=current_depth[0];
for (i=1; i < (ssize_t) number_threads; i++)
if (depth < current_depth[i])
depth=current_depth[i];
depth_map=(size_t *) RelinquishMagickMemory(depth_map);
current_depth=(size_t *) RelinquishMagickMemory(current_depth);
return(depth);
}
#endif
/*
Compute pixel depth.
*/
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const int
id = GetOpenMPThreadId();
const Quantum
*magick_restrict p;
ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
continue;
for (x=0; x < (ssize_t) image->columns; x++)
{
ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel
channel;
PixelTrait
traits;
channel=GetPixelChannelChannel(image,i);
traits=GetPixelChannelTraits(image,channel);
if ((traits & UpdatePixelTrait) == 0)
continue;
while (current_depth[id] < MAGICKCORE_QUANTUM_DEPTH)
{
QuantumAny
range;
range=GetQuantumRange(current_depth[id]);
if (p[i] == ScaleAnyToQuantum(ScaleQuantumToAny(p[i],range),range))
break;
current_depth[id]++;
}
}
p+=GetPixelChannels(image);
}
if (current_depth[id] == MAGICKCORE_QUANTUM_DEPTH)
status=MagickFalse;
}
image_view=DestroyCacheView(image_view);
depth=current_depth[0];
for (i=1; i < (ssize_t) number_threads; i++)
if (depth < current_depth[i])
depth=current_depth[i];
current_depth=(size_t *) RelinquishMagickMemory(current_depth);
return(depth);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e M i n i m u m B o u n d i n g B o x %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageMinimumBoundingBox() returns the points that form the minimum
% bounding box around the image foreground objects with the "Rotating
% Calipers" algorithm. The method also returns these properties:
% minimum-bounding-box:area, minimum-bounding-box:width,
% minimum-bounding-box:height, and minimum-bounding-box:angle.
%
% The format of the GetImageMinimumBoundingBox method is:
%
% PointInfo *GetImageMinimumBoundingBox(Image *image,
% size_t number_vertices,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o number_vertices: the number of vertices in the bounding box.
%
% o exception: return any errors or warnings in this structure.
%
*/
typedef struct _CaliperInfo
{
double
area,
width,
height,
projection;
ssize_t
p,
q,
v;
} CaliperInfo;
static inline double getAngle(PointInfo *p,PointInfo *q)
{
/*
Get the angle between line (p,q) and horizontal axis, in degrees.
*/
return(RadiansToDegrees(atan2(q->y-p->y,q->x-p->x)));
}
static inline double getDistance(PointInfo *p,PointInfo *q)
{
double
distance;
distance=hypot(p->x-q->x,p->y-q->y);
return(distance*distance);
}
static inline double getProjection(PointInfo *p,PointInfo *q,PointInfo *v)
{
double
distance;
/*
Projection of vector (x,y) - p into a line passing through p and q.
*/
distance=getDistance(p,q);
if (distance < MagickEpsilon)
return(INFINITY);
return((q->x-p->x)*(v->x-p->x)+(v->y-p->y)*(q->y-p->y))/sqrt(distance);
}
static inline double getFeretDiameter(PointInfo *p,PointInfo *q,PointInfo *v)
{
double
distance;
/*
Distance from a point (x,y) to a line passing through p and q.
*/
distance=getDistance(p,q);
if (distance < MagickEpsilon)
return(INFINITY);
return((q->x-p->x)*(v->y-p->y)-(v->x-p->x)*(q->y-p->y))/sqrt(distance);
}
MagickExport PointInfo *GetImageMinimumBoundingBox(Image *image,
size_t *number_vertices,ExceptionInfo *exception)
{
CaliperInfo
caliper_info;
const char
*artifact;
double
angle,
diameter,
distance;
PointInfo
*bounding_box,
*vertices;
ssize_t
i;
size_t
number_hull_vertices;
/*
Generate the minimum bounding box with the "Rotating Calipers" algorithm.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
*number_vertices=0;
vertices=GetImageConvexHull(image,&number_hull_vertices,exception);
if (vertices == (PointInfo *) NULL)
return((PointInfo *) NULL);
*number_vertices=4;
bounding_box=(PointInfo *) AcquireQuantumMemory(*number_vertices,
sizeof(*bounding_box));
if (bounding_box == (PointInfo *) NULL)
{
vertices=(PointInfo *) RelinquishMagickMemory(vertices);
return((PointInfo *) NULL);
}
caliper_info.area=2.0*image->columns*image->rows;
caliper_info.width=(double) image->columns+image->rows;
caliper_info.height=0.0;
caliper_info.projection=0.0;
caliper_info.p=(-1);
caliper_info.q=(-1);
caliper_info.v=(-1);
for (i=0; i < (ssize_t) number_hull_vertices; i++)
{
double
area = 0.0,
max_projection = 0.0,
min_diameter = -1.0,
min_projection = 0.0;
ssize_t
j,
k;
ssize_t
p = -1,
q = -1,
v = -1;
for (j=0; j < (ssize_t) number_hull_vertices; j++)
{
double
diameter;
diameter=fabs(getFeretDiameter(&vertices[i],
&vertices[(i+1) % number_hull_vertices],&vertices[j]));
if (min_diameter < diameter)
{
min_diameter=diameter;
p=i;
q=(i+1) % number_hull_vertices;
v=j;
}
}
for (k=0; k < (ssize_t) number_hull_vertices; k++)
{
double
projection;
/*
Rotating calipers.
*/
projection=getProjection(&vertices[p],&vertices[q],&vertices[k]);
min_projection=MagickMin(min_projection,projection);
max_projection=MagickMax(max_projection,projection);
}
area=min_diameter*(max_projection-min_projection);
if (caliper_info.area > area)
{
caliper_info.area=area;
caliper_info.width=min_diameter;
caliper_info.height=max_projection-min_projection;
caliper_info.projection=max_projection;
caliper_info.p=p;
caliper_info.q=q;
caliper_info.v=v;
}
}
/*
Initialize minimum bounding box.
*/
diameter=getFeretDiameter(&vertices[caliper_info.p],
&vertices[caliper_info.q],&vertices[caliper_info.v]);
angle=atan2(vertices[caliper_info.q].y-vertices[caliper_info.p].y,
vertices[caliper_info.q].x-vertices[caliper_info.p].x);
bounding_box[0].x=vertices[caliper_info.p].x+cos(angle)*
caliper_info.projection;
bounding_box[0].y=vertices[caliper_info.p].y+sin(angle)*
caliper_info.projection;
bounding_box[1].x=floor(bounding_box[0].x+cos(angle+MagickPI/2.0)*diameter+
0.5);
bounding_box[1].y=floor(bounding_box[0].y+sin(angle+MagickPI/2.0)*diameter+
0.5);
bounding_box[2].x=floor(bounding_box[1].x+cos(angle)*(-caliper_info.height)+
0.5);
bounding_box[2].y=floor(bounding_box[1].y+sin(angle)*(-caliper_info.height)+
0.5);
bounding_box[3].x=floor(bounding_box[2].x+cos(angle+MagickPI/2.0)*(-diameter)+
0.5);
bounding_box[3].y=floor(bounding_box[2].y+sin(angle+MagickPI/2.0)*(-diameter)+
0.5);
/*
Export minimum bounding box properties.
*/
(void) FormatImageProperty(image,"minimum-bounding-box:area","%.*g",
GetMagickPrecision(),caliper_info.area);
(void) FormatImageProperty(image,"minimum-bounding-box:width","%.*g",
GetMagickPrecision(),caliper_info.width);
(void) FormatImageProperty(image,"minimum-bounding-box:height","%.*g",
GetMagickPrecision(),caliper_info.height);
(void) FormatImageProperty(image,"minimum-bounding-box:_p","%.*g,%.*g",
GetMagickPrecision(),vertices[caliper_info.p].x,
GetMagickPrecision(),vertices[caliper_info.p].y);
(void) FormatImageProperty(image,"minimum-bounding-box:_q","%.*g,%.*g",
GetMagickPrecision(),vertices[caliper_info.q].x,
GetMagickPrecision(),vertices[caliper_info.q].y);
(void) FormatImageProperty(image,"minimum-bounding-box:_v","%.*g,%.*g",
GetMagickPrecision(),vertices[caliper_info.v].x,
GetMagickPrecision(),vertices[caliper_info.v].y);
/*
Find smallest angle to origin.
*/
distance=hypot(bounding_box[0].x,bounding_box[0].y);
angle=getAngle(&bounding_box[0],&bounding_box[1]);
for (i=1; i < 4; i++)
{
double d = hypot(bounding_box[i].x,bounding_box[i].y);
if (d < distance)
{
distance=d;
angle=getAngle(&bounding_box[i],&bounding_box[(i+1) % 4]);
}
}
artifact=GetImageArtifact(image,"minimum-bounding-box:orientation");
if (artifact != (const char *) NULL)
{
double
length,
q_length,
p_length;
PointInfo
delta,
point;
/*
Find smallest perpendicular distance from edge to origin.
*/
point=bounding_box[0];
for (i=1; i < 4; i++)
{
if (bounding_box[i].x < point.x)
point.x=bounding_box[i].x;
if (bounding_box[i].y < point.y)
point.y=bounding_box[i].y;
}
for (i=0; i < 4; i++)
{
bounding_box[i].x-=point.x;
bounding_box[i].y-=point.y;
}
for (i=0; i < 4; i++)
{
double
d,
intercept,
slope;
delta.x=bounding_box[(i+1) % 4].x-bounding_box[i].x;
delta.y=bounding_box[(i+1) % 4].y-bounding_box[i].y;
slope=delta.y*PerceptibleReciprocal(delta.x);
intercept=bounding_box[(i+1) % 4].y-slope*bounding_box[i].x;
d=fabs((slope*bounding_box[i].x-bounding_box[i].y+intercept)*
PerceptibleReciprocal(sqrt(slope*slope+1.0)));
if ((i == 0) || (d < distance))
{
distance=d;
point=delta;
}
}
angle=RadiansToDegrees(atan(point.y*PerceptibleReciprocal(point.x)));
length=hypot(point.x,point.y);
p_length=fabs((double) MagickMax(caliper_info.width,caliper_info.height)-
length);
q_length=fabs(length-(double) MagickMin(caliper_info.width,
caliper_info.height));
if (LocaleCompare(artifact,"landscape") == 0)
{
if (p_length > q_length)
angle+=(angle < 0.0) ? 90.0 : -90.0;
}
else
if (LocaleCompare(artifact,"portrait") == 0)
{
if (p_length < q_length)
angle+=(angle >= 0.0) ? 90.0 : -90.0;
}
}
(void) FormatImageProperty(image,"minimum-bounding-box:angle","%.*g",
GetMagickPrecision(),angle);
(void) FormatImageProperty(image,"minimum-bounding-box:unrotate","%.*g",
GetMagickPrecision(),-angle);
vertices=(PointInfo *) RelinquishMagickMemory(vertices);
return(bounding_box);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e Q u a n t u m D e p t h %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageQuantumDepth() returns the depth of the image rounded to a legal
% quantum depth: 8, 16, or 32.
%
% The format of the GetImageQuantumDepth method is:
%
% size_t GetImageQuantumDepth(const Image *image,
% const MagickBooleanType constrain)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o constrain: A value other than MagickFalse, constrains the depth to
% a maximum of MAGICKCORE_QUANTUM_DEPTH.
%
*/
MagickExport size_t GetImageQuantumDepth(const Image *image,
const MagickBooleanType constrain)
{
size_t
depth;
depth=image->depth;
if (depth <= 8)
depth=8;
else
if (depth <= 16)
depth=16;
else
if (depth <= 32)
depth=32;
else
if (depth <= 64)
depth=64;
if (constrain != MagickFalse)
depth=(size_t) MagickMin((double) depth,(double) MAGICKCORE_QUANTUM_DEPTH);
return(depth);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e T y p e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageType() returns the type of image:
%
% Bilevel Grayscale GrayscaleMatte
% Palette PaletteMatte TrueColor
% TrueColorMatte ColorSeparation ColorSeparationMatte
%
% The format of the GetImageType method is:
%
% ImageType GetImageType(const Image *image)
%
% A description of each parameter follows:
%
% o image: the image.
%
*/
MagickExport ImageType GetImageType(const Image *image)
{
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->colorspace == CMYKColorspace)
{
if (image->alpha_trait == UndefinedPixelTrait)
return(ColorSeparationType);
return(ColorSeparationAlphaType);
}
if (IsImageMonochrome(image) != MagickFalse)
return(BilevelType);
if (IsImageGray(image) != MagickFalse)
{
if (image->alpha_trait != UndefinedPixelTrait)
return(GrayscaleAlphaType);
return(GrayscaleType);
}
if (IsPaletteImage(image) != MagickFalse)
{
if (image->alpha_trait != UndefinedPixelTrait)
return(PaletteAlphaType);
return(PaletteType);
}
if (image->alpha_trait != UndefinedPixelTrait)
return(TrueColorAlphaType);
return(TrueColorType);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I d e n t i f y I m a g e G r a y %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% IdentifyImageGray() returns grayscale if all the pixels in the image have
% the same red, green, and blue intensities, and bi-level is the intensity is
% either 0 or QuantumRange. Otherwise undefined is returned.
%
% The format of the IdentifyImageGray method is:
%
% ImageType IdentifyImageGray(const Image *image,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport ImageType IdentifyImageGray(const Image *image,
ExceptionInfo *exception)
{
CacheView
*image_view;
ImageType
type;
const Quantum
*p;
ssize_t
x;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if ((image->type == BilevelType) || (image->type == GrayscaleType) ||
(image->type == GrayscaleAlphaType))
return(image->type);
if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse)
return(UndefinedType);
type=BilevelType;
image_view=AcquireVirtualCacheView(image,exception);
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
if (IsPixelGray(image,p) == MagickFalse)
{
type=UndefinedType;
break;
}
if ((type == BilevelType) &&
(IsPixelMonochrome(image,p) == MagickFalse))
type=GrayscaleType;
p+=GetPixelChannels(image);
}
if (type == UndefinedType)
break;
}
image_view=DestroyCacheView(image_view);
if ((type == GrayscaleType) && (image->alpha_trait != UndefinedPixelTrait))
type=GrayscaleAlphaType;
return(type);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I d e n t i f y I m a g e M o n o c h r o m e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% IdentifyImageMonochrome() returns MagickTrue if all the pixels in the image
% have the same red, green, and blue intensities and the intensity is either
% 0 or QuantumRange.
%
% The format of the IdentifyImageMonochrome method is:
%
% MagickBooleanType IdentifyImageMonochrome(const Image *image,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType IdentifyImageMonochrome(const Image *image,
ExceptionInfo *exception)
{
CacheView
*image_view;
MagickBooleanType
bilevel;
ssize_t
x;
const Quantum
*p;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (image->type == BilevelType)
return(MagickTrue);
if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse)
return(MagickFalse);
bilevel=MagickTrue;
image_view=AcquireVirtualCacheView(image,exception);
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
if (IsPixelMonochrome(image,p) == MagickFalse)
{
bilevel=MagickFalse;
break;
}
p+=GetPixelChannels(image);
}
if (bilevel == MagickFalse)
break;
}
image_view=DestroyCacheView(image_view);
return(bilevel);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I d e n t i f y I m a g e T y p e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% IdentifyImageType() returns the potential type of image:
%
% Bilevel Grayscale GrayscaleMatte
% Palette PaletteMatte TrueColor
% TrueColorMatte ColorSeparation ColorSeparationMatte
%
% To ensure the image type matches its potential, use SetImageType():
%
% (void) SetImageType(image,IdentifyImageType(image,exception),exception);
%
% The format of the IdentifyImageType method is:
%
% ImageType IdentifyImageType(const Image *image,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport ImageType IdentifyImageType(const Image *image,
ExceptionInfo *exception)
{
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (image->colorspace == CMYKColorspace)
{
if (image->alpha_trait == UndefinedPixelTrait)
return(ColorSeparationType);
return(ColorSeparationAlphaType);
}
if (IdentifyImageMonochrome(image,exception) != MagickFalse)
return(BilevelType);
if (IdentifyImageGray(image,exception) != UndefinedType)
{
if (image->alpha_trait != UndefinedPixelTrait)
return(GrayscaleAlphaType);
return(GrayscaleType);
}
if (IdentifyPaletteImage(image,exception) != MagickFalse)
{
if (image->alpha_trait != UndefinedPixelTrait)
return(PaletteAlphaType);
return(PaletteType);
}
if (image->alpha_trait != UndefinedPixelTrait)
return(TrueColorAlphaType);
return(TrueColorType);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I s I m a g e G r a y %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% IsImageGray() returns MagickTrue if the type of the image is grayscale or
% bi-level.
%
% The format of the IsImageGray method is:
%
% MagickBooleanType IsImageGray(const Image *image)
%
% A description of each parameter follows:
%
% o image: the image.
%
*/
MagickExport MagickBooleanType IsImageGray(const Image *image)
{
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if ((image->type == BilevelType) || (image->type == GrayscaleType) ||
(image->type == GrayscaleAlphaType))
return(MagickTrue);
return(MagickFalse);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I s I m a g e M o n o c h r o m e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% IsImageMonochrome() returns MagickTrue if type of the image is bi-level.
%
% The format of the IsImageMonochrome method is:
%
% MagickBooleanType IsImageMonochrome(const Image *image)
%
% A description of each parameter follows:
%
% o image: the image.
%
*/
MagickExport MagickBooleanType IsImageMonochrome(const Image *image)
{
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->type == BilevelType)
return(MagickTrue);
return(MagickFalse);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I s I m a g e O p a q u e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% IsImageOpaque() returns MagickTrue if none of the pixels in the image have
% an alpha value other than OpaqueAlpha (QuantumRange).
%
% Will return true immediatally is alpha channel is not available.
%
% The format of the IsImageOpaque method is:
%
% MagickBooleanType IsImageOpaque(const Image *image,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType IsImageOpaque(const Image *image,
ExceptionInfo *exception)
{
CacheView
*image_view;
const Quantum
*p;
ssize_t
x;
ssize_t
y;
/*
Determine if image is opaque.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (image->alpha_trait == UndefinedPixelTrait)
return(MagickTrue);
image_view=AcquireVirtualCacheView(image,exception);
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
if (GetPixelAlpha(image,p) != OpaqueAlpha)
break;
p+=GetPixelChannels(image);
}
if (x < (ssize_t) image->columns)
break;
}
image_view=DestroyCacheView(image_view);
return(y < (ssize_t) image->rows ? MagickFalse : MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e t I m a g e D e p t h %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetImageDepth() sets the depth of the image.
%
% The format of the SetImageDepth method is:
%
% MagickBooleanType SetImageDepth(Image *image,const size_t depth,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel.
%
% o depth: the image depth.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType SetImageDepth(Image *image,
const size_t depth,ExceptionInfo *exception)
{
CacheView
*image_view;
MagickBooleanType
status;
QuantumAny
range;
ssize_t
y;
assert(image != (Image *) NULL);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
assert(image->signature == MagickCoreSignature);
if (depth >= MAGICKCORE_QUANTUM_DEPTH)
{
image->depth=depth;
return(MagickTrue);
}
range=GetQuantumRange(depth);
if (image->storage_class == PseudoClass)
{
ssize_t
i;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(status) \
magick_number_threads(image,image,image->colors,1)
#endif
for (i=0; i < (ssize_t) image->colors; i++)
{
if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0)
image->colormap[i].red=(double) ScaleAnyToQuantum(ScaleQuantumToAny(
ClampPixel(image->colormap[i].red),range),range);
if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0)
image->colormap[i].green=(double) ScaleAnyToQuantum(ScaleQuantumToAny(
ClampPixel(image->colormap[i].green),range),range);
if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0)
image->colormap[i].blue=(double) ScaleAnyToQuantum(ScaleQuantumToAny(
ClampPixel(image->colormap[i].blue),range),range);
if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0)
image->colormap[i].alpha=(double) ScaleAnyToQuantum(ScaleQuantumToAny(
ClampPixel(image->colormap[i].alpha),range),range);
}
}
status=MagickTrue;
image_view=AcquireAuthenticCacheView(image,exception);
#if !defined(MAGICKCORE_HDRI_SUPPORT)
if ((1UL*QuantumRange) <= MaxMap)
{
Quantum
*depth_map;
ssize_t
i;
/*
Scale pixels to desired (optimized with depth map).
*/
depth_map=(Quantum *) AcquireQuantumMemory(MaxMap+1,sizeof(*depth_map));
if (depth_map == (Quantum *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
for (i=0; i <= (ssize_t) MaxMap; i++)
depth_map[i]=ScaleAnyToQuantum(ScaleQuantumToAny((Quantum) i,range),
range);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
ssize_t
x;
Quantum
*magick_restrict q;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,
exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel
channel;
PixelTrait
traits;
channel=GetPixelChannelChannel(image,i);
traits=GetPixelChannelTraits(image,channel);
if ((traits & UpdatePixelTrait) == 0)
continue;
q[i]=depth_map[ScaleQuantumToMap(q[i])];
}
q+=GetPixelChannels(image);
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
{
status=MagickFalse;
continue;
}
}
image_view=DestroyCacheView(image_view);
depth_map=(Quantum *) RelinquishMagickMemory(depth_map);
if (status != MagickFalse)
image->depth=depth;
return(status);
}
#endif
/*
Scale pixels to desired depth.
*/
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
ssize_t
x;
Quantum
*magick_restrict q;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel
channel;
PixelTrait
traits;
channel=GetPixelChannelChannel(image,i);
traits=GetPixelChannelTraits(image,channel);
if ((traits & UpdatePixelTrait) == 0)
continue;
q[i]=ScaleAnyToQuantum(ScaleQuantumToAny(ClampPixel((MagickRealType)
q[i]),range),range);
}
q+=GetPixelChannels(image);
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
{
status=MagickFalse;
continue;
}
}
image_view=DestroyCacheView(image_view);
if (status != MagickFalse)
image->depth=depth;
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e t I m a g e T y p e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetImageType() sets the type of image. Choose from these types:
%
% Bilevel Grayscale GrayscaleMatte
% Palette PaletteMatte TrueColor
% TrueColorMatte ColorSeparation ColorSeparationMatte
% OptimizeType
%
% The format of the SetImageType method is:
%
% MagickBooleanType SetImageType(Image *image,const ImageType type,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o type: Image type.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType SetImageType(Image *image,const ImageType type,
ExceptionInfo *exception)
{
const char
*artifact;
ImageInfo
*image_info;
MagickBooleanType
status;
QuantizeInfo
*quantize_info;
assert(image != (Image *) NULL);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
assert(image->signature == MagickCoreSignature);
status=MagickTrue;
image_info=AcquireImageInfo();
image_info->dither=image->dither;
artifact=GetImageArtifact(image,"dither");
if (artifact != (const char *) NULL)
(void) SetImageOption(image_info,"dither",artifact);
switch (type)
{
case BilevelType:
{
status=TransformImageColorspace(image,GRAYColorspace,exception);
(void) NormalizeImage(image,exception);
quantize_info=AcquireQuantizeInfo(image_info);
quantize_info->number_colors=2;
quantize_info->colorspace=GRAYColorspace;
status=QuantizeImage(quantize_info,image,exception);
quantize_info=DestroyQuantizeInfo(quantize_info);
image->alpha_trait=UndefinedPixelTrait;
break;
}
case GrayscaleType:
{
status=TransformImageColorspace(image,GRAYColorspace,exception);
image->alpha_trait=UndefinedPixelTrait;
break;
}
case GrayscaleAlphaType:
{
status=TransformImageColorspace(image,GRAYColorspace,exception);
if (image->alpha_trait == UndefinedPixelTrait)
(void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception);
break;
}
case PaletteType:
{
status=TransformImageColorspace(image,sRGBColorspace,exception);
if ((image->storage_class == DirectClass) || (image->colors > 256))
{
quantize_info=AcquireQuantizeInfo(image_info);
quantize_info->number_colors=256;
status=QuantizeImage(quantize_info,image,exception);
quantize_info=DestroyQuantizeInfo(quantize_info);
}
image->alpha_trait=UndefinedPixelTrait;
break;
}
case PaletteBilevelAlphaType:
{
ChannelType
channel_mask;
status=TransformImageColorspace(image,sRGBColorspace,exception);
if (image->alpha_trait == UndefinedPixelTrait)
(void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception);
channel_mask=SetImageChannelMask(image,AlphaChannel);
(void) BilevelImage(image,(double) QuantumRange/2.0,exception);
(void) SetImageChannelMask(image,channel_mask);
quantize_info=AcquireQuantizeInfo(image_info);
status=QuantizeImage(quantize_info,image,exception);
quantize_info=DestroyQuantizeInfo(quantize_info);
break;
}
case PaletteAlphaType:
{
status=TransformImageColorspace(image,sRGBColorspace,exception);
if (image->alpha_trait == UndefinedPixelTrait)
(void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception);
quantize_info=AcquireQuantizeInfo(image_info);
quantize_info->colorspace=TransparentColorspace;
status=QuantizeImage(quantize_info,image,exception);
quantize_info=DestroyQuantizeInfo(quantize_info);
break;
}
case TrueColorType:
{
status=TransformImageColorspace(image,sRGBColorspace,exception);
if (image->storage_class != DirectClass)
status=SetImageStorageClass(image,DirectClass,exception);
image->alpha_trait=UndefinedPixelTrait;
break;
}
case TrueColorAlphaType:
{
status=TransformImageColorspace(image,sRGBColorspace,exception);
if (image->storage_class != DirectClass)
status=SetImageStorageClass(image,DirectClass,exception);
if (image->alpha_trait == UndefinedPixelTrait)
(void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception);
break;
}
case ColorSeparationType:
{
status=TransformImageColorspace(image,CMYKColorspace,exception);
if (image->storage_class != DirectClass)
status=SetImageStorageClass(image,DirectClass,exception);
image->alpha_trait=UndefinedPixelTrait;
break;
}
case ColorSeparationAlphaType:
{
status=TransformImageColorspace(image,CMYKColorspace,exception);
if (image->storage_class != DirectClass)
status=SetImageStorageClass(image,DirectClass,exception);
if (image->alpha_trait == UndefinedPixelTrait)
status=SetImageAlphaChannel(image,OpaqueAlphaChannel,exception);
break;
}
case OptimizeType:
case UndefinedType:
break;
}
image_info=DestroyImageInfo(image_info);
if (status == MagickFalse)
return(status);
image->type=type;
return(MagickTrue);
}